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Abstract. In this paper, we obtain Gauss type inequalities for the class of convex functions.
Further, we give an application of new inequalities to obtain Stolarsky type means.
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1. Introduction

In [4], Gauss mentioned the following inequality which is important in statistics.

Theorem 1. If f is a nonnegative and nonincreasing function and k > 0, then

∫ ∞

k

f(x)dx ≤ 4

9k2

∫ ∞

0
x2f(x)dx. (1)

In [2], Alzer gave a lower bound for the Gauss’ inequality (1). In fact, he proved the
following theorem.

Theorem 2. Let g : [a, b] → R be increasing, convex and differentiable, and let f : I → R

be nonincreasing function. Then

∫ b

a

f(s(x))g′(x)dx ≤
∫ g(b)

g(a)
f(x)dx ≤

∫ b

a

f(t(x))g′(x)dx, (2)

where

s(x) =
g(b)− g(a)

b− a
(x− a) + g(a), (3)

and
t(x) = g′(x0)(x− x0) + g(x0), x0 ∈ [a, b]. (4)

(I is an interval containing a, b, g(a), g(b), t(a) and t(b).)
If either g is concave or f is nondecreasing, then the reversed inequalities hold.

∗Corresponding author.
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Remark 1. If we consider only the left-hand side inequality in (2), interval I should only
contain a, b, g(a) and g(b). When considering the right-hand side inequality in (2), interval
I should also contain t(a) and t(b).

The aim of this paper is to extend Alzer’s result to the class of convex functions.
Moreover, we apply Gauss type inequalities to obtain Stolarsky type means.

First, let us recall some notions: log denotes the natural logarithm function and by I◦

we denote the interior of interval I.

2. Main results

In [10], Pečarić and Smoljak introduced a new class of functions that extends the class
of convex functions. Let us recall the definition.

Definition 1. Let f : I → R and c ∈ I◦. We say that f belongs to the class Mc
1(I) (resp.

Mc
2(I)) if there exists a constant A such that the function F (x) = f(x) − Ax is nonin-

creasing (resp. nondecreasing) on I ∩ (−∞, c] and nondecreasing (resp. nonincreasing) on
I ∩ [c,∞).

We can describe the property from the previous definition as “convexity (concavity)
at point c”.

Remark 2. If f ∈ Mc
1(I) or f ∈ Mc

2(I) and f ′(c) exists, then f ′(c) = A.
Let us show this for f ∈ Mc

1(I). Since F is nonincreasing on I∩(−∞, c] and nondecreasing
on I ∩ [c,∞), for every distinct points x1, x2 ∈ I ∩ (−∞, c] and y1, y2 ∈ I ∩ [c,∞) we have

[x1, x2;F ] = [x1, x2; f ]−A ≤ 0 ≤ [y1, y2; f ]−A = [y1, y2;F ].

Therefore, since f ′−(c) and f ′+(c) exist, letting x1 = y1 = c, x2 ր c and y2 ց c we get

f ′−(c) ≤ A ≤ f ′+(c). (5)

In the following theorem we give the connection between the class of functions Mc
1(I)

and the class of convex functions proved in [10].

Theorem 3. The function f : I → R is convex (concave) on I if and only if it is convex
(concave) at every c ∈ I◦.

In the following theorems we obtain Gauss type inequalities for the class of functions
that are convex at point c.

Theorem 4. Let c ∈ (a, b) and let g : [a, b] → R be increasing, convex and differentiable
such that g(c) = c. Assume

s1(x) =
g(b) − g(c)

b− c
(x− c) + g(c), (6)

t1(x) = g′(x0)(x− x0) + g(x0), x0 ∈ [a, c] (7)
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and
∫ c

a

t1(x)g
′(x)dx +

∫ b

c

s1(x)g
′(x)dx =

g2(b)− g2(a)

2
. (8)

If f ∈ Mc
1(I), then

∫ c

a

f(t1(x))g
′(x)dx +

∫ b

c

f(s1(x))g
′(x)dx ≥

∫ g(b)

g(a)
f(x)dx. (9)

If f ∈ Mc
2(I), then the inequality in (9) is reversed.

