
Azerbaijan Journal of Mathematics
V. 6, No 1, 2016, January
ISSN 2218-6816

Homoclinic Orbits for a Class of Nonlinear Difference
Equations
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Abstract. By using the critical point theory, the existence of a nontrivial homoclinic orbit for
a class of nonlinear difference equations is obtained. The proof is based on the Mountain Pass
Lemma in combination with periodic approximations. Our conditions on the nonlinear term are
rather relaxed and we improve some existing results in the literature.
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1. Introduction

Below N, Z and R denote the sets of all natural numbers, integers and real numbers,
respectively. For any a, b ∈ Z, define Z(a) = {a, a + 1, · · · }, Z(a, b) = {a, a + 1, · · · , b}
when a < b.

Difference equations have attracted the interest of many researchers in the past twenty
years since they provided a natural description of several discrete models. Such discrete
models are often investigated in various fields of science and technology such as computer
science, economics, neural networks, ecology, cybernetics, biological systems, optimal con-
trol, and population dynamics. These studies cover many of the branches of difference
equations, such as stability, attractivity, periodicity, homoclinic orbits, oscillation, and
boundary value problems, see [2, 4, 5, 6, 7, 8, 9, 10, 21, 24, 29, 30, 31, 32] and the refer-
ences therein. For the general background of difference equations, one can refer to [1].

The present paper considers the following forward and backward difference equation

∆
(
pn(∆un−1)δ

)
− qnuδn + f(n, un+1, un, un−1) = 0, n ∈ Z, (1)

where ∆ is the forward difference operator ∆un = un+1−un, ∆2un = ∆(∆un), δ > 0 is the
ratio of odd positive integers, {pn} and {qn} are real sequences, f ∈ C(Z×R3,R), T is a
given positive integer, pn+T = pn > 0, qn+T = qn > 0, f(n+T, v1, v2, v3) = f(n, v1, v2, v3).
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Eq. (1) can be considered as a discrete analogue of the following second-order nonlinear
functional differential equation(

p(t)ϕ(u′)
)′

+ q(t)u(t) + f(t, u(t+ 1), u(t), u(t− 1)) = 0, t ∈ R. (2)

Eq. (2) includes the following equation(
p(t)ϕ(u′)

)′
+ f(t, u(t)) = 0, t ∈ R,

which has arisen in the study of fluid dynamics, combustion theory, gas diffusion through
porous media, thermal self-ignition of a chemically active mixture of gases in a vessel,
catalysis theory, chemically reacting systems, and adiabatic reactor [3, 11, 22]. Equations
similar in structure to (2) arise in the study of homoclinic orbits [14, 16, 17, 18] of functional
differential equations.

When f(n, un+1, un, un−1) = 0, n ∈ Z(0), (1) reduces to the following equation

∆
(
pn(∆un−1)δ

)
+ qnu

δ
n = 0, (3)

which has been studied in [21] for results on oscillation, asymptotic behavior and the
existence of positive solutions.

In 2008, Cai and Yu [2] have obtained some sufficient conditions for the existence of
periodic solutions of the following nonlinear difference equation:

∆
(
pn(∆un−1)δ

)
+ qnu

δ
n = f(n, un), n ∈ Z. (4)

It is well known that critical point theory is an effective approach to study the behavior
of differential equations [13, 14, 15, 16, 17, 18, 27, 28]. Only since 2003, critical point
theory has been employed to establish sufficient conditions for the existence of periodic
solutions for second order difference equations [19, 20]. Along this direction, Ma and
Guo [25] (without periodicity assumption) and [26] (with periodicity assumption) applied
variational methods to prove the existence of homoclinic orbits for the special form of
(1) (with δ = 1). Chen and Wang [9] studied the existence of infinitely many homoclinic
orbits of the following equation:

∆
(
pn(∆un−1)δ

)
− qnuδn + f(n, un) = 0, n ∈ Z, (5)

by using critical point theory. A crucial role that the Ambrosetti-Rabinowitz condition
plays is to ensure the boundedness of Palais-Smale sequences. This is very crucial in
applying the critical point theory.

