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On Mixed Vector Equilibrium Problems

A.P. Farajzadeh, M. Mursaleen∗, A. Shafie

Abstract. In this paper, four kinds of the mixed vector equilibrium problems which are com-
binations of a vector equilibrium problem and generalized vector variational inequality problem
are introduced. Some existence theorems for a solution of them, by applying KKM lemma and
minimax theorem as well suitable convexity and semicontinuity on the maps in the setting of topo-
logical vector spaces are provided. Also, the solution sets of them are compared. Some examples
in order to illustrate the results of the paper are given. The results of this note can be viewed as
an extension and improvement of results recently obtained in [1, 2, 3, 6, 8]).
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1. Introduction

Let X be a topological vector space, K be a subset of X, and f : K ×K → R be a
mapping with f(x, x) = 0, for all x ∈ X. The (scalar-valued) equilibrium problem deals
with the existence of x̄ ∈ K such that

f(x̄, y) ≥ 0, ∀y ∈ K.

The equilibrium problem was first introduced and studied by Blum and Oettli [4] as a
generalization of variational inequality problem. It has been shown that the equilibrium
problem provides a natural, novel and unified framework to study a wide class of problems
arising in nonlinear analysis, optimization, economics, finance and game theory. It also
includes many mathematical problems as particular cases such as mathematical program-
ming problems, complementarity problems, variational inequality problems, fixed point.
problems, minimax inequality problems, and Nash equilibrium problems in noncoopera-
tive games [4]. If we replace the real line by an ordered topological vector space Y with its
ordering induced by a convex cone C ⊆ Y ( convex cone means C + C ⊆ C and λC ⊆ C
for all the nonnegative number λ), given a vector-valued mapping f : K ×K → Y, then
the problem of finding x̄ ∈ K such that

f(x̄, y) /∈ −intC, ∀y ∈ K,
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is called (weak) vector equilibrium problem and the point x̄ ∈ K is said to be a vector
equilibrium point (for more details, see [2, 3, 10]), where intC denotes the interior of C in
Y .

We recall that the convex cone C is pointed if C ∩ −C = {0}.
In this paper, four kinds of mixed vector equilibrium problems and many definitions

are introduced. Further, some existence theorems for a solution of them are presented.
The main tools for proving the main theorems are KKM lemma and minimax theorem.
The rest of this section will deal with introducing our problems.

Let Y be a topological vector space and C be a nonempty convex pointed cone subset
of Y. The partial order induced on Y by C is denoted by � and defined as

x � y ⇐⇒ y − x ∈ C.

Moreover, if C is a solid, i.e., intC 6= ∅, then we can define a pre-order (it is not reflexive)
on Y by

y1 ≺ y2 ⇐⇒ y2 − y1 ∈ intC.

Hence

y1 ⊀ y2 ⇐⇒ y2 − y1 /∈ intC,

and

y1 � y2 ⇐⇒ y2 − y1 /∈ C.

Let K be a nonempty convex subset of a topological vector space X, f : K × K → Y
be a mapping and T : K → 2L(X,Y ) be a multifunction, where L(X,Y ) is the set of all
linear continuous mappings from X into Y and 2L(X,Y ) denotes all of nonempty subsets of
L(X,Y ). Also, < x∗, x > stands for the evaluation of the linear mapping x∗ at x. Now, we
consider the following problems which are known as mixed vector equilibrium problems:
(A) Find x̄ ∈ K such that

∃x∗ ∈ T (x̄), ∀y ∈ K, f(x̄, y)+ < x∗, y − x̄ >⊀ 0, (1)

(B) Find x̄ ∈ K such that

∀y ∈ K, ∃x∗ ∈ T (x̄), f(x̄, y)+ < x∗, y − x̄ >⊀ 0, (2)

(C) Find x̄ ∈ K such that

∃x∗ ∈ T (x̄), ∀y ∈ K, f(x̄, y)+ < x∗, y − x̄ >� 0, (3)

(D) Find x̄ ∈ K such that

∀y ∈ K, ∃x∗ ∈ T (x̄), f(x̄, y)+ < x∗, y − x̄ >� 0. (4)

We will denote by SA, SB, SC and SD the solution sets of the problems (A),(B),(C)
and (D), respectively.
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Remark 1. (a) It is obvious that SC ⊆ SD, SC ⊆ SA ⊆ SB and if T is a single-valued
mapping, then SA = SB.
(b) It is worth noting that if f = 0, then the problems (A),(B) and (C) are reduced to the
generalized vector variational inequality problem [9]. Also, if T = 0, then the problems
(A),(B) and (C) collapse to the vector equilibrium problems [3, 6, 10].