(I is an interval containing a, b, g(a), g(b), t1(a) and t1(c).)

Proof. From g(c) = c and other conditions of theorem it follows that g(a), t1(a), t1(c) ≤
c and g(b) ≥ c, where g(a) ≤ c, t1(a) ≤ c and g(b) ≥ c follow from the fact that the function
g is increasing, and t1(c) ≤ c follows from the convexity of the function g. Since interval
I contains a, b, g(a), g(b), t1(a) and t1(c), these conditions imply g(a), g(c), t1(a), t1(c) ∈
I ∩ (−∞, c] and g(c), g(b) ∈ I ∩ [c,∞).

Let f ∈ Mc
1(I). Let A be the constant from Definition 1 and let us consider the

function F : I → R, F (x) = f(x) − Ax. Since F is nonincreasing on I ∩ (−∞, c] and
g(a), g(c), t1(a), t1(c) ∈ I ∩ (−∞, c], we can apply the right-hand side of inequality (2) to
the function F , so

∫ g(c)

g(a)
F (x)dx ≤

∫ c

a

F (t1(x))g
′(x)dx.

Hence, we obtain

0 ≤
∫ c

a

F (t1(x))g
′(x)dx−

∫ g(c)

g(a)
F (x)dx =

=

∫ c

a

f(t1(x))g
′(x)dx −

∫ g(c)

g(a)
f(x)dx−A

(∫ c

a

t1(x)g
′(x)dx− g2(c) − g2(a)

2

)

.

(10)

Further, since F is nondecreasing on I ∩ [c,∞) and g(c), g(b) ∈ I ∩ [c,∞), the left-hand
side of inequality (2) applied to the function F is reversed. So we have

∫ b

c

F (s1(x))g
′(x)dx ≥

∫ g(b)

g(c)
F (x)dx.

Hence, we obtain

0 ≤
∫ b

c

F (s1(x))g
′(x)dx−

∫ g(b)

g(c)
F (x)dx =

=

∫ b

c

f(s1(x))g
′(x)dx−

∫ g(b)

g(c)
f(x)dx−A

(
∫ b

c

s1(x)g
′(x)dx− g2(b)− g2(c)

2

)

.

(11)
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Now combining (10) and (11) we obtain

∫ c

a

f(t1(x))g
′(x)dx+

∫ b

c

f(s1(x))g
′(x)dx−

∫ g(b)

g(a)
f(x)dx ≥

≥ A

(∫ c

a

t1(x)g
′(x)dx+

∫ b

c

s1(x)g
′(x)dx− g2(b)− g2(a)

2

)

.

Hence, from (8) we conclude that (9) holds.
Proof for f ∈ Mc

2(I) is similar, so we omit the details.◭

Remark 3. An example of a function g : [a, b] → R satisfying conditions of Theorem 4 is
the function

g(x) =
x2

c
,

where 0 ≤ a < c < b.

Theorem 5. Let c ∈ (a, b) and let g : [a, b] → R be increasing, convex and differentiable
such that g(c) = c. Assume

s2(x) =
g(c) − g(a)

c− a
(x− a) + g(a), (12)

t2(x) = g′(x0)(x− x0) + g(x0), x0 ∈ [c, b], (13)

and
∫ c

a

s2(x)g
′(x)dx+

∫ b

c

t2(x)g
′(x)dx =

g2(b)− g2(a)

2
. (14)

If f ∈ Mc
1(I), then

∫ c

a

f(s2(x))g
′(x)dx+

∫ b

c

f(t2(x))g
′(x)dx ≤

∫ g(b)

g(a)
f(x)dx. (15)

If f ∈ Mc
2(I), then the inequality in (15) is reversed.

(I is an interval containing a, b, g(a), g(b), t2(c) and t2(b).)

Proof. Similar to the proof of Theorem 4, it follows that g(a) ≤ c and g(b), t2(c), t2(b) ≥
c. Since interval I contains a, b, g(a), g(b), t2(c) and t2(b), these conditions imply g(a), g(c) ∈
I ∩ (−∞, c] and g(c), g(b), t2(c), t2(b) ∈ I ∩ [c,∞).