However, it seems that the results on homoclinic orbits of (1) are scarce in the
literature. Since (1) contains both advance and retardation, there are very few
manuscripts dealing with this subject, the traditional ways of establishing the functional
in [2, 10, 19, 20, 23, 31, 32] are inapplicable to our case. The main purpose of this paper is
to develop a new approach to above problem without the classical Ambrosetti-Rabinowitz
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condition. In particular, our conditions on the nonlinear term are rather relaxed and we
improve some existing results in the known literature. In fact, one can see the following
Remarks 2 and 3 for details. The motivation for the present work stems from the recent
papers [4, 9, 18].

Let

p = min
n∈Z(1,T )

{pn}, p̄ = max
n∈Z(1,T )

{pn}, q = min
n∈Z(1,T )

{qn}, q̄ = max
n∈Z(1,T )

{qn}.

Our main results are as follows.

Theorem 1. Suppose that the following hypotheses are satisfied:
(F1) there exists a functional F (n, v1, v2) ∈ C1(Z × R2,R) with F (n + T, v1, v2) =
F (n, v1, v2) and it satisfies

∂F (n− 1, v2, v3)

∂v2
+
∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3);

(F2) there exist positive constants % and a <
q

2(δ+1)

(
κ1
κ2

)δ+1
such that

|F (n, v1, v2)| ≤ a
(
|v1|δ+1 + |v2|δ+1

)
for all n ∈ Z and

√
v2

1 + v2
2 ≤ %;

(F3) there exist constants ρ, c > 1
2(δ+1)

(
κ2
κ1

)δ+1 (
2δ+1p̄+ q̄

)
and b such that

F (n, v1, v2) ≥ c
(
|v1|δ+1 + |v2|δ+1

)
+ b for all n ∈ Z and

√
v2

1 + v2
2 ≥ ρ;

(F4) ∂F (n,v1,v2)
∂v1

v1+∂F (n,v1,v2)
∂v2

v2−(δ+1)F (n, v1, v2) > 0, for all (n, v1, v2) ∈ Z×R2\{(0, 0)};
(F5) ∂F (n,v1,v2)

∂v1
v1 + ∂F (n,v1,v2)

∂v2
v2 − (δ + 1)F (n, v1, v2)→ +∞ as

√
v2

1 + v2
2 → +∞.

Then (1) has a nontrivial homoclinic orbit.

Remark 1. By (F3), it is easy to see that there exists a constant ζ > 0 such that

(F ′3) F (n, v1, v2) ≥ c
(
|v1|δ+1 + |v2|δ+1

)
+b−ζ, ∀(n, v1, v2) ∈ Z×R2.

As a matter of fact, letting

ζ = max

{∣∣∣F (n, v1, v2)− c
(
|v1|δ+1 + |v2|δ+1

)
− b
∣∣∣ : n ∈ Z,

√
v2

1 + v2
2 ≤ ρ

}
,

we can easily get the desired result.

Remark 2. Theorem 1 extends Theorem 1.1 in [26] which is the special case of our
Theorem 1 by letting δ = 1.

Remark 3. In many studies (see e.g. [2, 10, 19, 20, 25, 26]) of second order difference
equations, the following classical Ambrosetti-Rabinowitz condition is assumed.
(AR) there exists a constant β > 2 such that

0 < βF (n, u) ≤ uf(n, u) for all n ∈ Z and u ∈ R \ {0}.
Note that (F3)− (F5) are much weaker than (AR). Thus our result improves the existing
ones.



90 H. Shi, X. Liu, Y. Zhang

Theorem 2. Suppose that (F1)− (F5) and the following hypothesis are satisfied:
(F6) p−n = pn, q−n = qn, F (−n, v1, v2) = F (n, v1, v2).
Then (1) has a nontrivial even homoclinic orbit.