2. Preliminaries

In this section, some definitions and preliminaries which are needed in the sequel are
given. Let X and Y be topological vector spaces, K be a convex subset of X, and C be a
convex (pointed) cone subset of Y.

Definition 1. A mapping f : X −→ R is upper semicontinuous at x0 ∈ X if the following
inequality, for any net {xα} in X which converges to x0, holds:

limαsupf(xα) ≤ f(x0).

Also, the mapping f is lower semicontinuous at x0 ∈ X if for any net {xα} in X which
converges to x0, the following inequality holds

limαinff(xα) ≥ f(x0).

Definition 2 ([1]). A mapping g : K → Y is called:
(a) C−convex, if for all x, x

′ ∈ K and t ∈ [0, 1] one has

tg(x) + (1− t)g(x
′
)− g(tx+ (1− t)x′) ∈ C.

(b) C−strongly convex if for all x, x
′ ∈ K and t ∈ [0, 1] one has

tg(x) + (1− t)g(x
′
)− g(tx+ (1− t)x′) ∈ intC.

(c) C−quasiconvex if for all x, x
′ ∈ K and t ∈ [0, 1] one has

g(tx+ (1− t)x′) ∈ y − C, ∀y ∈ C(g(x), g(x
′
)),

where C(g(x), g(x
′
) is the set of upper bounds of g(x), g(x

′
), i.e.,

C(g(x), g(x
′
)) = {y ∈ Y : y ∈ g(x) + C and y ∈ g(x

′
) + C}.

(d) C−upper semicontinuous at a point x0 ∈ K, if for any neighborhood V of g(x0) in Y
there exists a neighborhood U of x0 in X such that

g(U ∩K) ⊆ V − C.

Also, g is called C−lower semicontinuous at a point x0 ∈ K, if

g(U ∩K) ⊆ V + C.

Further, g is continuous with respect to C at a point x0 ∈ K, if it is C−lower semicontin-
uous and C−upper semicontinuous at x0 ∈ K.
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Note that if in Definition 2 we take Y = R, C = [0,∞) and K is a convex subset of the
real line, then C− convex , C−strongly convex and C−quasiconvex for the mapping g :
K → R convert to the usual definitions of convexity, strong convexity and quasiconvexity
of the mapping g.

Also one can see that Definition 1 is equivalent to the following one:
(i) f : X → R is lower semicontinuous if and only if for each real number λ the set

{x ∈ X : f(x) > λ},

is open.
It is clear that g is C− lower semicontinuous if and only if it is (−C)− upper semicon-

tinuous.
(ii) f : X → R is upper semicontinuous if and only if for each real number λ the set

{x ∈ X : f(x) < λ},

is open.
Also, the last definitions (that is (i) and (ii)) are equivalent to the definitions given by
part (d) of Definition 2, if we take X = R, C = [0,∞).

It is clear that g is C− lower semicontinuous if and only if it is −C− upper semicon-
tinuous. It is also easy to check that if g : K → Y is continuous, then it is C− upper
semicontinuous and C−lower semicontinuous. Hence, C− continuous. While the simple
example f(x) = [x] (floor function) is not continuous on the real line but it is C = [0,∞)−
lower semicontinuous.

Similarly, we say that the mapping g is C− concave, C− strongly concave and C−quasi-
concave, respectively, if −g is C−convex, C− strongly convex and C−quasiconvex, respec-
tively.

Also, the mapping g is upper semicontinuous at x0 if −g is lower semicontinuous at
x0.

Remark 2. If in Definition 2(c) we take Y = R, C = (−∞, 0] and g : K −→ Y is
C−upper semicontinuous, then for each real number r the set Ar = {x ∈ K, f(x) ≤ r} is
closed. Indeed, suppose the contrary: if x ∈ clAr\Ar, then there exists a net {xα}α∈I in
Ar such that xα −→ x. So since V = (r,+∞) is a neighborhood of f(x0), there exists a
neighborhood U of x0 such that f(U ∩K) ⊆ (r,+∞)− (−∞, 0] ⊆ (r,+∞). Since U ∩K is
in neighborhood of x0, there exists α0 such that xα0 ∈ U ∩K and f(xα0) > r, and this is
a contradiction. Thus, a scalar-valued mapping g being C− upper semicontinuous implies
its upper semicontinuity.

Definition 3 ([9]). Let M,N be two topological spaces. A set-valued mapping F : M −→
2N is upper semicontinuous (lower semicontinuous) at a point x0 ∈ X, if for each open
set W with F (x0) ⊆ W ( F (x0) ∩W 6= ∅) there is an open set U which contains x0 such
that

F (x) ⊆W, ∀x ∈ U.