Let f ∈ Mc
1(I). Let A be the constant from Definition 1 and let us consider the

function F : I → R, F (x) = f(x) − Ax. Since F is nonincreasing on I ∩ (−∞, c] and
g(a), g(c) ∈ I ∩ (−∞, c], we can apply the left-hand side of inequality (2) to the function
F . So we obtain

0 ≤
∫ g(c)

g(a)
f(x)dx−

∫ c

a

f(s2(x))g
′(x)dx−A

(

g2(c)− g2(a)

2
−
∫ c

a

s2(x)g
′(x)dx

)

. (16)



Gauss Type Inequalities 59

Further, since F is nondecreasing on I ∩ [c,∞) and g(c), g(b), t2(c), t2(b) ∈ I ∩ [c,∞), the
right-hand side of inequality (2) applied to the function F is reversed. So we have

0 ≤
∫ g(b)

g(c)
f(x)dx−

∫ b

c

f(t2(x))g
′(x)dx−A

(

g2(b)− g2(c)

2
−
∫ b

c

t2(x)g
′(x)dx

)

. (17)

Now combining (16) and (17) we obtain

∫ g(b)

g(a)
f(x)dx−

∫ c

a

f(s2(x))g
′(x)dx−

∫ b

c

f(t2(x))g
′(x)dx ≥

≥ A

(

g2(b)− g2(a)

2
−
∫ c

a

s2(x)g
′(x)dx−

∫ b

c

t2(x)g
′(x)dx

)

.

Hence, from (14) we conclude that (15) holds.
Proof for f ∈ Mc

2(I) is similar, so we omit the details.◭

As a consequence of Theorems 4 and 5, we obtain Gauss type inequalities that involve
convex functions.

Corollary 1. Let c ∈ (a, b) and let g : [a, b] → R be increasing, convex and differentiable
such that g(c) = c. Assume (6), (7) and (8) hold and I is an interval as in Theorem 4.
If f : I → R is convex, then (9) holds. If f : I → R is concave, then the inequality in (9)
is reversed.

Proof. Since the function f is convex, from Theorem 3 we have f ∈ Mc
1(I) for every

c ∈ (a, b) ⊆ I◦. Hence, we can apply Theorem 4.◭

Corollary 2. Let c ∈ (a, b) and let g : [a, b] → R be increasing, convex and differentiable
such that g(c) = c. Assume (12), (13) and (14) hold and I is an interval as in Theorem 5.
If f : I → R is convex, then (15) holds. If f : I → R is concave, then the inequality in
(15) is reversed.

Proof. Similar to the proof of Corollary 1.◭

Remark 4. Conditions (8) and (14) can be relaxed. For f ∈ Mc
1(I) condition (8) can be

replaced by the weaker condition

A

(
∫ c

a

t1(x)g
′(x)dx+

∫ b

c

s1(x)g
′(x)dx− g2(b)− g2(a)

2

)

≥ 0, (18)

and condition (14) can be replaced by the weaker condition

A

(

g2(b)− g2(a)

2
−
∫ c

a

s2(x)g
′(x)dx−

∫ b

c

t2(x)g
′(x)dx

)

≥ 0, (19)

where A is the constant from Definition 1. Also, for f ∈ Mc
2(I) condition (8) (resp. (14))

can be replaced by condition (18) (resp. (19)) with the reverse inequality.
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Additionaly, conditions (8) and (14) can be further weakened if the function f is mono-
tonic. Since (5) holds, if f ∈ Mc

1(I) is nondecreasing or f ∈ Mc
2(I) is nonincreasing,

from (18) we obtain that (8) can be weakened to

∫ c

a

t1(x)g
′(x)dx +

∫ b

c

s1(x)g
′(x)dx ≥ g2(b)− g2(a)

2
, (20)

and that (14) can be weakened to

g2(b)− g2(a)

2
≥
∫ c

a

s2(x)g
′(x)dx+

∫ b

c

t2(x)g
′(x)dx. (21)

Also, if f ∈ Mc
1(I) is nonincreasing or f ∈ Mc

2(I) is nondecreasing, (8) (resp. (14)) can
be weakened to (20) (resp. (21)) with the reverse inequality.