For the basic knowledge of variational methods, the reader is referred to [17, 27, 28].

2. Preliminaries

In this section, we present some definitions and lemmas that will be used in the proof
of our results.

Let S be the set of sequences u = (· · · , u−n, · · · , u−1, u0, u1, · · · , un, · · · ) = {un}+∞n=−∞,
that is

S = {{un}|un ∈ R, n ∈ Z}.

For any u, v ∈ S, a, b ∈ R, au+ bv is defined by

au+ bv = {aun + bvn}+∞n=−∞.

Then S is a vector space.
For any given positive integers m and T , Em is defined as a subspace of S by

Em = {u ∈ S|un+2mT = un, ∀n ∈ Z}.

Clearly, Em is isomorphic to R2mT . Em can be equipped with the inner product

〈u, v〉 =
mT−1∑
j=−mT

ujvj , ∀u, v ∈ Em, (6)

by which the norm ‖ · ‖ can be induced by

‖u‖ =

 mT−1∑
j=−mT

u2
j

 1
2

, ∀u ∈ Em. (7)

It is obvious that Em with the inner product (6) is a finite dimensional Hilbert space and
linearly homeomorphic to R2mT .

On the other hand, we define the norm ‖ · ‖s on Em as follows:

‖u‖s =

 mT−1∑
j=−mT

|uj |s
 1

s

, (8)

for all u ∈ Em and s > 1. Denote by ls the set of all functions u : Z→ R such that

‖u‖ss =
∑
j∈Z
|uj |s < +∞.
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Since ‖u‖s and ‖u‖2 are equivalent, there exist constants κ1, κ2 such that κ2 ≥ κ1 > 0,
and

κ1‖u‖2 ≤ ‖u‖s ≤ κ2‖u‖2, ∀u ∈ Em. (9)

Clearly, ‖u‖ = ‖u‖2. For all u ∈ Em, define the functional J on Em as follows:

J(u) =
1

δ + 1

mT−1∑
n=−mT

pn (∆un−1)δ+1 +
1

δ + 1

mT−1∑
n=−mT

qnu
δ+1
n −

mT−1∑
n=−mT

F (n, un+1, un). (10)

Clearly, J ∈ C1(Em,R) and for any u = {un}n∈Z ∈ Em, by the periodicity of {un}n∈Z,
we can compute the partial derivative as

∂J

∂un
= −∆

(
pn(∆un−1)δ

)
+ qnu

δ
n − f(n, un+1, un, un−1), ∀n ∈ Z(−mT,mT − 1). (11)

Thus, u is a critical point of J on Em if and only if

∆
(
pn(∆un−1)δ

)
− qnuδn + f(n, un+1, un, un−1) = 0, ∀n ∈ Z(−mT,mT − 1).

Due to the periodicity of u = {un}n∈Z ∈ Em and f(n, v1, v2, v3) in the first variable n, we
reduce the existence of periodic solutions of (1) to the existence of critical points of J on
Em. That is, the functional J is just the variational framework of (1).

In what follows, we define a norm ‖ · ‖∞ in Em by

‖u‖∞ = max
j∈Z(−mT,mT−1)

|uj | , ∀u ∈ Em.

Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously Fréchet-
differentiable functional defined on E. J is said to satisfy the Palais-Smale condition
(P.S. condition for short) if any sequence {un} ⊂ E for which {J (un)} is bounded and
J ′ (un)→ 0 (n→∞) possesses a convergent subsequence in E.

Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote its boundary.

