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Some Spaces of Double Sequences, Their Duals and Mat-
rix Transformations
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Abstract. In this paper we define certain generalized double difference sequence spaces by means
of an Orlicz function in 2-normed spaces. We prove that these spaces are Banach spaces
and establish some inclusion relations. We also determine the α− and β(t)-dual of spaces
Mu(M,∆n, u, w, ‖·, ·‖) and Ct(M,∆n, u, w, ‖·, ·‖), respectively. Finally, we characterize the classes
(µ : Cϑ(M,∆n, u, w, ‖·, ·‖)) for ϑ ∈ {p, bp, t} of matrix transformations where µ is any given space
of double sequences.
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1. Introduction and Preliminaries

In [8] Gähler introduced the notion of 2-normed spaces as a generalization of a normed
linear spaces, which was used to study sequence spaces and summability (see ([11],[31]),
[12], [26]).

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X is a
function ‖., .‖ : X ×X → R which satisfies the following:

1. ‖x, y‖ = 0 if and only if x and y are linearly dependent,

2. ‖x, y‖ = ‖y, x‖,

3. ‖αx, y‖ = |α|‖x, y‖, α ∈ R,

4. ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖, for all x, y, z ∈ X.

The pair (X, ‖., .‖) is called a 2-normed space (see [11]). For example, we may take
X = R2 equipped with the 2-norm defined as ‖x, y‖ = the area of the parallelogram
spanned by the vectors x and y which may be given explicitly by the formula

‖x1, x2‖E =
(∣∣∣ x11 x12

x21 x22

∣∣∣).
∗Corresponding author.
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Then, clearly (X, ‖·, ·, ·‖) is a 2-normed space. Recall that (X, ‖·, ·, ·‖) is a 2-Banach space
if every Cauchy sequence in X is convergent to some x in X.

An Orlicz function M is a function, which is continuous, non-decreasing and convex
with M(0) = 0, M(x) > 0 for x > 0 and M(x) −→∞ as x −→∞.

Lindenstrauss and Tzafriri [14] used the idea of Orlicz function to define the following
sequence space:

`M =
{
x ∈ ω :

∞∑
k=1

M
( |xk|
ρ

)
<∞, for some ρ > 0

}
,

which is called an Orlicz sequence space. The space `M is a Banach space with the norm

||x|| = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|
ρ

)
≤ 1
}
.

It is shown in [14] that every Orlicz sequence space `M contains a subspace isomorphic to
`p(p ≥ 1). In the later stage, different Orlicz sequence spaces were introduced and studied
by Parashar and Choudhary [27], Mursaleen [17] and many others.

The notion of difference sequence spaces was introduced by Kızmaz [13], who studied
the difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion was further generalized
by Et and Colak [7] by introducing the spaces l∞(∆n), c(∆n) and c0(∆n).

Let n, υ be non-negative integers. Then for Z = c, c0 and l∞, we have sequence spaces

Z(∆n
υ) = {x = (xk) ∈ w : (∆n

υxm) ∈ Z},

where ∆n
υx = (∆n

υxm) = (∆n−1
υ xm −∆n−1

υ xm+1) and ∆0xm = xm for all m ∈ N, which is
equivalent to the following binomial representation:

∆n
υxm =

n∑
ν=0

(−1)ν
(
n
ν

)
xm+υν .

Taking n = υ = 1, we get the spaces l∞(∆), c(∆) and c0(∆) studied by Kızmaz[13].
Taking υ = 1, we get the spaces l∞(∆n), c(∆n) and c0(∆n) studied by Et and Colak [7].
Similarly, we can define difference operators on double sequence spaces as:

∆xm,v = (xm,v − xm,v+1)− (xm+1,v − xm+1,v+1)

= xm,v − xm,v+1 − xm+1,v + xm+1,v+1,

and
∆nxm,v = ∆n−1xm,v −∆n−1xm,v+1 −∆n−1xm+1,v + ∆n−1xm+1,v+1.

For more details about sequence spaces see [18], [21], [22], [23], [25], [28], [29], [30]), and for
double sequence spaces one can refer to [15], [19], [24]. By ω and Ω we denote the sets of
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all real valued single and double sequences which are the vector spaces with coordinatewise
addition and scalar multiplication. Any vector subspaces of w and Ω are called the single
sequence space and the double sequence space, respectively. By Mu we denote the space
of all bounded double sequences, that is