3. Mean value theorems

In this section we prove mean value theorems related to Gauss type inequalities ob-
tained in previous section. Let us begin by defining the following linear functionals:

L1(f) =

∫ c

a

f(t1(x))g
′(x)dx+

∫ b

c

f(s1(x))g
′(x)dx −

∫ g(b)

g(a)
f(x)dx, (22)

and

L2(f) =

∫ g(b)

g(a)
f(x)dx−

∫ c

a

f(s2(x))g
′(x)dx−

∫ b

c

f(t2(x))g
′(x)dx. (23)

Remark 5. Under assumptions of Theorems 4 and 5 we have that L1(f) ≥ 0 and L2(f) ≥
0 for f ∈ Mc

1(I). Further, under assumptions of Corollaries 1 and 2 we have that L1(f) ≥
0 and L2(f) ≥ 0 for any convex function f .

First, we give the Lagrange type mean value theorems.

Theorem 6. Let c ∈ (a, b) and let g : [a, b] → R be increasing, convex and differentiable
such that g(c) = c. Assume (6), (7) and (8) hold and I is an interval as in Theorem 4.
Then for any f ∈ C2(I) there exists ξ ∈ I such that

L1(f) =
f ′′(ξ)

2

[
∫ c

a

t21(x)g
′(x)dx+

∫ b

c

s21(x)g
′(x)dx− g3(b)− g3(a)

3

]

, (24)

where L1 is defined by (22).

Proof. Since f ∈ C2(I), there exist

m = min
x∈I

f ′′(x) and M = max
x∈I

f ′′(x).
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The functions

Ψ1(x) = f(x)− m

2
x2 and Ψ2(x) =

M

2
x2 − f(x),

are convex since Ψ′′
i (x) ≥ 0, i = 1, 2. Hence, by Remark 5 we have L1(Ψi) ≥ 0, i = 1, 2

and we get
m

2
L1(x

2) ≤ L1(f) ≤
M

2
L1(x

2), (25)

where

L1(x
2) =

∫ c

a

t21(x)g
′(x)dx+

∫ b

c

s21(x)g
′(x)dx− g3(b)− g3(a)

3
.

Since x2 is convex, by Remark 5 we have L1(x
2) ≥ 0.

If L1(x
2) = 0, then (25) implies L1(f) = 0 and (24) holds for every ξ ∈ I. Otherwise,

dividing (25) by L1(x
2)/2 > 0 we get

m ≤ 2L1(f)

L1(x2)
≤M,

so continuinity of f ′′ ensures existence of ξ ∈ I satisfying (24).◭

Theorem 7. Let c ∈ (a, b) and let g : [a, b] → R be increasing, convex and differentiable
such that g(c) = c. Assume (12), (13) and (14) hold and I is an interval as in Theorem 5,
Then for any f ∈ C2(I) there exists ξ ∈ I such that

L2(f) =
f ′′(ξ)

2

[

g3(b)− g3(a)

3
−
∫ c

a

s2(x)g′(x)dx −
∫ b

c

t2(x)g′(x)dx

]

, (26)

where L2 is defined by (23).

Proof. Similar to the proof of Theorem 6.◭

We continue with the Cauchy type mean value theorems.

Theorem 8. Let c ∈ (a, b) and let g : [a, b] → R be increasing, convex and differentiable
such that g(c) = c. Assume (6), (7) and (8) hold and I is an interval as in Theorem 4.
Then for any f, h ∈ C2(I) such that h′′(x) 6= 0 for every x ∈ I, there exists ξ ∈ I such
that

L1(f)

L1(h)
=
f ′′(ξ)

h′′(ξ)
(27)

holds, where L1 is defined by (22).