(F (x) ∩W 6= ∅, ∀x ∈ U)
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Proposition 1 ([15]). If F : X −→ 2Y has compact values (i.e., F (x) is a compact set
for each x ∈ X), then F is upper semicontinuous ( u.s.c. for short) at λ̄ if and only if for
any net {λi} ⊂ Λ with λi −→ λ̄ and for any xi ∈ F (λi), there exist x̄ ∈ F (λ̄) and a subnet
xij of {xi} such that xij −→ x̄.

Definition 4 ([12]). A mapping f : K ×K −→ Y is said to be C−monotone, if for all
x, y ∈ K,

f(x, y) + f(y, x) ∈ −C.

Lemma 1 ([14]). If A,B are convex subsets of a topological vector space X and intA 6= ∅,
then

int(A+B) = intA+B.

As a consequence of Lemma 1 we have the following remark.

Remark 3. If C is a convex cone, then C + intC = intC.

The following example shows that convexity of the sets in Lemma 3 are essential. We
continue by recalling the scalarization method. Let Y ∗ be the topological dual of Y and
C be a convex cone of Y . The set

C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0, y ∈ C},

is called the positive polar cone of C which is closed convex cone ( [9, 11]). We put
C∗+ = C∗ \ {0}.

Proposition 2 ([7, 11] ). Let C be a convex cone subset of topological vector space X.
Then the following assertions are true

y ∈ C ⇐⇒ [〈y∗, y〉 ≥ 0, ∀y∗ ∈ C∗], (5)

y ∈ intC ⇐⇒ [〈y∗, y〉 > 0,∀y∗ ∈ C∗+]. (6)

The proof of the relations defined by (5) and (6) are based upon the separation theo-
rems ([7, 11]). Proposition 1 plays a crucial role in proving main results of this note.

Proposition 3 ([9]). Let g be a mapping from K into Y and u∗ ∈ C∗+. Let φ : K −→ R
be a mapping defined by φ(x) = 〈u∗, g(x)〉 for all x ∈ K. Then the following assertions
are valid:
(a) If g is C−convex (resp., C-concave), then φ is convex (resp., concave).
(b) If g is C-upper semicontinuous (resp., C-lower semicontinuous), then φ is u.s.c. (resp.,
l.s.c.).

Lemma 2. If g : K −→ Y is a C−lower semicontinuous mapping, then the set
A := {x ∈ K; g(x) /∈ intC} is closed in K.
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Proof. It suffices to prove that g−1(intC) is open. Let x ∈ g−1(intC). Hence g(x) ∈
intC and by Definition 2 and Remark 3 there exists a neighborhood U of x such that

g(U ∩K) ⊆ intC + C ⊆ intC.

On the other hand, there exists a neighborhood V of x such that V ⊆ U ∩K, so we have
V ⊆ g−1(intC) which implies that g−1(intC) is open.J

The following theorem plays a key role in the paper.

Theorem 1 ([5, 13]). Let K be a nonempty subset of a topological vector space X and
G : K −→ 2X be a multifunction with closed values such that the convex hull of every
finite subset {x1, x2, ..., xn} of X is contained in the corresponding union

⋃n
i=1G(xi) If

there exists x0 ∈ Ksuch that G(x0) is compact, then
⋂
x∈K G(x) 6= ∅.

We recall that the multifunction G satisfying the property in Theorem 1 is called a
KKM mapping. We also need the following minimax theorem (see, for instance, Jeyakumar
et al. [7] and Zeidler [16]).

Theorem 2. (Sion) Let A and B be convex subsets of some real topological vector spaces
with B compact, and let p : A×B −→ R. If p(., b) is lower semicontinuous and quasiconvex
(resp., convex) on A for all b ∈ B, and if p(a, .) is upper semicontinuous and quasiconcave
(resp., concave) on B for all a ∈ A, then

inf
a∈A

max
b∈B

p(a, b) = max
b∈B

inf
a∈A

p(a, b).

3. Existence results

In this section we present sufficient conditions which guarantee that the solution sets
of the problems introduced by the relations (1) and (2) are nonempty and compact. More-
over, we give some examples which show that the main theorems of this article are exten-
sions of the well known results in this area.

The following theorem is a vector generalization of Theorem 2.3 and Corollary 2.4 of
[6].