Mu =
{
x = (xmv) ∈ Ω : ‖x‖∞ = sup

m,v∈N
|xmv| <∞

}
,

which is a Banach space with the norm ‖x‖∞, where N denotes the set of all positive
integers. Consider a sequence x = (xmv) ∈ Ω. If for every ε > 0 there exists n0 = n0(ε) ∈ N
and l ∈ R such that |xmv − l| < ε for all m, v > n0, then we say that the double sequence
x is convergent in the Pringsheim’s sense to the limit l and write p − limxmv = l, where
R denotes the real field. By Cp we denote the space of all convergent double sequences in
the Pringsheim’s sense. It is well-known that there are such sequences in the space Cp but
not in the space Mu. Indeed, following Boos [4], if we define the sequence x = (xmv) by

xmv =

{
v, m = 1, v ∈ N,
0, m ≥ 2, v ∈ N,

then it is trivial that x ∈ Cp\Mu, since p−limxmv = 0 but ‖x‖∞ =∞. So, we can consider
the space Cbp of the double sequences which are both convergent in the Pringsheim’s sense
and bounded, i.e., Cbp = Cp ∩ Mu. A sequence in the space Cp is said to be regularly
convergent if it is a single convergent sequence with respect to each index. We denote the
set of all such sequences by Ct. Also, by Cbp0 and Ct0 we denote the spaces of all double
sequences converging to 0 contained in the sequence spaces Cbp and Ct, respectively. Moricz
[16] proved that Cbp, Cb0p, Ct and Ct0 are Banach spaces with the norm ‖·‖∞. Let us consider
the isomorphism T defined by

T : Ω→ w, (1)

x 7→ z = (zr) := (xϕ−1(r)),

where ϕ : N× N→ N is a bijection defined by

ϕ[(1, 1)] = 1,

ϕ[(1, 2)] = 2, ϕ[(2, 2)] = 3, ϕ[(2, 1)] = 4,

·

·

·

ϕ[(1, v)] = (v − 1)2 + 1, ϕ[(2, v)] = (v − 1)2 + 2, · · ·,

ϕ[(v, v)] = (v − 1)2 + v, ϕ[(v, v − 1)] = v2 − v + 2, · · ·, ϕ[(v, 1)] = v2,

·

·
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Let us consider a double sequence x = (xmv) and define the sequence h = (hmv) which
will be used throughout via x by

hmv =

m∑
r

v∑
s

xrs, (2)

for all m, v ∈ N. For the sake of brevity, here and in what follows, we abbreviate the

summation
m∑
r

v∑
s

by
∑
rs

and we use this abbreviation with other letters. Let λ be

a space of a double sequences, converging with respect to some linear convergence rule

v− lim : λ→ R. The sum of a double series
∑
rs

xrs with respect to this rule is defined by

v−
∑
rs

xrs = v− lim
mv→∞

hmv. Let λ, µ be two spaces of double sequences, converging with

respect to the linear convergence rules v1− lim and v2− lim, respectively, and A = (amvkl)
also be a four dimensional infinite matrix over the real or complex field.

The α−dual λα, β(v)−dual λβ(v) with respect to the v−convergence for b ∈ {p, bp, t}
and the γ−dual λγ of a double sequence space λ are respectively defined by

λα =
{

(ars) ∈ Ω :
∑
r,s

|arsxrs| <∞ for all (xrs) ∈ λ
}
,

λβ(v) =
{

(ars) ∈ Ω : v −
∑
r,s

arsxrs exists for all (xrs) ∈ λ
}
,

λγ =
{

(ars) ∈ Ω : sup
k,l

∣∣∣ k,l∑
r,s

arsxrs

∣∣∣ <∞ for all (xrs) ∈ λ
}
.

It is easy to see for any two spaces λ, µ of double sequences that µα ⊂ λα whenever
λ ⊂ µ and λα ⊂ λγ . Additionally, it is known that the inclusion λα ⊂ λβ(v), holds while
the inclusion λβ(v) ⊂ λγ does not hold, since the v−convergence of the sequence of partial

sums of a double series does not imply its boundedness. The v−summability domain λ
(v)
A

of a four dimensional infinite matrix A = (amnkl) in a space λ of a double sequences is
defined by

λ
(v)
A =

{
x = (xkl) ∈ Ω : Ax =

(
v −

∑
k,l

amvklxkl

)
m,v∈N

exists and is in λ
}
. (3)

We say, with the notataion (3), that A maps the space λ into the space µ if and only if
Ax exists and is in µ for all x ∈ λ and denote the set of all four dimensional matrices,
transforming the space λ into the space µ, by (λ : µ). It is trivial that for any matrix
A ∈ (λ : µ), (amvkl)k,l∈N is in the β(v)−dual λβ(v) of the space λ for all m, v ∈ N. An
infinite matrix A is said to be Cv− conservative if Cv ⊂ (Cv)A. Also by (λ : µ : p),
we denote the class of all four dimensional matrices A = (amnkl) in the class (λ : µ)
such that v2 − limAx = v1 − limx for all x ∈ λ. Now, following Zeltser [32], we note
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the terminology for double sequence spaces. A locally convex double sequence space λ
is called a DK−space, if all of the seminorms tkl : λ → R, x = (xkl) 7→ |xkl| for all
k, l ∈ N are continuous. A DK−space with a Fréchet topology is called an FDK−space.
A normed FDK−space is called a BDK−space. We record that Ct endowed with the
norm ‖ · ‖∞ : Ct → R, x = (xkl) 7→ sup

k,l∈N
|xkl| is a BDK−space. Let us define the

following sets of double sequences:

