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On One Generalization of Banach Frame

M.I. Ismailov∗, Y.I. Nasibov

Abstract. This work is dedicated to the generalization of frames and Riesz bases in Banach spaces
with respect to the Banach space of vector-valued sequences. The concepts of X̃-frame and X̃-
Riesz basis generated by a bilinear mapping are introduced. Criteria for X̃-frameness and X̃-Riesz
basicity are found.
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1. Introduction

The concept of a frame in a Hilbert space H was introduced by R.J. Duffin and A.C.
Schaeffer [1]: a system of non-zero elements {fn}n∈N⊂H is called a frame in H, if there
exist the constants A > 0 and B > 0 such that the inequality

A ‖f‖2H ≤
∞∑
n=1

|(f, fn)|2 ≤ B ‖f‖2H .

holds for every f ∈ H, where ‖ · ‖H is a norm on H generated by the scalar production
(·, ·). The constants A and B are called the lower and upper frame bounds, respectively.
Frame {fn}n∈N in H defines the boundedly invertible frame operator S such that every
f ∈ H has a decomposition of the form

f =
∞∑
n=1

(f, S−1(fn))fn =
∞∑
n=1

(f, fn)S−1(fn),

with respect to the frames {fn}n∈N and
{
S−1(fn)

}
n∈N . Frames {fn}n∈N and{

S−1(fn)
}
n∈N are called conjugate frames. More facts about the theory of frames in

a Hilbert space can be found in [2, 3]. Frames are widely used in many branches of nat-
ural science, such as signal processing, image processing, data compression, etc. Many
works have been dedicated to frames (see, e.g., [4, 5, 6, 7]). A special case of frame is a
Riesz basis [8], i.e. a system {ϕn}n∈N⊂H which is an image of an orthonormal basis for
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a bounded invertible operator. This is equivalent to saying that the system {ϕn}n∈N is
complete in H and there exists the constants A > 0 and B > 0 such that

A
∑
k

|ck|2 ≤

∥∥∥∥∥∑
k

ckϕk

∥∥∥∥∥
2

H

≤ B
∑
k

|ck|2 ,

for every finite set of numbers {ck}. Also, Paley-Wiener type theorems are true for frames.
These matters have been considered in [9, 10]. g-frames and g-Riesz bases, introduced
and studied in [11, 12, 13, 14], are the generalizations of frames and Riesz bases in Hilbert
spaces. t-frame [15], obtained by tensor product, is another generalization of frame in a
Hilbert space. Riesz bases have been extended to the Banach case in [12, 16, 17].

In [18], Gröchenig introduced the concepts of Banach frame and atomic decomposition
in Banach spaces for the first time. Atomic decompositions are used largely in Gabor
theory and wavelet theory. The problems related to Banach frames and atomic decom-
positions, including their stability, have been studied in [19, 20, 21, 22, 23, 24]. The
generalizations of frames and Riesz bases in Banach spaces - p-frames and p-Riesz bases,
as well as the relationship between them, have been studied in [25, 26]. The results of
[25, 26] have been extended to Xd-frames and Xd-Riesz bases in [27, 28, 29], where Xd is
a Banach space of numerical sequences (for more details see [30]). In [31], the concept of
X̃-frame in a Banach space with respect to the Banach space X̃ of vector-valued sequences
has been introduced, and a number of results for Xd-frames have been obtained. Banach
frames and atomic decompositions for a bilinear mapping b in the sense of b-basis [12] have
been considered in [32]. The works [33, 34] deal with the frame properties of degenerate
trigonometric systems in Lebesgue spaces.

In this work, we introduce the concept of X̃-Riesz b-basis in a Banach space for some
bilinear mapping b. Equivalent conditions for X̃-frameness and X̃-Riesz b-basicity in
Banach spaces are found, the relationship between them is established. An example is
given.

2. Some Notations and Auxiliaries

In this section, we give some notations, concepts and facts.
Let X, Y and Z be Banach spaces equipped with the norms ‖·‖X , ‖·‖Y and ‖·‖Z ,

respectively. By L(X,Y ) we denote a space of all linear bounded operators from X to
Y . The image of the operator T ∈ L(X,Y ) is denoted by ImT . The conjugate of the
operator T is denoted by T ∗. We will need the following fact [30].

Theorem 1. Let X and Y be Banach spaces, and let T ∈ L(X,Y ). Then the conjugate
operator T ∗ ∈ L(Y ∗, X∗) is surjective only when T has a bounded inverse on ImT .

Consider a bilinear mapping b(x, y) : X × Y → Z satisfying the condition

∃M > 0 : ‖b(x, y)‖Z ≤M‖x‖X‖y‖Y ,∀x ∈ X, y ∈ Y.