Proof. Let us define Φ ∈ C2(I) by Φ(x) = L1(h)f(x)−L1(f)h(x). Due to the linearity
of L1, we have L1(Φ) = 0. Now, by Theorem 6 there exist ξ, ξ1 ∈ I such that

0 = L1(Φ) =
Φ′′(ξ)

2 L1(x
2),
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0 6= L1(h) =
h′′(ξ1)

2 L1(x
2).

Therefore, L1(x
2) 6= 0 and

0 = Φ′′(ξ) = L1(h)f
′′(ξ)− L1(f)h

′′(ξ),

which gives the claim of the theorem.◭

Theorem 9. Let c ∈ (a, b) and let g : [a, b] → R be increasing, convex and differentiable
such that g(c) = c. Assume (12), (13) and (14) hold and I is an interval as in Theorem 5.
Then for any f, h ∈ C2(I) such that h′′(x) 6= 0 for every x ∈ I, there exists ξ ∈ I such
that

L2(f)

L2(h)
=
f ′′(ξ)

h′′(ξ)
, (28)

holds, where L2 is defined by (23).

Proof. Similar to the proof of Theorem 8.◭

Remark 6. Conditions (8) and (14) in Theorems 6–9 can be replaced by weaker conditions
given in Remark 4.

4. Applications to Stolarsky type means

In [3] Bernstein invented exponentially convex functions, a subclass of convex func-
tions on a given open interval. We recall some nice properties of this class of functions
needed in the sequel. For other properties see [1] and [5]. Further, we use the notion of
n−exponentially convex functions which was introduced in [6].

Let us recall definition and some results on exponential convexity.

Definition 2. A function ψ : J → R is n-exponentially convex in the Jensen sense on J
if

n
∑

i,j=1

ξiξj ψ

(

xi + xj
2

)

≥ 0,

holds for all choices ξ1, . . . , ξn ∈ R and all choices x1, . . . , xn ∈ J .
A function ψ : J → R is n-exponentially convex on J if it is n-exponentially convex

in the Jensen sense and continuous on J .

Remark 7. It is clear from the definition that 1-exponentially convex functions in the
Jensen sense are in fact nonnegative functions.

Also, n-exponentially convex functions in the Jensen sense are k-exponentially convex
in the Jensen sense for every k ≤ n, k ∈ N.

Definition 3. A function ψ : J → R is exponentially convex in the Jensen sense on J if
it is n-exponentially convex in the Jensen sense on J for every n ∈ N.

A function ψ : J → R is exponentially convex on J if it is exponentially convex in the
Jensen sense and continuous on J .
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Remark 8. A function ψ : J → R is log-convex in the Jensen sense, i.e.

ψ

(

x+ y

2

)2

≤ ψ(x)ψ(y), for all x, y ∈ J, (29)

if and only if

α2ψ(x) + 2αβψ

(

x+ y

2

)

+ β2ψ(y) ≥ 0,

holds for every α, β ∈ R and x, y ∈ J , i.e., if and only if ψ is 2-exponentially convex in
the Jensen sense. By induction from (29) we have

ψ

(

1

2k
x+

(

1− 1

2k

)

y

)

≤ ψ(x)
1

2k ψ(y)
1− 1

2k .

Therefore, if ψ is continuous and ψ(x) = 0 for some x ∈ J , then from the last inequality
and nonnegativity of ψ (see Remark 7) we get

ψ(y) = lim
k→∞

ψ

(

1

2k
x+

(

1− 1

2k

)

y

)

= 0 for all y ∈ J.

Hence, 2-exponentially convex function is either identically equal to zero or it is strictly
positive and log-convex.

The following lemma is equivalent to the definition of convex functions (see [7]).

Lemma 1. A function ψ : J → R is convex if and only if the inequality

(x3 − x2)ψ(x1) + (x1 − x3)ψ(x2) + (x2 − x1)ψ(x3) ≥ 0,

holds for all x1, x2, x3 ∈ J such that x1 < x2 < x3.

We also use the following result (see [7]).

Proposition 1. If f is a convex function on J and if x1 ≤ y1, x2 ≤ y2, x1 6= x2, y1 6= y2,
then the following inequality holds

f(x2)− f(x1)

x2 − x1
≤ f(y2)− f(y1)

y2 − y1
.

If the function f is concave, the inequality is reversed.