Theorem 3. Let K be a nonempty closed convex subset of a Hausdorff topological vector
space X , Y be a Hausdorff topological vector space and C be a closed convex cone in Y
with intC 6= ∅. Assume f : K × K −→ Y is a mapping and T : K −→ 2L(X,Y ) is a
multifunction with compact and convex values, i.e., T (x) is compact and convex for all
x ∈ K. Let u∗ ∈ C∗+, x̄ ∈ K and the following conditions hold:
(i) f(x̄, x̄) = 0,
(ii) for any fixed x ∈ K; f(x, .) : K −→ Y is C−convex and C−lower semicontinuous;
(iii) for all y ∈ K the following is satisfied

∀t ∈ (0, 1), inf
x∗∈T (xt)

〈u∗, f(x̄, y) + 〈x∗, y − x̄〉〉 ≥ 0 =⇒
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=⇒ supx∗∈T (x̄)〈u∗, f(x̄, y) + 〈x∗, y − x̄〉〉 ≥ 0,

where xt = (1− t)x̄+ ty;
(iv) 〈u∗, f(x̄, y) + 〈x∗, y − x̄〉〉 ≥ 0 for all y ∈ K and x∗ ∈ T (y).
Then SA is nonempty.

Proof. Rewrite condition (iv) as

〈u∗, f(x̄, y) + 〈x∗, y − x̄〉〉 ≥ 0 ∀y ∈ K, ∀x∗ ∈ T (y). (7)

Hence,we have

〈u∗, f(x̄, yt) + 〈x∗, yt − x̄〉〉 ≥ 0, ∀x∗ ∈ T (yt).

where yt = (1− t)x̄+ ty ∈ K for t ∈ (0, 1).

We claim that for any y ∈ K

〈u∗, f(x̄, y) + 〈x∗, y − x̄〉〉 ≥ 0, ∀ x∗ ∈ T (yt). (8)

Suppose, on the contrary, that the assertion is false. Then there exist t ∈ (0, 1) and
x∗t ∈ T (yt) such that 〈

u∗, f(x̄, y) + 〈x∗t , y − x̄〉
〉
< 0.

By (7), (ii) and Proposition 3 we obtain

0 ≤
〈
u∗, f(x̄, yt) + 〈x∗t , yt − x̄〉

〉
=

=
〈
u∗, f(x̄, (1− t)x̄+ ty)

〉
+
〈
u∗, 〈x∗t , (1− t)x̄+ ty − x̄〉

〉
≤

≤ (1− t)〈u∗, f(x̄, x̄)〉+ t〈u∗, f(x̄, y)〉+ t
〈
u∗, 〈x∗t , y − x̄〉

〉
≤

≤
〈
u∗, f(x̄, y) + 〈x∗t , y − x̄〉

〉
< 0,

which is a contradiction. Thus, our claim is verified. It follows from (8) that

inf
x∗∈T (yt)

〈
u∗, f(x̄, y) + 〈x∗, y − x̄〉

〉
≥ 0.

By condition (iv) we have

sup
x∗∈T (x̄)

〈
u∗, f(x̄, y) + 〈x∗, y − x̄〉

〉
≥ 0.

Thus

inf
y∈K

sup
x∗∈T (x̄)

〈
u∗, f(x̄, y) + 〈x∗, y − x̄〉

〉
≥ 0. (9)

It follows from (ii) that the mapping P : K × T (x̄) −→ R defined by

P (y, x∗) =
〈
u∗, f(x̄, y) + 〈x∗, y − x̄〉

〉
,
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is lower semicontinuous and convex on K and clearly it is upper semicontinuous and
concave on T (x̄). Then Theorem 2 and the relation (9) imply

max
x∗∈T (x̄)

inf
y∈K

〈
u∗, f(x̄, y) + 〈x∗, y − x̄〉

〉
= inf

y∈K
sup

x∗∈T (x̄)

〈
u∗, f(x̄, y) + 〈x∗, y − x̄〉

〉
≥ 0.

Hence there exists x∗ ∈ T (x̄) such that

inf
y∈K

〈
u∗, f(x̄, y) + 〈x∗, y − x̄〉

〉
≥ 0.

Therefore 〈
u∗, f(x̄, y) + 〈x∗, y − x̄〉

〉
≥ 0, ∀y ∈ K. (10)

It follows from the relation (5) that

f(x̄, y) + 〈x∗, y − x̄〉 ⊀ 0.

Because otherwise, if ∀u∗ ∈ C∗+

f(x̄, y) + 〈x∗, y − x̄〉 ∈ −intC,

then for all u∗ ∈ C∗+ we have

〈u∗, f(x̄, y) + 〈x∗, y − x̄〉〉 < 0,

which is a contradiction to (10) and so x̄ ∈ SA, and this completes the proof.J

Remark 4. One can check that Theorem 3 is still valid if we replace the conditions (i)
and (ii) by the conditions

f(x̄, x̄) ≤ f(x̄, y) and C − quasiconvexity.