Lemma 1. (Mountain Pass Lemma [28]). Let E be a real Banach space and J ∈ C1(E,R)
satisfy the P.S. condition. If J(0) = 0 and
(J1) there exist constants ρ, α > 0 such that J |∂Bρ ≥ α, and
(J2) there exists e ∈ E \Bρ such that J(e) ≤ 0,
then J possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

J(g(s)), (12)

where
Γ = {g ∈ C([0, 1], E)|g(0) = 0, g(1) = e}. (13)

Lemma 2. The following inequality is true:

1

δ + 1

mT−1∑
n=−mT

pn (∆un−1)δ+1 ≤ p̄

δ + 1
κδ+1

2 2δ+1‖u‖δ+1. (14)
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Proof. 1
δ+1

∑mT−1
n=−mT pn (∆un−1)δ+1 ≤ p̄

δ+1

∑mT−1
n=−mT |∆un|

δ+1

=
p̄

δ + 1

( mT−1∑
n=−mT

|∆un|δ+1

) 1
δ+1

δ+1

≤ p̄

δ + 1

κ2

(
mT−1∑
n=−mT

|∆un|2
) 1

2

δ+1

≤ p̄

δ + 1
κδ+1

2

[
mT−1∑
n=−mT

2
(
u2
n+1 + u2

n

)] δ+1
2

= p̄
δ+1κ

δ+1
2 2δ+1‖u‖δ+1. J

3. Proof of theorems

In this section, we prove our main results by using the critical point method.

Lemma 3. Suppose that (F1)− (F5) are satisfied. Then J satisfies the P.S. condition.

Proof. Assume that
{
u(i)
}
i∈N in Em is a sequence such that

{
J
(
u(i)
)}

i∈N is bounded.

Then there exists a constant K > 0 such that −K ≤ J
(
u(i)
)
. By (14) and (F ′3), we have

−K ≤ J
(
u(i)
)
≤ p̄

δ + 1
κδ+1

2 2δ+1
∥∥∥u(i)

∥∥∥δ+1
+

q̄

δ + 1

( mT−1∑
n=−mT

∣∣∣u(i)
n

∣∣∣δ+1
) 1

δ+1

δ+1

−
mT−1∑
n=−mT

[
c

(∣∣∣u(i)
n+1

∣∣∣δ+1
+
∣∣∣u(i)
n

∣∣∣δ+1
)

+ b− ζ
]

≤
(

p̄

δ + 1
κδ+1

2 2δ+1 +
q̄

δ + 1
κδ+1

2 − 2cκδ+1
1

)∥∥∥u(i)
∥∥∥δ+1

+ 2mT (ζ − b) .

Therefore,(
2cκδ+1

1 − p̄

δ + 1
κδ+1

2 2δ+1 − q̄

δ + 1
κδ+1

2

)∥∥∥u(i)
∥∥∥δ+1

≤ 2mT (ζ − b) +K. (15)

Since c > 1
2(δ+1)

(
κ2
κ1

)δ+1 (
2δ+1p̄+ q̄

)
, (15) implies that

{
u(i)
}
i∈N is bounded in Em. Thus,{

u(i)
}
i∈N possesses a convergent subsequence in Em. The desired result follows. J

Lemma 4. Suppose that (F1)− (F5) are satisfied. Then for any given positive integer m,
(1) possesses a 2mT -periodic solution u(m) ∈ Em.
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Proof. In our case, it is clear that J(0) = 0. By Lemma 3, J satisfies the P.S. condition.
By (F2), we have

J(u) ≥
p

δ + 1

mT−1∑
n=−mT

|∆un|δ+1 +
q

δ + 1

mT−1∑
n=−mT

|un|δ+1

−a
mT−1∑
n=−mT

(
|un+1|δ+1 + |un|δ+1

)
≥

q

δ + 1
κδ+1

1 ‖u‖δ+1 − 2aκδ+1
2 ‖u‖δ+1

=

(
q

δ + 1
κδ+1

1 − 2aκδ+1
2

)
‖u‖δ+1.

Taking α =
(

q

δ+1κ
δ+1
1 − 2aκδ+1

2

)
%δ+1 > 0, we obtain

J(u)|∂B% ≥ α > 0,

which implies that J satisfies the condition (J1) of the Mountain Pass Lemma.