Let’s recall some information from [12].
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Definition 1. Let {yn}n∈N ⊂ Y and {y∗n}n∈N ⊂ L(Z,X).
1) The system {yn}n∈N ⊂ Y is called b-complete in Z, if the totality of all possible

finite sums of the form
∑

k b(xk, yk), xk ∈ X, is dense in Z.
2) The system {yn}n∈N is called a b-basis for Z, if every Z can be uniquely represented

in the form z =
∑∞

k=1 b(xk, yk), xn ∈ X, n ∈ N . In this case, the sequence {xn}n∈N is
called a sequence of coefficients of z ∈ Z with respect to the b-basis {yn}n∈N .

3) The system {yn}n∈N is called b-ω-linearly independent in Z, if
∑

k b(xk, yk) = 0
implies xk = 0, ∀k ∈ N .

4) The systems {yn}n∈N and {y∗n}n∈N are called b-biorthogonal in Z, if

y∗n(b(x, yk)) = δnkx,∀k, n ∈ N, x ∈ X,

where δnk is the Kronecker symbol. In this case, the system {y∗n}n∈N is called b-
biorthogonal to the system {yn}n∈N .

The next theorem describes the structure of the space of sequences of coefficients of a
b-basis.

Theorem 2. Let the system ȳ = {yn}n∈N⊂Y form a b-basis for Z and ‖b(x, yk)‖Z ≥
ak ‖x‖X , ak > 0, ∀k ∈ N , x ∈ X. Then the space X̃ȳ, consisting of sequences x̃ =
{xk}k∈N ⊂ X for which the series

∑∞
k=1 b(xk, yk) is convergent, is a Banach space equipped

with the norm ∥∥{xk}k∈N∥∥ = sup
n

∥∥∥∥∥
n∑

k=1

b(xk, yk)

∥∥∥∥∥ .
The next theorem presents a criterion of b-basicity.

Theorem 3. Let ȳ = {yn}n∈N⊂Y and ‖b(x, yk)‖Z ≥ ak ‖x‖X , ak > 0, ∀k ∈ N . Then
{yn}n∈N forms a b-basis for Z only when the following conditions are satisfied:

i) {yn}n∈N is b-complete in Z;
ii) ∃C ≥ 1, m ≥ n : ‖

∑n
k=1 b(xk, yk)‖Z ≤ C ‖

∑m
k=1 b(xk, yk)‖Z

for any x1, x2, . . . , xm ∈ X.

Proof. Let {yn}n∈N form a b-basis for Z. Then ∀z ∈ Z is uniquely represented in the
form

z =

∞∑
k=1

b(xk, yk), xk ∈ X.

Consequently, {yn}n∈N is b-complete in Z. Define the operator F : X̃ȳ → Z by the formula

F (x̃) =
∑∞

k=1 b(xk, yk). Evidently, F maps X̃ȳ isomorphically to Z. Consider the operator
y∗n defined by y∗n(z) = xn. It is clear that the operator y∗n is linear and y∗n(b(x, yk)) = δnkx.
Moreover, we have

‖y∗n(z)‖ = ‖xn‖ ≤
1

an
‖b(xn, yn)‖ =

1

an

∥∥∥∥∥
n∑

k=1

b(xk, yk)−
n−1∑
k=1

b(xk, yk)

∥∥∥∥∥ ≤
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≤ 2

an
‖x̃‖X̃ȳ

≤
2
∥∥F−1

∥∥
an

‖z‖Z ,

i.e. y∗n is a bounded operator.

Let Sn(z) =
∑n

k=1 b(y
∗
k(z), yk). Evidently, Sn ∈ L(Z). In view of lim

n→∞
Sn(z) = z, we

have C = sup
n
‖Sn‖ < +∞. As the relation

Sn

(
m∑
k=1

b(xk, yk)

)
=

n∑
k=1

b(xk, yk),

holds for m ≥ n, we have∥∥∥∥∥
n∑

k=1

b(xk, yk)

∥∥∥∥∥
Z

=

∥∥∥∥∥Sn
(

m∑
k=1

b(xk, yk)

)∥∥∥∥∥
Z

≤ C

∥∥∥∥∥
m∑
k=1

b(xk, yk)

∥∥∥∥∥
Z

.

It is clear that C ≥ 1.

Conversely, let i) and ii) be satisfied. Consider an arbitrary z ∈ Z. By virtue of

b-completeness of the system {yk}k∈N in Z, there exists x
(n)
k ∈ X such that

z = lim
n→∞

∑
k

b(x
(n)
k , yk). (1)

For every fixed k ∈ N , consider the sequence
{
x

(n)
k

}
n∈N

. For m > n we have

∥∥∥x(n)
k − x(m)

k

∥∥∥
X
≤ 1

ak

∥∥∥b(x(n)
k − x(m)

k , yk)
∥∥∥
Z
≤

≤ 1

ak
· C

∥∥∥∥∥∑
k

b(x
(n)
k , yk)−

∑
k

b(x
(m)
k , yk)

∥∥∥∥∥
Z

. (2)

From (1) and (2) it follows that
{
x

(n)
k

}
n∈N

is fundamental in X. Let xk = lim
n→∞

x
(n)
k .