By taking the mapping f equal to zero in Theorem 3 we obtain the following corollary
which is a vector version of Theorem 15 of [8] and Corollary 2.7 of [6] by relaxing upper
semiconinuity on T and coercivity condition.

Corollary 1. Let K be a nonempty closed convex subset of a Hausdorff topological vector
space X , Y be a Hausdorff topological vector space and C be a closed convex cone in Y
with intC 6= ∅. Let T : K −→ 2L(X,Y ) be a multifunction with compact and convex values.
If there exists x̄ ∈ K that satisfies the following conditions:

(i)

inf
x∗∈T (xt)

〈u∗, 〈x∗, y−x̄〉〉 ≥ 0, ∀(t, y) ∈ (0, 1)×K =⇒ supx∗∈T (x̄)〈u∗, f(x̄, y)+〈x∗, y−x̄〉〉 ≥ 0,

where xt = (1− t)x̄+ ty;

(ii) 〈u∗, f(x̄, y) + 〈x∗, y − x̄〉〉 ≥ 0 for all y ∈ K and x∗ ∈ T (y),
then there exist x ∈ K and x∗ ∈ T (x) such that 〈x∗, y − x〉 ≤ 0.
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The following example satisfies all the assumptions of Corollary 1 while it is not upper
semicontinuous. Hence it does not satisfy all the assumptions of Theorem 15 of [8] and
Corollary 2.7 of [6] .

Example 1. Let X = Y = R,K = [0, 1], C = [0,+∞) and

T (x) =

{
[0, 1

3 ] x = 0,
{1

2} 0 < x ≤ 1.

It is easy to check that T fulfils all the conditions of Corollary 1 with x̄ = 0.

The next result is an extension of Proposition 2.1 in [3]. Moreover, if we take f(x, y) =
0, then it is a vector version of Theorem 15 in [8].

Theorem 4. Let X be a reflexive Banach space. Let K be a nonempty convex set in the X
and K0 be weakly compact subset of K and Y be a locally convex space. Let f : K×K −→ Y
be a vector valued map and T : K −→ 2L(X,Y ) be a multifunction. Assume that the
following hypotheses hold:
(i)
′

for all x ∈ K, f(x, x) = 0;
(ii)

′
for all x ∈ K, T (x) is weakly compact and convex set and T is u.s.c on K;

(iii)
′

for all y ∈ K, f(., y) is C−concave and C−upper semicontinuous and for all x ∈ K,
f(x, .) is C−convex.
(iv)

′
for each x ∈ K \K0 there exists y ∈ K0 such that f(x, y) + 〈x∗, y − x〉 ≺ 0 for all

x∗ ∈ T (x);
(v) for all x, y ∈ K and t ∈ (0, 1), T (xt) ⊆ (1− t)T (x)− tT (y), where xt = (1− t)x+ ty.
Then SA is nonempty and compact.

Proof. Since K0 is weakly compact, then it is bounded and so there exists r > 0 such
that K0 ⊂ intBr, where Br ⊂ X is the closed ball with radius r, that is Br = {x ∈ X :
||x|| ≤ r}. Put Ω = K ∩Br. Define a multifunction G : Ω −→ 2X by

G(y) = {x ∈ Ω|
〈
u∗, f(x, y) + 〈x∗, y − x〉

〉
≥ 0, ∀x∗ ∈ T (y)}.

We claim thatG is a KKM mapping. Indeed, y ∈ G(y) for all y ∈ Ω.Hence, G(y) 6= ∅ for all
y ∈ Ω. Let y1 and y2 be arbitrary elements of Ω. We show that co{y1, y2} ⊂ G(y1)∪G(y2).
Let yt = ty1 + (1− t)y2 for all t ∈ [0, 1]. If t = 0 or t = 1, then there is nothing to prove.
Suppose, on the contrary, for some t ∈ (0, 1)

yt /∈ G(yi), ∀i ∈ {1, 2}.

Hence, yt ∈ Ω since Ω is convex. Then there exist x∗1 ∈ T (y1), x∗2 ∈ T (y2) such that〈
u∗, f(yt, yi) + 〈x∗i , yi − yt〉

〉
< 0, for i = 1, 2.

The relation (ii) and Proposition 3(a) imply the function 〈u∗, f(x, .)〉 is convex. Also, (i)
′

guarantees

0 =
〈
u∗, f(yt, ty1 + (1− t)y2) + 〈x∗1 + x∗2, (ty1 + (1− t)y2)− yt)〉

〉
≤
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≤ t
〈
u∗, f(yt, y1) + 〈x∗1, y1 − yt〉

〉
+ (1− t)

〈
u∗, f(yt, y2) + 〈x∗2, y2 − yt〉

〉
<

< 0,

which is a contradiction. Thus we have

yt ∈ G(y1) ∪G(y2), ∀t ∈ [0, 1],

and so
co{y1, y2} ⊂ G(y1) ∪G(y2).