Definition 4. The second order divided difference of a function f : J → R (J is an
interval in R) at mutually different points x0, x1, x2 ∈ J is defined recursively by

[xi; f ] = f(xi), i = 0, 1, 2,

[xi, xi+1; f ] =
f(xi+1)− f(xi)

xi+1 − xi
, i = 0, 1,

[x0, x1, x2; f ] =
[x1, x2; f ]− [x0, x1; f ]

x2 − x0
. (30)
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Remark 9. The value [x0, x1, x2; f ] is independent of the order of the points x0, x1 and
x2. This definition may be extended to include the case in which some or all the points
coincide. Taking the limit x1 → x0 in (30), we get

lim
x1→x0

[x0, x1, x2; f ] = [x0, x0, x2; f ] =
f(x2)− f(x0)− f ′(x0)(x2 − x0)

(x2 − x0)2
, x2 6= x0,

provided that f ′ exists, and furthermore, taking the limits xi → x0, i = 1, 2 in (30), we get

lim
x2→x1

lim
x1→x0

[x0, x1, x2; f ] = [x0, x0, x0; f ] =
f ′′(x0)

2
,

provided that f ′′ exists.

In the following theorem we show n−exponential convexity of functionals L1 and L2.
Similar result was proved in [10], so we omit the proof. In the sequel, J , K denote intervals
in R.

Theorem 10. Let Ω = {fp : J → R | p ∈ K} be a family of functions such that for every
mutually different points x0, x1, x2 ∈ J the mapping p 7→ [x0, x1, x2; fp] is n−exponentially
convex in the Jensen sense on K. Let Li, i = 1, 2 be linear functionals defined by (22) and
(23). Then the mapping p 7→ Li(fp) is n−exponentially convex in the Jensen sense on K.
If the mapping p 7→ Li(fp) is continuous on K, then it is n−exponentially convex on K.

If the assumptions of Theorem 10 hold for all n ∈ N, then we have the following
corollary.

Corollary 3. Let Ω = {fp : J → R | p ∈ K} be a family of functions such that for every
mutually different points x0, x1, x2 ∈ J the mapping p 7→ [x0, x1, x2; fp] is exponentially
convex in the Jensen sense on K. Let Li, i = 1, 2 be linear functionals defined by (22) and
(23). Then the mapping p 7→ Li(fp) is exponentially convex in the Jensen sense on K.
If the mapping p 7→ Li(fp) is continuous on K, then it is exponentially convex on K.

We continue with the result which is useful for the application to Stolarsky type means.
Again, similar result was obtained in [10], so we recall it without the proof.

Corollary 4. Let Ω = {fp : J → R | p ∈ K} be a family of functions such that for every
mutually different points x0, x1, x2 ∈ J the mapping p 7→ [x0, x1, x2; fp] is 2-exponentially
convex in the Jensen sense on K. Let Li, i = 1, 2 be linear functionals defined by (22)
and (23). Then the following statements hold:

(i) If the mapping p 7→ Li(fp) is continuous on K, then for r, s, t ∈ K, such that
r < s < t, we have

[Li(fs)]
t−r ≤ [Li(fr)]

t−s [Li(ft)]
s−r , i = 1, 2. (31)
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(ii) If the mapping p 7→ Li(fp) is strictly positive and differentiable on K, then for every
p, q, u, v ∈ K such that p ≤ u and q ≤ v we have

µp,q(Li,Ω) ≤ µu,v(Li,Ω), (32)

where

µp,q(Li,Ω) =











(

Li(fp)
Li(fq)

)
1

p−q
, p 6= q,

exp

(

d
dp
Li(fp)

Li(fp)

)

, p = q.
(33)

Remark 10. Results from Theorem 10, Corollaries 3 and 4 still hold when two of the
points x0, x1, x2 ∈ J coincide, say x1 = x0, for a family of differentiable functions fp such
that the function p→ [x0, x1, x2; fp] is n−exponentially convex in the Jensen sense (expo-
nentially convex in the Jensen sense, log-convex in the Jensen sense), and furthermore,
they still hold when all three points coincide for a family of twice differentiable functions
with the same property. The proofs are obtained by recalling Remark 9 and suitable char-
acterization of convexity.