Next, we shall verify the condition (J2).

There exists a sufficiently large number ε > max{%, ρ} such that(
2cκδ+1

1 − p̄

δ + 1
κδ+1

2 2δ+1 − q̄

δ + 1
κδ+1

2

)
εδ+1 ≥ |b|. (16)

Let e ∈ Em and

en =

{
ε, if n = 0,
0, if n ∈ {j ∈ Z : −mT ≤ j ≤ mT − 1 and j 6= 0},

en+1 =

{
ε, if n = 0,
0, if n ∈ {j ∈ Z : −mT ≤ j ≤ mT − 1 and j 6= 0}.

Then

F (n, en+1, en) =

{
F (0, ε, ε), if n = 0,
0, if n ∈ {j ∈ Z : −mT ≤ j ≤ mT − 1 and j 6= 0}.

With (16) and (F3), we have

J(e) =
1

δ + 1

mT−1∑
n=−mT

pn (∆en−1)δ+1 +
1

δ + 1

mT−1∑
n=−mT

qne
δ+1
n −

mT−1∑
n=−mT

F (n, en+1, en)

≤ p̄

δ + 1
κδ+1

2 2δ+1 ‖e‖δ+1 +
q̄

δ + 1
κδ+1

2 ‖e‖δ+1 − 2cκδ+1
1 ‖e‖δ+1 − b
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= −
(

2cκδ+1
1 − p̄

δ + 1
κδ+1

2 2δ+1 − q̄

δ + 1
κδ+1

2

)
εδ+1 − b ≤ 0. (17)

All the assumptions of the Mountain Pass Lemma have been verified. Consequently,
J possesses a critical value cm given by (12) and (13) with E = Em and Γ = Γm, where
Γm = {gm ∈ C([0, 1], Em)|gm(0) = 0, gm(1) = e, e ∈ Em\Bε} . Let u(m) denote the corre-

sponding critical point of J on Em. Note that
∥∥u(m)

∥∥ 6= 0 since cm > 0. J

Lemma 5. Suppose that (F1) − (F5) are satisfied. Then there exist positive constants %
and η independent of m such that

% ≤
∥∥∥u(m)

∥∥∥
∞
≤ η. (18)

Proof. The continuity of F (0, v1, v2) with respect to the second and third variables
implies that there exists a constant τ > 0 such that |F (0, v1, v2)| ≤ τ for

√
v2

1 + v2
2 ≤ %.

It is clear that

J
(
u(m)

)
≤ max

0≤s≤1

{
1

δ + 1

mT−1∑
n=−mT

∣∣∣pn (∆(se)n−1)δ+1 + qn(se)δ+1
n

∣∣∣
−

mT−1∑
n=−mT

F (n, (se)n+1, (se)n)

}

≤
(

p̄

δ + 1
κδ+1

2 2δ+1 +
q̄

δ + 1
κδ+1

2

)
‖e‖δ+1 + τ

=

(
p̄

δ + 1
κδ+1

2 2δ+1 +
q̄

δ + 1
κδ+1

2

)
εδ+1 + τ.

Let ξ =
(

p̄
δ+1κ

δ+1
2 2δ+1 + q̄

δ+1κ
δ+1
2

)
εδ+1 + τ . Then we have J

(
u(m)

)
≤ ξ, which is

independent of m. From (10) and (11), we have

J
(
u(m)

)
=

1

δ + 1

mT−1∑
n=−mT

[
∂F (n− 1, u

(m)
n , u

(m)
n−1)

∂v2
u(m)
n +

∂F (n, u
(m)
n+1, u

(m)
n )

∂v2
u(m)
n

]

−
mT−1∑
n=−mT

F (n, u
(m)
n+1, u

(m)
n )

=
1

δ + 1

mT−1∑
n=−mT

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v1
u

(m)
n+1 +

∂F (n, u
(m)
n+1, u

(m)
n )