By similar argument we can show that

co{y1, ..., yn} ⊂ ∪ni=1G(yi).

Using (iii)
′

and Proposition 3 (a), we obtain that G(y) is convex for all y ∈ Ω. For each
y ∈ Ω the set G(y) is a closed set. Because, assume that xn ∈ G(y) is a net which converges
to x. It follows from (iii)

′
and Proposition 3 (b) that, for all x∗ ∈ T (y),〈

u∗, f(x, y) + 〈x∗, y − x〉
〉
≥ lim sup

n−→∞

〈
u∗, f(xn, y) + 〈x∗, y − xn〉

〉
≥ 0,

and so x ∈ G(y). which implies that G(y) is a closed set for all y ∈ Ω. Since G(y) ⊂ Br
and X is a reflexive Banach space, G(y) is a weakly compact set, for all y ∈ Ω. Thus, G
is a KKM mapping. By Theorem 1, there exists ¯̄x ∈ Ω such that ¯̄x ∈ G(y) for all y ∈ Ω.
This implies that 〈

u∗, f(¯̄x, y) + 〈x∗, y − ¯̄x〉
〉
≥ 0, ∀y ∈ Ω, ∀x∗ ∈ T (y). (11)

It is straightforward to verify that ¯̄x satisfies all the assumptions of Theorem 3. It suffices
to prove the condition (iii) of it. To see this, suppose that y ∈ K is given and

inf
x∗∈T (xt)

〈
u∗, f(¯̄x, y) + 〈x∗, y − ¯̄x〉

〉
≥ 0, xt = (1− t)¯̄x+ ty.

Therefore 〈
u∗, f(¯̄x, y) + 〈x∗, y − ¯̄x〉

〉
≥ 0, ∀x∗ ∈ T (xt), ∀t ∈ (0, 1). (12)

By (v) there exist x∗1 ∈ T (¯̄x), x∗2 ∈ T (y) such that x∗ = (1− t)x∗1 − tx∗2. So we have

(1− t)
〈
u∗, f(¯̄x, y) + 〈x∗1, y − ¯̄x〉

〉
= t
〈
u∗, f(¯̄x, y) + 〈x∗2, y − ¯̄x〉

〉
+
〈
u∗, f(¯̄x, y) + 〈x∗, y − ¯̄x〉

〉
.

It follows from the relations (11) and (12) that〈
u∗, f(¯̄x, y) + 〈x∗1, y − ¯̄x〉

〉
≥ 0.

Since x∗1 ∈ T (¯̄x), we have

sup
x∗∈T (¯̄x)

〈u∗, f(¯̄x, y) + 〈x∗, y − ¯̄x〉〉 ≥ 0.
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Hence, x satisfies condition (iii) of Theorem 3. Then by Theorem 3 ¯̄x is a solution of the
problem defined by the relation (1), that is ¯̄x ∈ SA. This means

∃x∗ ∈ T (¯̄x), ∀y ∈ Ω f(¯̄x, y) + 〈x∗, y − ¯̄x〉 ⊀ 0. (13)

Combining this and (iv)
′

we get ¯̄x ∈ K0 ⊂ intBr. It remains to show that

∀y ∈ K f(¯̄x, y) + 〈x∗, y − ¯̄x〉 ⊀ 0. (14)

Suppose on the contrary f(¯̄x, y) + 〈x∗, y − ¯̄x〉 ≺ 0, for some y ∈ K. It is obvious that
yt = (1− t)¯̄x+ ty ∈ Ω for a sufficiently small t ∈ (0, 1). Hence (13) implies that

f(¯̄x, yt) + 〈x∗, yt − ¯̄x〉 ⊀ 0. (15)

It follows from (ii) that

(1− t)f(¯̄x, ¯̄x) + (1− t)〈x∗, ¯̄x− ¯̄x〉+ tf(¯̄x, y) + t〈x∗, y − ¯̄x〉 −
(
f(¯̄x, yt) + 〈x∗, yt − ¯̄x〉

)
∈ C.

Hence

−f(¯̄x, yt) + 〈x∗, yt − ¯̄x〉 ∈ −t
(
f(¯̄x, y) + 〈x∗, y − ¯̄x〉

)
+ C ⊆ intC + C ⊆ intC.