Then from (1) we obtain z =
∑∞

k=1 b(xk, yk). To prove the uniqueness of decomposi-
tion, it suffices to show that the system {yn}n∈N is b-ω-linearly independent in Z. Let∑∞

k=1 b(xk, yk) = 0. In view of (1), ∀i ∈ N we have

‖xi‖X ≤
1

ai
‖b(xi, yi)‖Z ≤

1

ai
C

∥∥∥∥∥
n∑

k=1

b(xk, yk)

∥∥∥∥∥
Z

→ 0, n→∞,

i.e. xi = 0. J

Remark 1. Let the system {yn}n∈N⊂Y form a b-basis for Z and ‖b(x, yk)‖Z ≥ ak ‖x‖X ,
ak > 0, ∀k ∈ N , x ∈ X. Then {yn}n∈N has a unique b-biorthogonal system {y∗n}n∈N ⊂
L(Z,X).
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In fact, for z ∈ Z, y∗n is defined by the formula y∗n(z) = xn, where z =
∑∞

k=1 b(xk, yk).
The uniqueness of b-biorthogonal system is obvious.

Let X̃ be a Banach space of sequences of vectors in X with coordinatewise linear
operations such that the operator Pk : X → X̃, Pk(x) = {δikx}i∈N is bounded and has

bounded inverse on ImPk. We call X̃ a CB-space, if the relation

lim
n→∞

∥∥∥∥∥{xk}k∈N −
n∑

k=1

{δikxk}i∈N

∥∥∥∥∥
X̃

= 0,

holds for every {xk}k∈N ∈ X̃. For a CB-space X̃, the conjugate space X̃∗ is isometrically
isomorphic to the Banach space

Ỹ =
{
{x∗k}k∈N ⊂ X

∗ : x∗k = x̃∗Pk, x̃
∗ ∈ X̃∗

}
,

with the norm
∥∥{x∗k}k∈N∥∥Ỹ = ‖x̃∗‖X̃∗ , and every linear continuous functional x̃∗ on X̃ is

defined by the formula x̃∗({xk}k∈N ) =
∑∞

k=1 x
∗
k(xk), where x∗k = x̃∗Pk. Therefore, X̃∗ is

identified with Ỹ .
We call X̃ an RCB-space, if it is a reflexive CB-space.

Remark 2. Let X̃ be a CB-space and the bilinear mapping b : X : L(X, X̃) → X̃ be
defined by the formula b(x, P ) = P (x) for x ∈ X and P ∈ L(X, X̃). Then the system
{Pk}k∈N forms a b-basis for X̃, and therefore, by Theorem 3, ∃C ≥ 1 for m ≥ n:∥∥∥∥∥

n∑
k=1

Pk(xk)

∥∥∥∥∥
Z

≤ C

∥∥∥∥∥
m∑
k=1

Pk(xk)

∥∥∥∥∥
Z

, (3)

for any x1, x2, . . . , xm ∈ X.

3. X̃-Frames in Banach Spaces

In this section, we introduce a concept of X̃-frame in a Banach space and study some
of its properties.

Definition 2. The system {gk}k∈N ⊂ L(Z,X) is called an X̃-frame in Z, if there exist
the constants A > 0 and B > 0 such that

A ‖z‖Z ≤
∥∥{gk(z)}k∈N

∥∥
X̃
≤ B ‖z‖Z , ∀z ∈ Z. (4)

The constants A and B are called the X̃-frame bounds of {gk}k∈N . In case where

{gk}k∈N satisfies the inequality on the right of (4), the system {gk}k∈N is called X̃-

Besselian in Z with a bound B. If {gk}k∈N is X̃-Besselian in Z, then there exists a

bounded operator U : Z → X̃:

U(z) = {gk(z)}k∈N . (5)
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Definition 3. The system {Λk}k∈N ⊂ L(X,Z) is called an X̃∗-frame in Z∗ with the

bounds A and B, if {Λ∗k}k∈N forms an X̃∗-frame in Z∗ with the bounds A and B, i.e.

A ‖f‖Z∗ ≤
∥∥{Λ∗kf}k∈N∥∥X̃∗ ≤ B ‖f‖Z∗ ,∀f ∈ Z∗. (6)

If the inequality on the right of (6) is satisfied, then the system {Λk}k∈N is called

X̃∗-Besselian in Z∗ with a bound B. If {Λk}k∈N is X̃∗-Besselian in Z, then there exists a

bounded operator V : X̃ → Z:

V (f) = {Λ∗k(f)}k∈N .

Let’s state the criterion of X̃-Besselianness.

Theorem 4. Let X̃ be a CB-space and {gk}k∈N ⊂ L(Z,X). Then {gk}k∈N is X̃-Besselian

in Z with a bound B only when the bounded operator T : X̃∗ → Z∗ is defined:

T (x̃∗) =
∞∑
k=1

x∗kgk,∀x̃∗ = {x∗k}k∈N ∈ X̃
∗, (7)

and ‖T‖ ≤ B.