Mu(g) =
{

(xmv) ∈ Ω : sup
m,v∈N

|xmv|gmv <∞
}
,

Cp(g) =
{

(xmv) ∈ Ω : ∃l ∈ C 3 p− lim
m,v∈N

|xmv − l|gmv = 0
}
,

C0p(g) =
{

(xmv) ∈ Ω : p− lim
m,v∈N

|xmv|gmv = 0
}
,

Lu(g) =
{

(xmv) ∈ Ω :
∑
m,v

|xmv|gmv <∞
}
,

Cbp(g) = Cp(g) ∩Mu(g) and C0bp(g) = C0p(g) ∩Mu(g),

where g = (gmv) is the sequence of strictly positive reals gmv for all m, v ∈ N. In the case
gmv = 1 for all m, v ∈ N;Mu(g), Cp(g), C0p(g),Lu(g), Cbp(g) and C0bp(g) reduce to the sets
Mu, Cp, C0p,Lu, Cbp, respectively. Now, we can summarize the knowledge given in some
previous works related to the double sequence spaces. Gökhan and Çolak [9, 10] have
proved thatMu(g), Cp(g) and Cbp(g) are complete paranormed spaces of double sequences
and gave the alpha-, beta-, gamma-duals of the spaces Mu(g) and Cbp(g). Mursaleen and
Edely [20] have introduced the statistical convergence and statistical Cauchy for dou-
ble sequences, and gave the relation between statistically convergent and strongly Cesàro
summable double sequences. For recent on statistical convergence, we refer to [5]. In [1],
Altay and Başar have defined the spaces BS,BS(g), CSbp, CSt and BV of double series
whose sequence of partial sums are in the spaces Mu,Mu(g), Cp, Cbp, Ct and Lu, respec-
tively, and also examined some properties of those sequence spaces and determined the
alpha-duals of the spaces BS,BV, CSbp and the β(v)−duals of the spaces CSbp and CSt of
double series. Quite recently, Başar and Sever [2] have introduced the Banach space Lq
of double sequences corresponding to the well-known space lq of absolutely q−summable
single sequences and examined some properties of the space Lq. Furthermore, they deter-
mined the β(v)−dual of the space and established that the alpha- and gamma-duals of
the space Lq coincide with the β(v)−dual, where

Lq =

{
(xrs) ∈ Ω :

∑
r,s

|xrs|q <∞

}
, (1 ≤ q ≤<∞),

CSv =
{

(xrs) ∈ Ω : (hmv) ∈ Cv
}
.

Here and after we assume that v ∈ p, bp, t.
Demiriz and Duyar [6] introduced the new double difference sequence spaces Mu(∆),
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Cp(∆), C0p(∆) and Lq(∆), where ∆ = δmvkl is the double difference matrix of order one
defined by

δmvkl =

{
(−1)m+v−k−l, m− 1 ≤ k ≤ m, v − 1 ≤ l ≤ v;
0, otherwise

}
,

for all m, v, k, l ∈ N. Additionally, a direct calculation gives the inverse ∆−1 = H = (hmvkl)
of matrix ∆ as follows:

hmvkl =

{
1, 0 ≤ k ≤ m, 0 ≤ l ≤ v;
0, otherwise

}
,

for all m, v, k, l ∈ N. By Cbp(M,∆n, u, w, ‖·, ·‖) and Ct(M,∆n, u, w, ‖·, ·‖) we denote the set
of all bounded and convergent and regularly convergent double sequence spaces, respec-
tively (see [3]). Let M be an Orlicz function, (X, ‖·, ·‖) be a 2-normed space, w = (wmv)
be a bounded sequence of strictly positive real numbers and u = (umv) be a sequence of
positive real numbers. By Ω(2 − x) we denote the space of all double sequences defined
over (X, ‖·, ·‖). In the present paper we define new generalized double difference classes of
sequences as follows:

Mu(M,∆n, u, w, ‖·, ·‖) =

{
(xmv) ∈ Ω(2− x) : sup

m,v∈N
M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

<∞

}
,

Cp(M,∆n, u, w, ‖·, ·‖) =

=

{
(xmv) ∈ Ω(2− x) : ∃l ∈ C 3 p− lim

m,v→∞
M
(∥∥∥umv∆nxmv − l

ρ
, z
∥∥∥)wmv

= 0

}
,

C0p(M,∆n, u, w, ‖·, ·‖) =

{
(xmv) ∈ Ω(2− x) : p− lim

m,v→∞
M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

= 0

}
,

Lq(M,∆n, u, w, ‖·, ·‖) =

{
(xmv) ∈ Ω(2− x) :

[∑
m,v

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

]q
<∞,

1 ≤ q <∞

}
,

where ∆nxmv = ∆n−1xmv −∆n−1xm,v+1 −∆n−1xm+1,v + ∆n−1xm+1,v+1.