This implies that f(¯̄x, yt)+〈x∗, yt− ¯̄x〉 ≺ 0, which contradicts (15). Thus we have f(¯̄x, y)+
〈x∗, y − ¯̄x〉 ⊀ 0.
It is obvious from (iv)

′
that SA ⊆ K0. Now we prove that SA is closed.

SA = {x ∈ K; ∃x∗ ∈ T (x), ∀y ∈ K, f(x, y) + 〈x∗, y − x〉 /∈ −intC}.

Let {xi} be a net in SA convergent to x̄. Then there exists x∗i ∈ T (xi) such that

f(xi, y) + 〈x∗i , y − xi〉 /∈ −intC.

Since T (x̄) is compact, by Proposition 1 there exists a subnet x∗ik of x∗i such that

x∗ik −→ x∗,

and it follows from C−upper semicontinuity of f(., y) that

〈u∗, f(x̄, y) + 〈x∗, y − x̄〉〉 ≥ lim sup
k−→∞

〈u∗, f(xik , y) + 〈x∗ik , y − xik〉〉 ≥ 0,

which implies that f(x̄, y) + 〈x∗, y − x̄〉 /∈ −intC. Hence x̄ ∈ SA. J

Theorem 5. Let X be a topological vector space and Y be a locally convex space. Assume
the conditions (i),(ii) and (iii) of Theorem 3 and the condition (iv)

′
of Theorem 4 are

satisfied. Then the following assertions hold:



98 A.P. Farajzadeh, M. Mursaleen, A. Shafie

(a) For each y ∈ K, the set

{x ∈ K| max
x∗∈T (x)

〈u∗, f(x, y) + 〈x∗, x− y〉〉 ≥ 0,∀u∗ ∈ C∗},

is a closed set,

(b) If there exist a weakly compact subset K0 of K and x̄ ∈ K such that for each
x ∈ K \K0 one has

f(x, x̄) + 〈x∗, x− x̄〉 ≺ 0, x∗ ∈ T (x̄),

then SB is nonempty.

Proof. Let G : K −→ 2K be defined by

G(y) = {x ∈ K| max
x∗∈T (x)

〈u∗, f(x, y) + 〈x∗, x− y〉〉 ≥ 0, ∀u∗ ∈ C∗}, y ∈ K.

We claim that G(x̄) ⊂ K0. Otherwise there exists an x ∈ G(x̄) \K0. By (b),

f(x, x̄) + 〈x∗, x− x̄〉 ∈ −intC, ∀x∗ ∈ T (x̄).

Hence it follows from the relation (5) that〈
u∗, f(x, x̄) + 〈x∗, x− x̄〉

〉
< 0, ∀u∗ ∈ C∗\{0}.

Hence

max
x∗∈T (x)

〈
u∗, f(x, x̄) + 〈x∗, x− x̄〉

〉
< 0, ∀u∗ ∈ C∗\{0}.

This implies x /∈ G(x̄), which is a contradiction. Consequently, G(x̄) ⊆ K0 and since
K0 is weakly compact and by (a) is closed, we conclude that G(x̄) is weakly compact.
Proceeding as in the proof of Theorem 4 and using our assumptions, we get G is a KKM
mapping. Therefore G satisfies all the assumptions of Theorem1 and so the set ∩y∈KG(y)
is nonempty. Then there exists w ∈ ∩y∈KG(y), and since SB = ∩y∈KG(y) ,we deduce
that w ∈ SB. This completes the proof.J

The following result is a generalization of Lemma 2.1 in [6]. Also it is a vector version
and generalization of Lemma 2.1 of [3] with mild assumptions. Moreover, it improves the
corresponding result given in [1, 2] and the references therein.

Proposition 4. Assume that, for all y ∈ K, the function f(., y) is C−convex and
C−monotone. Then the solution set of the problem defined by (1) equals to the solution
set of the following problem:

Find x̄ ∈ K such that

∃x∗ ∈ T (x̄), ∀y ∈ K, f(y, x̄)− 〈x∗, y − x̄〉 � 0. (16)
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Proof. Suppose x̄ ∈ K is a solution of the problem defined by (16). Then there exists
x∗ ∈ T (x̄) such that

f(y, x̄)− 〈x∗, y − x̄〉 /∈ C, ∀y ∈ K.