Proof. Let {gk}k∈N be X̃-Besselian in Z with a bound B. Let’s prove the convergence

of the series
∑∞

k=1 x
∗
kgk, for ∀x̃∗ = {x∗k}k∈N ∈ X̃

∗. For n > m we have∥∥∥∥∥
n∑

k=m

x∗kgk

∥∥∥∥∥
Z∗

= sup
‖z‖=1

∣∣∣∣∣
n∑

k=m

x∗kgk(z)

∣∣∣∣∣ =

= sup
‖z‖=1

∣∣{x∗k}nk=m ({gk(z)}k∈N )
∣∣ ≤ B ∥∥∥∥∥

n∑
k=m

{δikx∗k}i∈N

∥∥∥∥∥
X̃

.

Consequently, the series
∑∞

k=1 x
∗
kgk is convergent. Therefore, the operator T is defined

and ‖T‖ ≤ B.

Conversely, let T ∈ L(X̃∗, Z∗) and ‖T‖ ≤ B. Then

∥∥{gk(z)}k∈N
∥∥
X̃

= sup
‖{x∗

k}‖=1

∣∣∣∣∣
∞∑
k=1

x∗kgk(z)

∣∣∣∣∣ ≤ ‖T‖ ‖z‖Z .
J

The criterion for X̃∗-Besselianness of the system {Λk}k∈N ⊂ L(X,Z) in Z∗ is proved
in a similar way.
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Theorem 5. Let X̃ be a CB-space and {Λk}k∈N ⊂ L(X,Z). Then the system {Λk}k∈N
is X̃∗-Besselian in Z∗ with a bound B only when the bounded operator D : X̃ → Z is
defined:

D(x̃) =

∞∑
k=1

Λk(xk),∀x̃ = {xk}k∈N ∈ X̃, (8)

and ‖D‖ ≤ B.

Remark 3. Let X̃ be a CB-space, {gk}k∈N ⊂ L(Z,X) be X̃-Besselian in Z and the
operators U , T be defined by (5) and (7), respectively. Then T = U∗. Hence, if Z is
reflexive, then T ∗ = U .

In fact, ∀x̃∗ ∈ X̃∗ and ∀z ∈ Z we have

x̃∗(U(z)) =
∞∑
k=1

x∗kgk(z) = T (x̃∗)(z),

i.e. T = U∗.
From Theorems 4 and 5 we immediately obtain

Corollary 1. Let X̃ be a CB-space and {gk}k∈N ⊂ L(Z,X). Then {gk}k∈N is X̃-
Besselian in Z with a bound B only when the inequality∥∥∥∥∥∑

k

x∗kgk

∥∥∥∥∥
Z∗

≤ B ‖{x∗k}‖X̃∗ ,

holds for every finite sequence {x∗k} ⊂ X∗.

Corollary 2. Let X̃ be a CB-space and {Λk}k∈N ⊂ L(X,Z). Then the system {Λk}k∈N
is X̃∗-Besselian in Z∗ with a bound B only when the inequality∥∥∥∥∥∑

k

Λk(xk)

∥∥∥∥∥
Z

≤ B ‖{xk}‖X̃ ,

holds for every finite sequence {xk} ⊂ X.

The next theorem presents the criterion of X̃-frameness.

Theorem 6. Let X̃ be an RCB-space, and {gk}k∈N ⊂ L(Z,X). Then the system {gk}k∈N
forms an X̃-frame in Z only when the operator T : X̃∗ → Z∗, defined by the formula (7),
is a bounded, surjective linear operator.

Proof. Let {gk}k∈N form an X̃-frame in Z with the bounds A and B. Then it is clear

that the operator T : X̃∗ → Z∗ is defined and ‖T‖ ≤ B. As {gk}k∈N is an X̃-frame in
Z, the operator U defined by the formula (5) maps Z isomorphically to ImU . On the
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other hand, ImU , as a subspace of the reflexive space X̃, is reflexive. Therefore, Z is also
reflexive. By Remark 3, we obtain U∗ = T . Then, by Theorem 1, the operator T maps
X̃∗ into the whole of Z∗.

Conversely, let the operator T map X̃∗ boundedly to Z∗. Then {gk}k∈N is X̃-Besselian

in Z. As U∗ = T , U∗ maps X̃∗ to Z∗ and ∃A > 0: ‖U(z)‖X̃ ≥ A ‖z‖Z , i.e. {gk}k∈N forms

an X̃-frame in Z. J

The following criterion of X̃∗-frameness of the system {Λk}k∈N ⊂ L(X,Z) in Z∗ is
proved in a similar way.

Theorem 7. Let X̃ be an RCB-space, and {Λk}k∈N ⊂ L(X,Z). Then the system

{Λk}k∈N forms an X̃∗-frame in Z∗ only when the operator D : X̃ → Z, defined by the
formula (8), is a bounded, surjective linear operator.