We continue with some families of functions Υ = {fp : J → R | p ∈ R} for which we
use Corollaries 3 and 4 to construct exponentially convex functions and Stolarsky type
means related to Gauss type inequalities. Motivation for this application was importance
and intensive research of Stolarsky means [11] in various branches of mathematics.

Example 1. Let
Υ1 = {fp : R → [0,∞)| p ∈ R},

be a family of functions defined by

fp(x) =

{

epx

p2
, p 6= 0;

x2

2 , p = 0.

For every p ∈ R we have that fp is a convex function on R since d2

dx2
fp(x) = epx > 0.

Furthermore, p 7→ d2

dx2
fp(x) is exponentially convex by definition. Similar to the proof

of Theorem 10, we conclude that p 7→ [x0, x1, x2; fp] is exponentially convex (and so
exponentially convex in the Jensen sense). Using Corollary 3 we obtain that p 7→ Li(fp),
i = 1, 2 are exponentially convex in the Jensen sense. It is easy to verify that these
mappings are continuous, so they are exponentially convex. For this family of functions,
from Corollary 4 we have that µp,q(Li,Υ1), i = 1, 2 are given by

µp,q(Li,Υ1) =



















(

Li(fp)
Li(fq)

)
1

p−q
, p 6= q;

exp
(

Li(id ·fp)
Li(fp)

− 2
p

)

, p = q 6= 0;

exp
(

1
3
Li(id ·f0)
Li(f0)

)

, p = q = 0.

Explicitly, for µp,q(L1,Υ1) we have the following:
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∗ for p 6= q, p, q 6= 0:

µp,q(L1,Υ1) =





q2

p2

∫ c

a
ept1(x)g′(x)dx+

∫ b

c
eps1(x)g′(x)dx− epg(b)−epg(a)

p
∫ c

a
eqt1(x)g′(x)dx+

∫ b

c
eqs1(x)g′(x)dx − eqg(b)−eqg(a)

q





1
p−q

∗ for p 6= q, q = 0 (or p = 0):

µp,0(L1,Υ1) =





2

p2

∫ c

a
ept1(x)g′(x)dx+

∫ b

c
eps1(x)g′(x)dx− epg(b)−epg(a)

p
∫ c

a
t21(x)g

′(x)dx+
∫ b

c
s21(x)g

′(x)dx− g3(b)−g3(a)
3





1
p

= µ0,p(L1,Υ1)

∗ for p = q 6= 0:

µp,p(L1,Υ1) = exp

(

A−B

C
− 2

p

)

,

where

A =

∫ c

a

ept1(x)t1(x)g
′(x)dx+

∫ b

c

eps1(x)s1(x)g
′(x)dx,

B =
1

p

(

g(b)epg(b) − g(a)epg(a) − epg(b) − epg(a)

p

)

,

C =

∫ c

a

ept1(x)g′(x)dx +

∫ b

c

eps1(x)g′(x)dx− epg(b) − epg(a)

p
.

∗ for p = q = 0:

µ0,0(L1,Υ1) = exp

(

1

3

∫ c

a
t31(x)g

′(x)dx+
∫ b

c
s31(x)g

′(x)dx− g4(b)−g4(a)
4

∫ c

a
t21(x)g

′(x)dx+
∫ b

c
s21(x)g

′(x)dx− g3(b)−g3(a)
3

)

.

Applying Theorems 8 and 9 on functions fp, fq ∈ Υ1 and functionals L1 and L2, we
obtain that for i = 1, 2

Mp,q(Li,Υ1) = log µp,q(Li,Υ1),

satisfy min I ≤ Mp,q(Li,Υ1) ≤ max I. So Mp,q(Li,Υ1), i = 1, 2 are monotonic means by
(32).

Example 2. Let
Υ2 = {hp : (0,∞) → R | p ∈ R},

be a family of functions defined by

hp(x) =







xp

p(p−1) , p 6= 0, 1;

− log x, p = 0;
x log x, p = 1.

(34)
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We have that hp is a convex function on R
+, since d2

dx2
hp(x) = xp−2 > 0 for x > 0.