Define the sequence y = (ymv) as the difference transform of the sequence x = (xmv),
and an Orlicz function over 2-normed space:

ymv = (∆nx)mv = M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

, (4)

for all m, v ∈ N.
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The main purpose of this paper is to study some generalized double difference sequence
spaces via Orlicz function over 2-normed spaces. In the beginning we establish some
topological properties and prove some inclusion relations between above defined sequence
spaces. Further we also determine the duals of some spaces. In the end we characterize
the matrix transformation from the space Ct(M,∆n, u, w, ‖·, ·‖) to the double sequence
space Cϑ.

2. Some topological properties

In this section we make an effort to prove some topological properties and inclusion rela-
tions between above defined sequence spaces.

Theorem 1. Let M be an Orlicz function, w = (wmv) be a bounded sequence of strictly
positive real numbers and u = (umv) be a sequence of positive real numbers. Then the
classes of sequences Mu(M,∆n, u, w, ‖·, ·‖), Cp(M,∆n, u, w, ‖·, ·‖), C0p(M,∆n, u, w, ‖·, ·‖)
and Lq(M,∆n, u, w, ‖·, ·‖) are linear spaces with the coordinate wise addition and scalar
multiplication and Mu(M,∆n, u, w, ‖·, ·‖), Cp(M,∆n, u, w, ‖·, ·‖), C0p(M,∆n, u, w, ‖·, ·‖)
and Lq(M,∆n, u, w, ‖·, ·‖) are Banach spaces with the norms

‖x‖Mu(M∆n,u,w,‖·,·‖) = sup
m,v∈N

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

, (5)

‖x‖Lq(M,∆n,u,w,‖·,·‖) =

[∑
m,v

[
M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

]q] 1
q

(1 ≤ q ≤ ∞). (6)

Proof. The first part of the theorem is obvious, so we omit the details. Since
the proof may be given for the spaces Mu(M,∆n, u, w‖·, ·‖), Cp(M,∆n, u, w, ‖·, ·‖) and
C0p(M,∆n, u, w, ‖·, ·‖) to avoid the repetition of the similar statements, we prove the the-
orem only for the space Lq(M,∆n, u, w, ‖·, ·‖).

It is obvious that ‖x‖Lq(M,∆n,u,w,‖·,·‖) = ‖y‖Lq , where ‖ · ‖q is the norm on the space

Lq. Let {x(i)} is a Cauchy sequence in Lq(M,∆n, u, w, ‖·, ·‖). Then {y(i)}i∈N be a Cauchy

sequence in Lq, where y(i) = {y(i)
mv}∞m,v=0 with

y(i)
mv = M

(∥∥∥umv∆nximv
ρ

, z
∥∥∥)wmv

,

for all m, v ∈ N. Then for a given ε > 0, there is a positive integer N = N(ε) such that

‖yi − yj‖q =
{∑
m,v

|yimv − yjmv|q
} 1

q

=
{∑
m,v

[
M
(∥∥∥umv∆nximv

ρ
, z
∥∥∥)wmv

−M
(∥∥∥umv∆nxjmv

ρ
, z
∥∥∥)wmv

]q} 1
q
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< ε for all i, j ∈ N, (7)

which lead us to the fact that {y(i)
mv}m,v∈N is a Cauchy sequence in C. As C is complete, it

converges, say

lim
i→∞

y(i)
mv = ymv. (8)

Using these infinitely many limits, we define the sequence y = (ymv)
∞
m,v=0. Then we get

by (8) that

lim
i→∞
‖yimv − ymv‖Lq(M,∆n,u,w,‖·,·‖)

= lim
i→∞

{∑
m,v

[
M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

−M
(∥∥∥umv∆nximv

ρ
, z
∥∥∥)wmv

]q} 1
q

= 0. (9)

Now we have to show that y ∈ Lq. Since yi = {yimv}∞m,v=0 ∈ Lq, by (9){∑
m,v

[
M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

]q} 1
q

≤
{∑
m,v

[
M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

−M
(∥∥∥umv∆nximv

ρ
, z
∥∥∥)wmv

]q} 1
q

+
∑
m,v

[
M
(∥∥∥umv∆nximv

ρ
, z
∥∥∥)wmv

]q} 1
q
<∞,

which shows that the sequence Lq(M,∆n, u, w, ‖·, ·‖) belongs to Lq. As {x(i)
mv}i∈N was

arbitrary Cauchy sequence in Lq(M,∆n, u, w, ‖·, ·‖), the space is complete. This completes
the proof. J

Theorem 2. Let M be an Orlicz function, w = (wmv) be a bounded sequence of strictly
positive real numbers and u = (umv) be a sequence of positive real numbers. Then the
space λ(M,∆n, u, w, ‖·, ·‖) is linear isomorphic to λ, where λ denotes any of the spaces
Mu, Cp, C0p and Lq.