4. X̃-Riesz Bases in Banach Spaces

In this section, we consider a bilinear mapping b(·, ·), used to introduce the concept of
X̃-Riesz b-basis in a Banach space. We also study the conditions of X̃-Riesz b-basicity.

Let X, Y and Z be B-spaces with the corresponding norms ‖ · ‖X , ‖ · ‖Y and ‖ · ‖Z .
Define the bilinear mappings b : X×L(X,Z)→ Z and b∗ : X∗×L(Z,X)→ Z∗ as follows:

b(x,Λ) = Λ(x),∀x ∈ X,∀Λ ∈ L(X,Z),

b∗(x∗, g) = x∗g,∀x∗ ∈ X∗,∀g ∈ L(Z,X).

Definition 4. The system {Λk}k∈N ⊂ L(X,Z) is called an X̃-Riesz b-basis for Z, if
{Λk}k∈N is b-complete in Z and there exist the constants A > 0 and B > 0 such that

A ‖x̃‖X̃ ≤

∥∥∥∥∥
∞∑
k=1

Λk(xk)

∥∥∥∥∥
Z

≤ B ‖x̃‖X̃ , ∀x̃ ∈ X̃. (9)

The constants A and B are called the lower and the upper bound of an X̃-Riesz b-basis
{Λk}k∈N , respectively.

Definition 5. The system {gk}k∈N ⊂ L(Z,X) is called an X̃∗-Riesz b∗-basis for Z∗, if
{gk}k∈N is b∗-complete in Z∗ and there exist the constants A > 0 and B > 0 such that

A ‖x̃∗‖X̃∗ ≤

∥∥∥∥∥
∞∑
k=1

x∗kgk

∥∥∥∥∥
Z∗

≤ B ‖x̃∗‖X̃∗ , ∀x̃∗ ∈ X̃∗. (10)

The constants A and B are called the lower and the upper bound of an X̃∗-Riesz b∗-basis
{gk}k∈N , respectively.

The following theorem of b-basicity for X̃-Riesz b-bases is true.
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Theorem 8. Let X̃ be a CB-space, the system {Λk}k∈N ⊂ L(X,Z) form an X̃-Riesz
b-basis for Z and ‖Λk(x)‖Z ≥ ak ‖x‖X , ak > 0, ∀x ∈ X. Then {Λk}k∈N forms a b-basis
for Z.

Proof. Let {Λk}k∈N be an X̃-Riesz b-basis for Z. Using (9) and (3), for m ≥ n we
obtain ∥∥∥∥∥

n∑
k=1

Λk(xk)

∥∥∥∥∥
Z

≤ B ‖{xk}n1‖X̃ = B

∥∥∥∥∥
n∑

k=1

Pk(xk)

∥∥∥∥∥
X̃

≤ BC

∥∥∥∥∥
m∑
k=1

Pk(xk)

∥∥∥∥∥
X̃

=

= BC ‖{xk}m1 ‖X̃ ≤
BC

A

∥∥∥∥∥
m∑
k=1

Λk(xk)

∥∥∥∥∥
Z

.

As {Λk}k∈N is b-complete in Z, by Theorem 3 ,{Λk}k∈N forms a b-basis for Z. J

The following necessary condition for X̃∗-Riesz b∗-basicity in Z∗ is proved in a similar
way.

Theorem 9. Let X̃ be an RCB-space, the system {gk}k∈N ⊂ L(Z,X) form an X̃∗-Riesz
b∗-basis for Z∗ and ‖gk(z)‖X ≥ ak ‖z‖Z , ak > 0, ∀z ∈ Z. Then {gk}k∈N forms a b∗-basis
for Z∗.

Let’s state a criterion of X̃-Riesz b-basicity.

Theorem 10. Let X̃ be a CB-space, {Λk}k∈N ⊂ L(X,Z), ‖Λk(x)‖Z ≥ ak ‖x‖X , ak > 0,

∀x ∈ X. Then the system {Λk}k∈N is an X̃-Riesz b-basis for Z only when the operator

D : X̃ → Z, defined by the formula (8), maps X̃ isomorphically to Z.

Proof. Let {Λk}k∈N form an X̃-Riesz b-basis for Z. From (9) it follows that D ∈
L(X̃, Z) and A ‖x̃‖X̃ ≤ ‖D(x̃)‖Z ≤ B ‖x̃‖X̃ . By Theorem 8, the system {Λk}k∈N is a
b-basis for Z, and therefore ImD = Z. Thus, the operator D is boundedly invertible.

Conversely, let the operator D map X̃ isomorphically to Z. Then it is clear that the
relation (9) is fulfilled. ∀x ∈ X we have

DPk(x) = D({δikx}i∈N ) = Λk(x).