Furthermore, p 7→ d2

dx2
hp(x) is exponentially convex by definition. Similar to Example 1,

we obtain that p 7→ Li(hp), i = 1, 2 are exponentially convex in the Jensen sense. It is easy
to verify that these mappings are continuous, so they are exponentially convex. Hence,
for this family of functions, from Corollary 4 we have that µp,q(Li,Υ1), i = 1, 2 are given
by

µp,q(Li,Υ2) =































(

Li(hp)
Li(hq)

) 1
p−q

, p 6= q;

exp
(

−Li(hph0)
Li(hp)

− 2p−1
p(p−1)

)

, p = q 6= 0, 1;

exp
(

−Li(h
2
0)

2Li(h0)
+ 1
)

, p = q = 0;

exp
(

−Li(h0h1)
2Li(h1)

− 1
)

, p = q = 1.

Applying Theorems 8 and 9 on functions hp, hq ∈ Υ2 and functionals L1, L2, we conclude
that there exist ξi ∈ I such that

ξp−qi =
Li(hp)

Li(hq)
, i = 1, 2.

Since the function ξ 7→ ξp−q is invertible, for p 6= q we have

min I ≤
(

Li(hp)

Li(hq)

)
1

p−q

≤ max I,

which together with the fact that µp,q(Li,Υ2), i = 1, 2 are continuous, symmetric and
monotonic (by (32)) shows that µp,q(Li,Υ2), i = 1, 2 are means.

Example 3. Let
Υ3 = {φp : (0,∞) → (0,∞) | p ∈ (0,∞)},

be a family of functions defined by

φp(x) =

{

p−x

log2 p
, p 6= 1;

x2

2 , p = 1.

Since d2

dx2
φp(x) = p−x is a Laplace transform of a nonnegative function (see [12]), it is

exponentially convex. Similar to Example 1, we conclude that p 7→ Li(φp), i = 1, 2 are
exponentially convex. For this family of functions, from Corollary 4 we have

µp,q(Li,Υ3) =



















(

Li(φp)
Li(φq)

)
1

p−q
, p 6= q;

exp
(

−Li(id ·φp)
pLi(φp)

− 2
p log p

)

, p = q 6= 1;

exp
(

−Li(id ·φ1)
3Li(φ1)

)

, p = q = 1.

Applying Theorems 8 and 9 on functions φp, φq ∈ Υ3 and functionals L1, L2, we obtain
that

Mp,q(Li,Υ3) = −L(p, q) log µp,q(Li,Υ3),
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satisfy min I ≤ Mp,q(Li,Υ3) ≤ max I, where L(p, q) is logarithmic mean defined by
L(p, q) = p−q

log p−log q . So Mp,q(Li,Υ3), i = 1, 2 are means and by (32) they are monotonic.

Example 4. Let

Υ4 = {ψp : (0,∞) → (0,∞) | p ∈ (0,∞)},
be a family of functions defined by

ψp(x) =
e−x

√
p

p
.

Since d2

dx2
ψp(x) = e−p

√
x is a Laplace transform of a nonnegative function (see [12]), it is

exponentially convex. Similar to Example 1, we conclude that p 7→ Li(ψp), i = 1, 2 are
exponentially convex. For this family of functions, from Corollary 4 we have

µp,q(Li,Υ4) =







(

Li(ψp)
Li(ψq)

) 1
p−q

, p 6= q;

exp
(

−1
2
√
p

Li(id ·ψp)
Li(ψp)

− 1
p

)

, p = q.

Applying Theorems 8 and 9 on functions ψp, ψq ∈ Υ4 and functionals L1, L2, we obtain

Mp,q(Li,Υ4) = −(
√
p+

√
q) log µp,q(Li,Υ4),

satisfy min I ≤ Mp,q(Li,Υ4) ≤ max I. So Mp,q(Li,Υ4), i = 1, 2 are monotonic means by
(32).

Remark 11. Some other Stolarsky type means related to Alzer’s result given in Theorem 2
were obtained by Pečarić and Smoljak in [8] and [9].
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