Proof. We show here thatMu(M,∆n, u, w, ‖·, ·‖) is linear isomorphic toMu. Consider
the transformation T from Mu(M,∆n, u, w, ‖·, ·‖) to Mu defined by

xrs =

r∑
m=0

s∑
v=0

ymv =

r∑
m=0

s∑
v=0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

, (10)

for all r, s ∈ N. Suppose y ∈Mu. Then, since

‖x‖Mu(M,∆n,u,w,‖·,·‖) = sup
r,s∈N

∣∣∣ r∑
m=0

s∑
v=0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

∣∣∣
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= sup
r,s∈N

|yrs| = ‖y‖∞ <∞,

x = (xrs) defined by (10) is in the spaceMu(M,∆n, u, w, ‖·, ·‖). Hence T is surjective and
norm preserving. This completes the proof. J

Theorem 3. Let M be an Orlicz function, w = (wmv) be a bounded sequence of strictly
positive real numbers and u = (umv) be a sequence of positive real numbers. Then Mu is
a subspace of the space Mu(M,∆n, u, w, ‖·, ·‖).

Proof. Let us take x = (xmv) ∈Mu. Then there exists a K such that sup
m,v
|xmv| ≤ K for

all m, v ∈ N. If we take M = I(Identity), u = (umv) = 1, w = (wmv) = 1 for all m, v ∈ N,

n = 1, ρ = 1, and replace 2-norm by 1-norm(‖x‖ =
n∑
i=1

|xi|), then one can observe that

|∆xmv| = |xmv − xm,v+1 − xm+1,v + xm+1,v+1|

≤ |xmv|+ |xm,v+1|+ |xm+1,v|+ |xm+1,v+1|. (11)

Then we see by taking supremum over m, v ∈ N in (11), that ‖x‖∞ ≤ 4K that is x ∈
Mu(M,∆n, u, w, ‖·, ·‖).

Now we see that inclusion is strict. Let x = (xmv) be defined by xmv = mv, for all
m, v ∈ N. Then x ∈Mu(M,∆n, u, w, ‖·, ·‖)\Mu. This completes the proof. J

Theorem 4. Let M be an Orlicz function, w = (wmv) be a bounded sequence of strictly
positive real numbers and u = (umv) be a sequence of positive real numbers. The inclusion
Lq ⊂ Lq(M,∆n, u, w, ‖·, ·‖) strictly holds, where 1 ≤ q <∞.

Proof. To prove the validity of the inclusion Lq ⊂ Lq(M,∆n, u, w, ‖·, ·‖), it suffices to
show the existence of a number K > 0 such that

‖x‖Lq(M,∆n,u,w,‖·,·‖) ≤ K‖x‖Lq ,

for every x ∈ Lq. Let x ∈ Lq, 1 ≤ q < ∞, take M = I(Identity), u = (umv) = 1,
w = (wmv) = 1 for all m, v ∈ N, n = 1, ρ = 1, and replace 2-norm by 1-norm. Then we
obtain

‖x‖Lq(M,∆n,u,w,‖·,·‖) =
{∑
m,v

|xmv − xm,v+1 − xm+1,v + xm+1,v+1|q
} 1

q

≤ 4‖x‖Lq .

This shows that the inclusion Lq ⊂ Lq(M,∆n, u, w, ‖·, ·‖) holds. Additionally, the sequence
x = (xmv) defined by

xmv =

{
1, v = 0,
0, otherwise,
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for all m, v ∈ N is in Lq(M,∆n, u, w, ‖·, ·‖), but not in Lq, as asserted. This completes the
proof. J

Theorem 5. Let M be an Orlicz function, w = (wmv) be a bounded sequence of strictly
positive real numbers and u = (umv) be a sequence of positive real numbers. Then the
following statements hold:
(i) Cp is a subspace of Cp(M,∆n, u, w, ‖·, ·‖);
(ii) C0p is a subspace of C0p(M,∆n, u, w, ‖·, ·‖).

Proof. We only prove the inclusion Cp ⊂ Cp(M,∆n, u, w, ‖·, ·‖). Let us take x ∈ Cp.
Then for given ε > 0 there exists n(ε) ∈ N such that

|xmv − l| <
ε

4
,

for all m, v ∈ n(ε). In particular, by taking M = I(Identity), u = (umv) = 1 w = (wmv) =
1for all m, v ∈ N, n = 1, ρ = 1, and replacing 2-norm by 1-norm, we obtain

|∆xmv| = |xmv − xm,v+1 − xm+1,v + xm+1,v+1|
≤ |xmv − l|+ |xm,v+1 − l|+ |xm+1,v − l|+ |xm+1,v+1 − l|

<
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε,

for sufficiently large m, v, which means p − lim
m,v→∞

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

= 0. Hence

x ∈ Cp(M,∆n, u, w, ‖·, ·‖). This is to say that Cp ⊂ Cp(M,∆n, u, w, ‖·, ·‖) holds.
Now we show that the inclusion is strict. Let x = (xmv) be defined by xmv = (m+1)(v+1)
for all m, v ∈ N. It is easy to see that

p− lim
m,v→∞

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

= 1.