Let’s show that {Λk}k∈N is b-complete. Assume the contrary. Then ∃f ∈ Z∗, f 6= 0 and

f(
∑∞

k= Λk(xk)) = 0, ∀x̃ ∈ X̃. Consequently

0 = f(
∞∑
k=1

DPk(xk)) = fD(
∞∑
k=1

Pk(xk)) = fD(x̃),

and therefore, due to the arbitrariness of x̃, we obtain fD = 0. Hence, the invertibility of
D implies f = 0, which contradicts our assumption. So {Λk}k∈N is b-complete in Z. J

The following criterion of X̃∗-Riesz b∗-basicity in Z∗ is proved in a similar way.
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Theorem 11. Let X̃ be a RCB-space, {gk}k∈N ⊂ L(Z,X) and ‖gk(z)‖X ≥ ak ‖z‖Z ,

ak > 0, ∀z ∈ Z. Then the system {gk}k∈N forms an X̃∗-Riesz b-basis for Z∗ only when

the operator T : X̃∗ → Z∗, defined by the formula (7), maps X̃∗ isomorphically to Z∗.

The next theorem presents the X̃-frameness of an X̃∗-Riesz b∗-basis.

Theorem 12. Let X̃ be an RCB-space, the system {gk}k∈N ⊂ L(Z,X) form an X̃∗-Riesz
b∗-basis for Z∗ with the bounds A, B and ‖gk(z)‖X ≥ ak ‖z‖Z , ak > 0, ∀z ∈ Z. Then
{gk}k∈N is an X̃-frame in Z with the bounds A, B and ImU = X̃.

Proof. From Theorem 11 it follows that the operator T maps X̃∗ isomorphically to Z∗.
Then, by Theorem 6, the system {gk}k∈N is an X̃-frame in Z. Due to the reflexivity of

Z and X̃, we have T ∗ = U . As ImT ∗ = X̃, we have ImU = X̃. Let’s show that {gk}k∈N
has bounds A and B. Obviously, B = ‖T‖ and A =

∥∥T−1
∥∥−1

. As {gk}k∈N has bounds∥∥U−1
∥∥−1

and ‖U‖, we have∥∥U−1
∥∥−1

=
∥∥(T ∗)−1

∥∥−1
=
∥∥T−1

∥∥−1
= A,

‖U‖ = ‖T ∗‖ = ‖T‖ = B.

J

The next theorem can be proved in a manner similar to the way Theorem 12 was
proved.

Theorem 13. Let X̃ be an RCB-space, the system {Λk}k∈N ⊂ L(X,Z) form an X̃-Riesz
b-basis for Z with the bounds A, B and ‖Λk(x)‖Z ≥ ak ‖x‖X , ak > 0, ∀x ∈ X. Then
{Λk}k∈N is an X̃∗-frame in Z∗ with the bounds A, B and ImV = X̃∗.

Now let’s find the conditions under which an X̃∗-frame is an X̃-Riesz b-basis.

Theorem 14. Let X̃ be an RCB-space, the system {Λk}k∈N ⊂ L(X,Z) form an X̃∗-
frame in Z∗ and ‖Λk(x)‖Z ≥ ak ‖x‖X , ak > 0, ∀x ∈ X. Then the following conditions are
equivalent:

i) {Λk}k∈N forms an X̃-Riesz b-basis for Z;
ii) {Λk}k∈N forms a b-basis for Z;

iii) {Λk}k∈N is b-ω-linearly independent with respect to X̃;

iv) ImV = X̃∗;
v) {Λk}k∈N has a unique b-biorthogonal system {gk}k∈N ⊂ L(Z,X).

Proof. i) ⇒ ii) follows from Theorem 8.
i) ⇒ iii) follows from the inequality on the left of (9).
i) ⇒ iv) follows from Theorem 13.
ii), iii)⇒ i). As {Λk}k∈N is an X̃∗-frame in Z∗, by Theorem 7 the operator D maps X̃

into the whole of Z. From ii) or iii) it follows that D maps X̃ isomorphically to Z. Then,
by Theorem 10, the condition i) is fulfilled.
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iv)⇒ i). Then V maps Z∗ isomorphically to X̃∗. As D = V ∗, the operator D maps X̃
isomorphically to Z. Consequently, by Theorem 10, the condition i) is fulfilled.

ii) ⇒ v). By Remark 1, the system {Λk}k∈N has a unique b-biorthogonal system
{gk}k∈N ⊂ L(Z,X):

gk(Λi(x)) = δkix,∀x ∈ X.

v) ⇒ iv). Let {gk}k∈N ⊂ L(Z,X) be a system b-biorthogonal to {Λk}k∈N . It is easy
to show that

Λ∗k(x∗gk)) = δkix
∗,∀x∗ ∈ X∗.

As {Λk}k∈N is an X̃∗-frame in Z, ImV is a subspace of X̃∗. ∀x̃∗ ∈ X̃∗ we have

x̃∗ =

∞∑
k=1

{δikx∗k}i∈N =

∞∑
k=1

{Λ∗i (x∗kgk)}i∈N =
∞∑
k=1

V (x∗kgk) = V T (x̃∗),

i.e. x̃∗ ∈ ImV .J

Let’s prove the same assertion for an X̃-frame.