Hence for all y ∈ K
f(yt, x̄)− 〈x∗, yt − x̄〉 /∈ C,

where yt = ty + (1− t)x̄. Since f(x, x) = 0 and f is C−convex, we get

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, x̄) =⇒ tf(yt, y) + (1− t)f(yt, x̄) ∈ C. (17)

Also

〈x∗, yt − x̄〉 = t〈x∗, y − x̄〉 =⇒ (1− t)〈x∗, yt − x̄〉 − t(1− t)〈x∗, y − x̄〉 = 0. (18)

Combining (17) and (18), we obtain

tf(yt, y) + (1− t){f(yt, x̄)− 〈x∗, yt − x̄〉}+ t(1− t)〈x∗, y − x̄〉 ∈ C ∀t ∈ [0, 1]. (19)

Using (17), (18) and (5), we have

tf(yt, y) + t(1− t)〈x∗, y − x̄〉 /∈ −intC =⇒ f(yt, y) + (1− t)〈x∗, y − x̄〉 /∈ −intC. (20)

We claim that

f(x̄, y) + 〈x∗, y − x̄〉 /∈ −intC.

Suppose that the claim is false. Then

f(x̄, y) + 〈x∗, y − x̄〉 ∈ −intC. (21)

It follows from the C−convexity of f(., y) that

f(yt, y) + (1− t)〈x∗, y − x̄〉 �
� tf(y, y) + (1− t)f(x̄, y) + (1− t)〈x∗, y − x̄〉 =

= (1− t)
(
f(x̄, y) + 〈x∗, y − x̄〉

)
.

Then

(1− t)
(
f(x̄, y) + 〈x∗, y − x̄〉

)
− [f(yt, y) + (1− t)〈x∗, y − x̄〉] ∈ C. (22)

Combining (22) and (21), we obtain

−
(
f(yt, y) + (1− t)〈x∗, y − x̄〉

)
∈ −(1− t)

(
f(x̄, y) + 〈x∗, y − x̄〉

)
+ C ⊆

⊆ intC + C = intC.

So (
f(yt, y) + (1− t)〈x∗, y − x̄〉

)
∈ −intC,
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which a contradiction to (22). Therefore f(x̄, y) + 〈x∗, y− x̄〉 /∈ −intC and x̄ is a solution
of problem (1).

Conversely, let x̄ ∈ K be a solution of the problem defined by (1). We show that x̄ is a
solution of the problem defined by (3). Indeed, suppose on the contrary that there exists
a point y ∈ K such that

f(y, x̄)− 〈x∗, y − x̄〉 ∈ intC. (23)

Since f is C−monotone, we have

f(x̄, y) + f(y, x̄) ∈ C =⇒ f(y, x̄) = −f(x̄, y)− v, (24)

for some v ∈ C. It follows from combining (24) and (23) that

−f(x̄, y)− v − 〈x∗, y − x̄〉 ∈ C =⇒
=⇒ −f(x̄, y)− 〈x∗, y − x̄〉 ∈ v + intC ⊆ C + intC = intC =⇒
=⇒ f(x̄, y) + 〈x∗, y − x̄〉 ∈ −intC,

which is contradicted by our assumption.J

Remark 5. If the conditions of Proposition 4 are satisfied and x̄ ∈ K is a solution of the
problem defined by (1), then the following equality holds:

max
x∈K

inf
u∗∈C∗

〈u∗, f(x, x̄)− 〈x∗, x− x̄〉〉 = 0. (25)

Indeed, by Proposition 4 we have

f(x, x̄)− 〈x∗, x− x̄〉 � 0, ∀x ∈ K,

and so the conclusion follows from the relation and(6) f(x̄, x̄) = 0.

Similarly, we have the following fact.

Remark 6. If the conditions of Proposition 4 are satisfied and x̄ ∈ K is a solution of the
problem defined by (1), then the following assertions are true:

min
u∗∈C∗

sup
x∈K
〈u∗, f(x̄, x) + 〈x∗, x− x̄〉〉 = 0,

and

min
u∗∈C∗\{0}

sup
x∈K
〈u∗, f(x̄, x) + 〈x∗, x− x̄〉〉 = 0.

The following example illustrates Remark 6.
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Example 2. Let X = Y = R,K = [0, 1] ⊂ X and C = [0,+∞). It is obvious that
C∗ = [0,+∞). If we take x̄ = 0, x∗ = 1. Define the mappings T and f by

T (x) =

{
[0, 1] 0 < x ≤ 1,
{1} x = 0.

and f(x, y) = ex − ey, respectively. Then it is easy to see that the assertions of Remark 6
hold. Indeed, we have

inf
u∗∈C∗\{0}

max
x∈K
〈u∗, f(x̄, x) + 〈x∗, x− x̄〉〉 =

= inf
u∗∈C∗\{0}

u∗ max
x∈[0,1]

〈f(x̄, x) + 〈x∗, x− x̄〉〉 = ( inf
u∗∈(0,∞)

u∗)(1− e0 + 0) = 0.
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