But lim
m,v→∞

(m + 1)(v + 1) does not tend to a finite limit. Hence x /∈ Cp. This completes

the proof. J

3. The α− and β(t)− duals

In this section, we determine the alpha-dual of the space Mu(M,∆n, u, w, ‖·, ·‖)
and the β(t)− dual of the space Ct(M,∆n, u, w, ‖·, ·‖) and β(ϑ)− dual of the space
Cη(M,∆n, u, w, ‖·, ·‖) of double sequences, ϑ, η ∈ {p, bp, t}. Although the α-dual of a
space of double sequences is unique, its β-dual may be more than one with respect to
ϑ−convergence.

Theorem 6. Let M be an Orlicz function, w = (wmv) be a bounded sequence of strictly
positive real numbers and u = (umv) be a sequence of positive real numbers. Then the
α−dual of space Mu(M,∆n, u, w, ‖·, ·‖) is Lu.
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Proof. Let x = (xrs) ∈Mu(M,∆n, u, w, ‖·, ·‖) and z = (zrs) ∈ Lu. Hence, by Theorem
2, there is a sequence y = (ymv) ∈ Mu, and by taking M = I(Identity), u = (umv) = 1,
w = (wmv) = 1, for all m, v ∈ N, n = 1, ρ = 1, and replacing 2-norm by 1-norm, we obtain
that there exists a positive real number K such that |ymv| = K

(m+1)(v+1) for all m, v ∈ N.
So we use the relation (10) to have

∑
r,s

|zrsxrs| =
∑
r,s

∣∣∣zrs r∑
m=0

s∑
v=0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

∣∣∣
=

∑
r,s

∣∣∣zrs r∑
m=0

s∑
v=0

ymv

∣∣∣
≤ K

∑
r,s

|zrs| <∞.

So z ∈ {Mu(M,∆n, u, w, ‖·, ·‖)}α, that is

Lu ⊂ {Mu(M,∆n, u, w, ‖·, ·‖)}α. (12)

Conversely, suppose z = (zrs) ∈ {Mu(M,∆n, u, w, ‖·, ·‖)}α. By taking M = I(Identity),
u = (umv) = 1, w = (wmv) = 1, for all m, v ∈ N, n = 1, ρ = 1, and replacing 2-

norm by 1-norm, we have
∑
r,s

|zrsxrs| < ∞, where x = (xrs) ∈ Mu(M,∆n, u, w, ‖·, ·‖). If

z = (zrs) /∈ Lu, then
∑
r,s

|zrs| =∞,. Further if, we choose y = (ymv) such that

ymv =

{ 1
(m+1)(v+1) , 0 ≤ r ≤ m, 0 ≤ s ≤ v;

0, otherwise.

for all m, v ∈ N, then y ∈Mu, but

∑
r,s

|zrsxrs| =
∑
r,s

∣∣∣zrs r∑
m=0

s∑
v=0

1

(m+ 1)(v + 1)

∣∣∣ =
∑
r,s

|zrs| =∞.

Hence z /∈ {Mu(M,∆n, u, w, ‖·, ·‖)}α, which is a contradiction. So we have the following
inclusion:

{Mu(M,∆n, u, w, ‖·, ·‖)}α ⊂ Lu. (13)

Hence from the inclusions (12) and (13) we have

{Mu(M,∆n, u, w, ‖·, ·‖)}α = Lu. J

Lemma 1. The matrix A = (amvrs) is in (Ct : Cϑ) if and only if the conditions hold:

sup
m,v

∑
r,s

|amnrs| <∞, (14)
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∃υ ∈ C 3 ϑ− lim
m,v→∞

∑
r,s

amvrs = υ, (15)

∃(ars) ∈ Ω 3 ϑ− lim
m,v→∞

∑
r,s

amvrs = ars for all r, s ∈ N, (16)

∃us0 ∈ C 3 ϑ− lim
m,v→∞

∑
r

amvrs0 = us0 for fixed s0 ∈ N, (17)

∃vr0 ∈ C 3 ϑ− lim
m,v→∞

∑
r

amvr0s = vr0 for fixed r0 ∈ N. (18)

Lemma 2. The matrix A = (amvrs) is in (Cbp : Cϑ) if and only if the following conditions
(14)-(16) of Lemma 1 hold, and

ϑ− lim
m,v→∞

∑
r

|amvrs0 − ars0 | = 0 for fixed s0 ∈ N, (19)

ϑ− lim
m,v→∞

∑
r

|amvr0s − ar0s| = 0 for fixed r0 ∈ N. (20)

Lemma 3. The matrix A = (amvrs) is in (Cbp : Cϑ) if and only if the conditions (14)-(16)
of Lemma 1 hold, and

∀ r ∈ N ∃ R ∈ N 3 amvrs = 0 for r > R for all m, v ∈ N, (21)

∀ s ∈ N ∃ S ∈ N 3 amvrs = 0 for s > S for all m, v ∈ N. (22)

Theorem 7. Define the sets

F1 =
{
a = (ars) ∈ Ω(2−X) :

∑
rs

(r + 1)(s+ 1)
∣∣∣M(∥∥∥umv∆nxmv

ρ
, z
∥∥∥ars)wmv

∣∣∣ <∞},
F2 =

{
a = (ars) ∈ Ω(2−X) : t− lim

m,v→∞

m∑
r

m∑
p=r

v∑
q=s0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

apq,

exists for each fixed s0

}
,

F3 =
{
a = (ars) ∈ Ω(2−X) : t− lim

m,v→∞

m∑
s

m∑
p=r0

v∑
q=s0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

apq,

exists for each fixed r0

}
.