Theorem 15. Let X̃ be an RCB-space, the system {gk}k∈N ⊂ L(Z,X) form an X̃-
frame in Z and ‖gk(z)‖X ≥ ak ‖z‖Z , ak > 0, ∀z ∈ Z. Then the following conditions are
equivalent:

i) {gk}k∈N forms an X̃∗-Riesz b∗-basis for Z∗;

ii) {gk}k∈N forms a b∗-basis for Z∗;

iii) {gk}k∈N is b∗-ω-linearly independent with respect to X̃∗;

iv) ImU = X̃;

v) {gk}k∈N has a unique b∗-biorthogonal system {Λk}k∈N ⊂ L(X,Z).

Proof. i) ⇒ ii) follows from Theorem 9.

i) ⇒ iii) follows from the inequality on the left of (10).

i) ⇒ iv) follows from Theorem 12.

Now suppose that ii) or iii) is fulfilled. As {gk}k∈N is an X̃-frame in Z, by Theorem 6

the operator T maps X̃∗ into the whole of Z∗. From ii) or iii) it follows that T maps X̃∗

isomorphically to Z∗. Then, by Theorem 11, the condition i) is fulfilled.

Let’s show the validity of iv)⇒ i). Then U maps Z isomorphically to X̃. As T = U∗,
the operator T maps X̃∗ isomorphically to Z∗. Consequently, by Theorem 11, the condition
i) is fulfilled.

ii)⇒v). Then the system {gk}k∈N has a unique b∗-biorthogonal system {Λk}k∈N ⊂
L(X,Z):

gk(Λi(x)) = δkix,∀x ∈ X.
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Let’s show the validity of v)⇒ iv). As {gk}k∈N is an X̃-frame in Z, ImU is a subspace

of X̃. ∀x̃ ∈ X̃ we have

x̃ =

∞∑
k=1

{δikxk}i∈N =

∞∑
k=1

{gi(Λk(xk))}i∈N =

∞∑
k=1

U(Λk(xk)) = UD(x̃),

i.e. x̃ ∈ ImU .J

Now we proceed to study the matter of decomposition in the spaces Z and Z∗.

Theorem 16. Let X̃ be an RCB-space, the system {gk}k∈N ⊂ L(Z,X) form an X̃∗-Riesz
b∗-basis for Z∗ with the bounds A, B and ‖gk(z)‖X ≥ ak ‖z‖Z , ak > 0, ∀z ∈ Z. Then
there exists a unique X̃-Riesz b-basis {Λk}k∈N ⊂ L(X,Z) for Z with the bounds 1

B and 1
A

such that

z =
∞∑
k=1

Λk(gk(z)) for every z ∈ Z, (11)

f =
∞∑
k=1

fΛkgk,∀f ∈ Z∗, (12)

where {Λk}k∈N is a unique system b-biorthogonal to {gk}k∈N .

Proof. By Theorem 12, the system {gk}k∈N is an X̃-frame in Z with the bounds A and
B, the operator U is boundedly invertible and

∥∥U−1
∥∥ ≤ 1

A . Let Λk = U−1Pk. Obviously,
{Λk}k∈N ⊂ L(X,Z). We have

gk(Λi(x)) = δkix,

because if Λi(x) = z, then Pk(x) = U(z). Hence gk(z) = δkix. Further,

z = U−1U(z) = U−1(

∞∑
k=1

Pkgk(z)) =

∞∑
k=1

Λk(gk(z)).

The validity of (12) follows from (11). As ImD = Z, by Theorem 7 the system {Λk}k∈N
is an X̃∗-frame in Z∗. We have

∥∥{Λ∗k(f)}k∈N
∥∥
X̃∗ = sup

‖x̃‖=1

∣∣∣∣∣
∞∑
k=1

fΛk(xk)

∣∣∣∣∣ = sup
‖x̃‖=1

∣∣f(U−1(x̃))
∣∣ =

∥∥(U∗)−1f
∥∥
X̃∗ .

Then ∥∥{Λ∗kf}k∈N∥∥X̃∗ ≤
∥∥U−1

∥∥ ‖f‖Z∗ ≤
1

A
‖f‖ ,

∥∥{Λ∗kf}k∈N∥∥X̃∗ ≥ ‖U‖−1 ‖f‖ ≥ 1

B
‖f‖ .
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The system {Λk}k∈N is b-ω-linearly independent with respect to X̃. In fact, if∑∞
k=1 Λk(xk) = 0, then ∃z: U(z) = x̃, i.e. gk(z) = xk. Therefore, from (11) we have

z =
∞∑
k=1

Λk(gk(z)) = 0,

hence x̃ = 0. By Theorem 14, the system {Λk}k∈N forms an X̃-Riesz b-basis for Z with the
bounds 1

B and 1
A . As {Λk}k∈N forms a b-basis for Z, it is a unique system b-biorthogonal

to {gk}k∈N . J

The next theorem presents a characteristic property of X̃∗-Riesz b∗-bases.