∂v2
u(m)
n

]

−
mT−1∑
n=−mT

F (n, u
(m)
n+1, u

(m)
n ) ≤ ξ.
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By (F4) and (F5), there exists a constant η > 0 such that
1
δ+1

(
∂F (n,v1,v2)

∂v1
v1 + ∂F (n,v1,v2)

∂v2
v2

)
−F (n, v1, v2) > ξ, for all n ∈ Z and

√
v2

1 + v2
2 ≥ η,

which implies that
∣∣∣u(m)
n

∣∣∣ ≤ η for all n ∈ Z, that is
∥∥u(m)

∥∥
∞ ≤ η.

From the definition of J , we have

0 =
〈
J ′(u(m)), u(m)

〉
≥ q

mT−1∑
n=−mT

∣∣∣u(m)
n

∣∣∣δ+1

−
mT−1∑
n=−mT

[
∂F (n− 1, u

(m)
n , u

(m)
n−1)

∂v2
u(m)
n +

∂F (n, u
(m)
n+1, u

(m)
n )

∂v2
u(m)
n

]

≥ qκδ+1
1 ‖u(m)‖δ+1−

mT−1∑
n=−mT

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v1
u

(m)
n+1 +

∂F (n, u
(m)
n+1, u

(m)
n )

∂v2
u(m)
n

]
.

Therefore, combined with (F2), we get

qκδ+1
1 ‖u(m)‖δ+1 ≤

mT−1∑
n=−mT

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v1
u

(m)
n+1 +

∂F (n, u
(m)
n+1, u

(m)
n )

∂v2
u(m)
n

]

≤


mT−1∑
n=−mT

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v1

] δ+1
δ


δ
δ+1

‖u(m)‖δ+1

+


mT−1∑
n=−mT

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v2

] δ+1
δ


δ
δ+1

‖u(m)‖δ+1

≤ κ2‖u(m)‖




mT−1∑
n=−mT

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v1

] δ+1
δ


δ
δ+1

+


mT−1∑
n=−mT

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v2

] δ+1
δ


δ
δ+1

 .

That is

qκδ+1
1

κ2
‖u(m)‖δ ≤


mT−1∑
n=−mT

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v1

] δ+1
δ


δ
δ+1

+



96 H. Shi, X. Liu, Y. Zhang

+


mT−1∑
n=−mT

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v2

] δ+1
δ


δ
δ+1

.

Thus

q
δ+1
δ κ

(δ+1)2

δ
1

κ
δ+1
δ

2

‖u(m)‖δ+1

≤




mT−1∑
n=−mT

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v1

] δ+1
δ


δ
δ+1

+


mT−1∑
n=−mT

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v2

] δ+1
δ


δ
δ+1


δ+1
δ

.

(19)
Combined with (F2), we get

qδ+1κ
(δ+1)2

δ
1

κ
δ+1
δ

2

‖u(m)‖δ+1

≤


{

mT−1∑
n=−mT

[
(δ + 1)a

∣∣∣u(m)
n+1

∣∣∣δ] δ+1
δ

} δ
δ+1

+

{
mT−1∑
n=−mT

[
(δ + 1)a

∣∣∣u(m)
n

∣∣∣δ] δ+1
δ

} δ
δ+1


δ+1
δ

≤ 2
δ+1
δ [a(δ + 1)]

δ+1
δ κδ+1

2 ‖u(m)‖δ+1.

Thus, we have u(m) = 0. But this contradicts ‖u(m)‖ 6= 0, which shows that

‖u(m)‖∞ ≥ %,

and the proof of Lemma 5 is finished. J

Proof of Theorem 1. In the following, we shall give the existence of a nontrivial
homoclinic orbit.