Then {Ct(M,∆n, u, w, ‖·, ·‖)}β(t) = F1 ∩ F2 ∩ F3.
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Proof. Let x = (xrs) ∈ Ct(M,∆n, u, w, ‖·, ·‖). Then there exists a sequence y = (ymv) ∈
Ct. Consider the inequality

zmv = lim
m,v→∞

m∑
r=0

v∑
s=0

arsxrs

= lim
m,v→∞

m∑
r=0

v∑
s=0

ars

(
r∑
p=0

s∑
q=0

(
M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

ypq

)
= lim

m,v→∞

m∑
r=0

v∑
s=0

(
r∑
p=0

s∑
q=0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

apq

)
yrs

=

m∑
r=0

v∑
s=0

bmvrsyrs

= (By)rs,

for all m, v ∈ N. Hence we define the four dimensional matrix B = (bmvrs) as follows:

bmvrs =

 lim
m,v→∞

r∑
p=0

s∑
q=0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

apq, 0 ≤ r ≤ m, 0 ≤ s ≤ v;

0, otherwise.

(23)

Thus we see that ax = (amvxmv) ∈ CSt whenever x = (xmv) ∈ Ct(M,∆n, u, w, ‖·, ·‖)
if and only if z = (zmv) ∈ Ct whenever y = (ymv) ∈ Ct. This means that a = (amv) ∈
{Ct(M,∆n, u, w, ‖·, ·‖)}β(t) if and only if B ∈ (Ct : Ct). Therefore, we consider the following
equality and equation:

sup
m,v

m∑
r=0

v∑
s=0

|bmvrs| ≤ sup
m,v

m∑
r=0

v∑
s=0

(
r∑
p=0

s∑
q=0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

|apq|

)

= sup
m,v

m∑
r=0

v∑
s=0

(
r∑
p=0

s∑
q=0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

|ars|

)

= sup
r,s

m∑
r=0

v∑
s=0

(r + 1)(s+ 1)M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

|ars|, (24)

t− lim
m,v

∑
r,s

bmvrs = t− lim
m,v

m∑
r=0

v∑
s=0

(
r∑
p=0

s∑
q=0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

apq

)

= sup
r,s

(
r∑
p=0

s∑
q=0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

apq

)
. (25)
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Then we derive from the condition (14)-(16) that

sup
r,s

(r + 1)(s+ 1)M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

|ars| <∞. (26)

From Lemma 1, conditions (17) and (18) it follows that

t− lim
m,v→∞

m∑
r

bmvrs0 = t− lim
m,v→∞

m∑
r

m∑
p=r

v∑
q=s0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

apq, (27)

exists for each fixed s0 ∈ N and

t− lim
m,v→∞

m∑
s

bmvr0s = t− lim
m,v→∞

m∑
s

m∑
p=r0

v∑
q=s

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

apq, (28)

exists for each fixed r0 ∈ N. This shows that {Ct(M,∆n, u, w, ‖·, ·‖)}β(t) = F1 ∩ F2 ∩ F3,
which completes the proof. J

Now, we may give our theorem exhibiting the β(ϑ)-dual of the series space
Cη(M,∆n, u, w, ‖·, ·‖) in the case η, ϑ ∈ {p, bp, t} without proof.

Theorem 8. {Cη(M,∆n, u, w, ‖·, ·‖)}β(ϑ) = {a = (amv) ∈ Ω : B = (bmvrs) ∈ (Cη : Cϑ)},
where B = (bmvrs) is defined by (23).

4. Characterization of some four dimensional matrices

Theorem 9. The matrix A = (amvrs) is in (Ct(M,∆n, u, w, ‖·, ·‖) : Cϑ) if and only if the
following conditions hold:

sup
m,v

∑
k,l

∣∣∣ ∞∑
p=k

∞∑
q=l

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq
∣∣ <∞, (29)

ϑ− lim
b,c→∞

b∑
r=0

b∑
p=r

c∑
q=s0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq exists for fixed s0, (30)

ϑ− lim
b,c→∞

c∑
s=0

b∑
p=r0

c∑
q=s

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq exists for fixed r0, (31)

ϑ− lim
mv

∞∑
p=k

∞∑
q=l

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq = akl for all k, l ∈ N, (32)

∃ul0 ∈ C 3 ϑ− lim
m,v

∑
k

∞∑
p=k

∞∑
q=l0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq = ul0 for fixed l0 ∈ N,

(33)
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∃vk0 ∈ C 3 ϑ− lim
m,v

∑
l

∞∑
p=k0

∞∑
q=l

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq = vk0 for fixed k0 ∈ N,

(34)

∃v ∈ C 3 ϑ− lim
m,v

∑
k,l

∑
l

∞∑
p=k

∞∑
q=l

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq = v. (35)

Proof. Let x = (xmv) ∈ Ct(M,∆n, u, w, ‖·, ·‖). If we take M = I(Identity), u = (umv) =
1, w = (wmv) = 1 for all m, v ∈ N, n = 1, ρ = 1, and replace 2-norm by 1-norm, then we
define the sequence y = (yk,l) by

ykl = xkl − xk+1,l − xk,l+1 + xk+1,l+1 (k, l) ∈ N.