Theorem 17. Let X̃ be an RCB-space, and {gk}k∈N ⊂ L(Z,X), ‖gk(z)‖X ≥ ak ‖z‖Z ,
ak > 0, ∀z ∈ Z. Then the following conditions are equivalent:

i) {gk}k∈N forms an X̃∗-Riesz b∗-basis for Z∗;

ii) {gk}k∈N is b∗-complete in Z∗ and X̃-Besselian in Z, there exists a system {Λk}k∈N
which is X̃∗-Besselian in Z∗ and b-biorthogonal to {gk}k∈N .

Proof. Let’s show the validity of i)⇒ii). By Theorem 12, the system {gk}k∈N is an

X̃-frame in Z. Then, according to Theorems 15 and 16, there exists an X̃-Riesz b-basis
{Λk}k∈N , which is biorthogonal to {gk}k∈N . Applying Theorem 12, we obtain that the

system {Λk}k∈N is X̃∗-Besselian in Z∗.

Conversely, suppose that ii) is true. Then, by Theorems 4 and 5, the following bounded
operators are defined by (7) and (8). We have

T (x̃∗)(D(x̃)) =

∞∑
k=1

x∗k

( ∞∑
i=1

gk(Λixi)

)
=

∞∑
k=1

x∗k(xk) = x̃∗(x̃).

Then

‖x̃∗‖X̃ = sup
‖x̃‖=1

|x̃∗(x̃)| = sup
‖x̃‖=1

|T (x̃∗)(D(x̃))| ≤ ‖T (x̃∗)‖ ‖D‖ .

Thus

‖D‖−1 ‖x̃∗‖X̃∗ ≤ ‖T (x̃∗)‖Z∗ ≤ ‖T‖ ‖x̃∗‖X̃∗ ,

i.e. the relation (10) is true. J

Now let’s give a non-trivial example related to the matters discussed in this work.

Example 1. Let p > 1, the system {ϕn(t)}n∈N be such that |ϕn(t)| ≤ M a.e. in [0; 1]
and λn0 6= 0, where λn = inf

t∈[0;1]
vrai |ϕn(t)|. Denote by lp,2(0; 1) the set of sequences

a(t) = {an(t)}n∈N ⊂ Lp(0; 1) such that

∞∑
n=1

1

n2

∫ 1

0
|an(t)|p dt < +∞.
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Equipped with the norm ‖a‖lp,2(0,1) =
(∑∞

n=1
1
n2

∫ 1
0 |an(t)|p dt

) 1
p
, the set lp,2(0; 1) becomes

a Banach space. A space conjugate to lp,2(0; 1) is isometric and isomorphic to lq,2(0, 1),
with 1

p + 1
q = 1. Besides,

b(a) =

∞∑
n=1

1

n2

∫ 1

0
an(t)bn(t)dt, b(t) = {bn(t)}n∈N ∈ lq,2(0; 1),

is a linear continuous functional on lp,2(0; 1). Consider Λn : Lp(0; 1) → Lp(0; 1) defined
by the formula Λn(x)(t) = x(t)ϕn(t). It is clear that

λn ‖x‖Lp
≤ ‖Λn(x)‖Lp

≤M ‖x‖Lp

and

Λ∗n(y)(t) = y(t)ϕn(t), y(t) ∈ Lq(0; 1).

Then {Λn}n∈N forms an lq,2(0; 1)-frame and

( ∞∑
n=1

λqn
n2

) 1
q

‖y‖Lq(0;1) ≤
∥∥{Λ∗n(y)}n∈N

∥∥
lp,2(0;1)

≤M
(
π2

6

) 1
q

‖y‖Lq(0;1) ,∀y(t) ∈ Lq(0; 1).

In fact ∥∥{Λ∗n(y)}n∈N
∥∥
lq,2(0;1)

=

( ∞∑
n=1

1

n2
‖Λ∗n(y)‖qLq(0;1)

) 1
q

,

hence( ∞∑
n=1

λqn
n2

) 1
q

‖y‖Lq(0;1) ≤

( ∞∑
n=1

1

n2
‖Λ∗n(y)‖qLq(0;1)

) 1
q

≤M

( ∞∑
n=1

1

n2

) 1
q

‖y‖Lq(0;1) .

If λn > 0, then Theorem 14 implies the equivalence of the following conditions:

a) ∀x(t) ∈ Lp(0; 1) is uniquely representable in the form x(t) =
∑∞

n=1 an(t)ϕn(t);

b) the totality of all possible finite sums of the form
∑

n an(t)ϕn(t), an(t) ∈ Lp(0; 1), is
dense in Lp(0; 1) and ∃A > 0, B > 0 :

A

( ∞∑
n=1

1

n2

∫ 1

0
|an(t)|p dt

) 1
p

≤

(∫ 1

0

∣∣∣∣∣
∞∑
n=1

an(t)ϕn(t)

∣∣∣∣∣
p

dt

) 1
p

≤ B

( ∞∑
n=1

1

n2

∫ 1

0
|an(t)|p dt

) 1
p

.
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