Consider the sequence
{
u

(m)
n

}
n∈Z

of 2mT -periodic solutions found in Lemma 4. First,

by (18), for any m ∈ N, there exists a constant nm ∈ Z independent of m such that∣∣∣u(m)
nm

∣∣∣ ≥ %. (20)

Since pn, qn and f(n, v1, v2, v3) are all T -periodic in n,
{
u

(m)
n+jT

}
(∀j ∈ N) is also 2mT -

periodic solution of (1). Hence, making such shifts, we can assume that nm ∈ Z(0, T − 1)
in (20). Moreover, passing to a subsequence of ms, we can even assume that nm = n0 is
independent of m.
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Next, we extract a subsequence, still denoted by u(m), such that

u(m)
n → un, m→∞, ∀n ∈ Z.

Inequality (20) implies that |un0 | ≥ ξ and, hence, u = {un} is a nonzero sequence. More-
over,

∆
(
pn(∆un−1)δ

)
− qnuδn + f(n, un+1, un, un−1)

= lim
n→∞

[
∆

(
pn

(
∆
(
u

(m)
n−1

))δ)
− qn

(
u(m)
n

)δ
+ f

(
n, u

(m)
n+1, u

(m)
n , u

(m)
n−1

)]
= 0.

So u = {un} is a solution of (1).

Finally, we show that u ∈ lδ+1. For um ∈ Em, let

Pm =

{
n ∈ Z :

∣∣∣u(m)
n

∣∣∣ < √2

2
%,−mT ≤ n ≤ mT − 1

}
,

Qm =

{
n ∈ Z :

∣∣∣u(m)
n

∣∣∣ ≥ √2

2
%,−mT ≤ n ≤ mT − 1

}
.

Since F (n, v1, v2) ∈ C1(Z×R2,R), there exist constants ξ̄ > 0, ξ > 0 such that

max



{

mT−1∑
n=−mT

[
∂F (n, v1, v2)

∂v1

] δ+1
δ

} δ
δ+1

+

{
mT−1∑
n=−mT

[
∂F (n, v1, v2)

∂v2

] δ+1
δ

} δ
δ+1


δ+1
δ

: % ≤
√
v2

1 + v2
2 ≤ η, n ∈ Z

 ≤ ξ̄,
min

{
1

δ + 1

[
∂F (n, v1, v2)

∂v1
v1 +

∂F (n, v1, v2)

∂v2
v2

]
−

−F (n, v1, v2) : % ≤
√
v2

1 + v2
2 ≤ η, n ∈ Z

}
≥ ξ.

For n ∈ Qm,


[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v1

] δ+1
δ


δ
δ+1

+


[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v2

] δ+1
δ


δ
δ+1

≤ ξ̄

ξ

{
1

δ + 1

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v1
u

(m)
n+1 +

∂F (n, u
(m)
n+1, u

(m)
n )

∂v2
u(m)
n )

]
− F (n, u

(m)
n+1, u

(m)
n )

}
.
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By (19), we have

q
δ+1
δ κ

(δ+1)2

δ
1

κ
δ+1
δ

2

‖u(m)‖δ+1

≤


∑
n∈Pm

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v1

] δ+1
δ


δ
δ+1

+

∑
n∈Pm

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v2

] δ+1
δ


δ
δ+1


δ+1
δ

+


 ∑
n∈Qm

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v1

] δ+1
δ


δ
δ+1

+

 ∑
n∈Qm

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v2

] δ+1
δ


δ
δ+1


δ+1
δ

≤


{∑
n∈Pm

[
(δ + 1)a

∣∣∣u(m)
n+1

∣∣∣δ] δ+1
δ

} δ
δ+1

+

{ ∑
n∈Pm

[
(δ + 1)a

∣∣∣u(m)
n

∣∣∣δ] δ+1
δ

} δ
δ+1


δ+1
δ

+
ξ̄

ξ

 1

δ + 1

∑
n∈Qm

[
∂F (n, u

(m)
n+1, u

(m)
n )

∂v1
u

(m)
n+1 +

∂F (n, u
(m)
n+1, u

(m)
n )

∂v2
u(m)
n )

]
− F (n, u

(m)
n+1, u

(m)
n )


≤ 2

δ+1
δ [a(δ + 1)]

δ+1
δ κδ+1

2 ‖u(m)‖δ+1 +
ξ̄ξ

ξ
.