Then y = (ykl) ∈ Ct by Theorem 2. Now for the (b, c)th rectangular partial sum of the

series
∑
r,s

amvrsxrs, we derive that

(Ax)[b,c]
mv =

b∑
r=0

c∑
s=0

amvrsxrs

=
b∑

r=0

c∑
s=0

(
r∑
p=0

s∑
q=0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

ypq

)
amvrs

=
b∑

r=0

c∑
s=0

(
r∑
p=0

s∑
q=0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvrs

)
ypq, (36)

for all m, v, b, c ∈ N. Define the matrix Dmv = (d
[b,c]
mvrs) by

(d[b,c]
mvrs) =


b∑

p=r

c∑
q=s

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq, 0 ≤ r ≤ b, 0 ≤ s ≤ c;

0, otherwise.

(37)

Then the inequality (36) may be rewritten as

(Ax)[b,c]
mv = (Dmvy)[b,c]. (38)

Then the convergence of the rectangular partial sums (Ax)
[b,c]
mv in the regular sense for all

m, v ∈ N and for all x ∈ Ct(M,∆n, u, w, ‖·, ·‖) is equivalent to saying that Dmv ∈ (Ct : Cϑ).
Hence the following conditions∑

k,l

(k + 1)(l + 1)
∣∣∣M(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvkl

∣∣∣ <∞, (39)
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ϑ− lim
b,c→∞

b∑
r=0

b∑
p=r

c∑
q=s0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq exists for fixed s0, (40)

ϑ− lim
b,c→∞

c∑
s=0

b∑
p=r0

c∑
q=s

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq exists for fixed r0, (41)

must be satisfied for every fixed m, v ∈ N. In this case,

ϑ− lim
b,c→∞

(d[b,c]
mvrs) =

b∑
p=r

c∑
q=s

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq,

ϑ− (Ax)[b,c]
mv = t− lim(Dmvy),

hold. Thus we derive from the two sided implication that Ax is in Ct whenever x ∈
Ct(M,∆n, u, w, ‖·, ·‖) if and only if

D =

( ∞∑
p=r

∞∑
q=s

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq

)
∈ (Ct : Cϑ)′′.

We have

sup
m,v

∑
k,l

∣∣∣ ∞∑
p=k

∞∑
q=l

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq

∣∣∣ <∞, (42)

ϑ− lim
mv

∞∑
p=k

∞∑
q=l

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq = akl for all k, l ∈ N, (43)

∃ul0 ∈ C 3 ϑ− lim
m,v

∑
k

∞∑
p=k

∞∑
q=l0

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq = ul0 for fixed l0 ∈ N,

(44)

∃vk0 ∈ C 3 ϑ− lim
m,v

∑
l

∞∑
p=k0

∞∑
q=l

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq = vk0 for fixed k0 ∈ N,

(45)

∃v ∈ C 3 ϑ− lim
m,v

∑
k,l

∑
l

∞∑
p=k

∞∑
q=l

M
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

amvpq = v. (46)

Now, from the conditions (39)-(46) we have that A = (amvrs) is in (Ct(M,∆n, u, ‖·, ·‖) : Cϑ)
if and only if the conditions (29)-(35) hold. This completes the proof. J
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Theorem 10. Suppose that the elements of the four dimensional infinite matrices E =
(emvkl) and F = (fmvkl) are concentrated with the relation

fmvkl =
m∑

r=m−1

v∑
s=v−1

(−1)m+v−r−sM
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

erskl, (47)

for all k, l,m, v ∈ N and µ is any given space of double sequences. Then E ∈ (µ :
Cϑ(M,∆n, u, w, ‖·, ·‖)) if and only F ∈ (µ : Cϑ).

Proof. Let x = (xkl) ∈ µ and consider the following inequality with (47):

m∑
r=m−1

v∑
s=v−1

b∑
k=b−1

c∑
l=c−1

(−1)m+v−r−sM
(∥∥∥umv∆nxmv

ρ
, z
∥∥∥)wmv

×

×ersklxkl =
b∑

k=b−1

c∑
l=c−1

fmvklxkl, (48)

for all m, v, b, c ∈ N. By letting b, c→∞ in (48), one can derive that

m∑
r=m−1

v∑
s=v−1

(−1)m+v−r−s(Ex)rs = (Fx)mv, (49)

for all m, v ∈ N. Therefore Ex ∈ Cϑ(M,∆n, u, w, ‖·, ·‖) if and only if Fx ∈ Cϑ whenever
x ∈ µ. This step completes the proof. J
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