Thus, ∥∥∥u(m)
∥∥∥δ+1

≤ ξ̄ξκ
δ+1
δ

2

ξ

{
q
δ+1
δ κ

(δ+1)2

δ
1 − [2a(δ + 1)]

δ+1
δ κ

(δ+1)2

δ
2

} .
For any fixed D ∈ Z and m large enough, we have

D∑
n=−D

∣∣∣u(m)
n

∣∣∣δ+1
≤ ‖u(m)‖δ+1 ≤ ξ̄ξκ

δ+1
δ

2

ξ

{
q
δ+1
δ κ

(δ+1)2

δ
1 − [2a(δ + 1)]

δ+1
δ κ

(δ+1)2

δ
2

} .
Since ξ̄, ξ, ξ, q, a, δ, κ1 and κ2 are constants independent of m, passing to the limit, we
have

D∑
n=−D

|un|δ+1 ≤ ξ̄ξκ
δ+1
δ

2

ξ

{
q
δ+1
δ κ

(δ+1)2

δ
1 − [2a(δ + 1)]

δ+1
δ κ

(δ+1)2

δ
2

} .
Due to the arbitrariness of D, u ∈ lδ+1. Therefore, u satisfies un → 0 as |n| → ∞. The
existence of a nontrivial homoclinic orbit is obtained. J
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Proof of Theorem 2. Consider the following boundary problem:
∆
(
pn(∆un−1)δ

)
− qnuδn + f(n, un+1, un, un−1) = 0, n ∈ Z(−mT,mT ),

p−mT = pmT = 0, q−mT = qmT = 0,
p−n = pn, q−n = qn, n ∈ Z(−mT,mT ).

Let S be the set of sequences u = (· · · , u−n, · · · , u−1, u0, u1, · · · , un, · · · ) = {un}+∞n=−∞,
that is

S = {{un}|un ∈ R, n ∈ Z}.
For any u, v ∈ S, a, b ∈ R, au+ bv is defined by

au+ bv = {aun + bvn}+∞n=−∞.

Then S is a vector space.
For any given positive integers m and T , Ẽm is defined as a subspace of S by

Ẽm = {u ∈ S|u−n = un, ∀n ∈ Z}.

Clearly, Ẽm is isomorphic to R2mT+1. Ẽm can be equipped with the inner product

〈u, v〉 =

mT∑
j=−mT

ujvj , ∀u, v ∈ Ẽm,

by which the norm ‖ · ‖ can be induced by

‖u‖ =

 mT∑
j=−mT

u2
j

 1
2

, ∀u ∈ Ẽm.

It is obvious that Ẽm is a Hilbert space with 2mT + 1-periodicity and linearly homeomor-
phic to R2mT+1.

Similarly to the proof of Theorem 1, we can also prove Theorem 2. For simplicity, we
omit its proof. J

4. Example

In this section, we give an example to illustrate our results.

Example 1. Let

f(n, v1, v2, v3) =

{
γ |v2|δ v2

|v2|

(
|v1|δ+1+|v2|δ+1

|v1|δ+1+|v2|δ+1+1
+ |v2|δ+1+|v3|δ+1

|v2|δ+1+|v3|δ+1+1

)
, if v2 6= 0,

0, if v2 = 0,

and
F (n, v1, v2) =

γ

δ + 1

[
|v1|δ+1 + |v2|δ+1 − ln

(
|v1|δ+1 + |v2|δ+1 + 1

)]
,

where γ > 2δ+1p̄+q̄. It is easy to verify that all the assumptions of Theorem 1 are satisfied.
Consequently, a nontrivial homoclinic orbit is obtained.
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