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Blow-up of Solutions for a Viscoelastic Equation with

Nonlinear Boundary Damping and Interior Source
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Abstract. In this paper we consider the viscoelastic wave equation with nonlinear boundary
damping −|yt(L, t)|

m−1yt(L, t) and interior source |y(t)|p−1y(t). We obtain two blow-up results
for the solution with negative initial energy as well as nonnegative initial energy.
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1. Introduction

In this paper, we shall study the following viscoelastic equation with nonlinear bound-
ary damping and interior source terms:



































ytt(x, t)− yxx(x, t) +

∫ t

0
g(t− s)yxxds = |y(x, t)|p−1y(x, t), (x, t) ∈ (0, L) × (0, T ),

y(0, t) = 0, yx(L, t)−

∫ t

0
g(t− s)yx(L, s)ds = −|yt(L, t)|

m−1yt(L, t), t ∈ [0, T ),

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ [0, L],

(1)
where (0, L) is a bounded open interval in R, m ≥ 1, p > 1.

In the absence of the viscoelastic term (g = 0), the wave equation with interior damping
term has been extensively studied and several results concerning existence, asymptotic
behavior and blow-up have been established. When m = 1, Levine [11, 12] proved that
the solution blows up in finite time with negative initial energy. Whenm > 1, Georgiev and
Todorova [10] extended this result and established a global existence result if m ≥ p and
a blow-up result if m < p for sufficiently large initial data. Later Messaoudi [20] improved
[10] by considering only negative initial energy. The wave equation with boundary source
term has also been extensively studied. Vitillaro [24] proved a global existence result when
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p ≤ m or the initial data are inside the potential well. In [28], Zhang and Hu proved the
decay result when the initial data are inside a stable set, and the blow-up result when p > m
and the initial data is inside an unstable set. For other related equations with various
source, we can also refer the reader to [1, 3, 4, 5, 7, 9, 13, 14, 15, 16, 17, 19, 22, 25, 26, 27]
and references therein.

In the presence of the viscoelastic term (g 6= 0), Messaoudi [21] studied the following
system:


















utt(x, t) −△u+

∫ t

0
g(t− s)△u(τ)dτ + aut|ut|

m−2 = bu|u|p−2, in Ω× (0,∞),

u = 0, on Γ× (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
(2)

and proved that any weak solution with negative initial energy blows up in finite time if
p > m, while the solutions exist globally for any initial data, in the appropriate space,
provided that m ≥ p. Cavalcanti et al. [6] studied (2) for m = 2 and a localized damping
a(x)ut. They obtained an exponential rate of decay by assuming that the kernel g is
of exponential decay. This work extended the result of Zuazua [29] in which the author
considered (2) with g = 0 and the linear damping is localized.

Recently, Feng et al. [8] considered problem (1) without the viscoelastic term and
obtained the blow-up results with one of the following conditions: (A) 2m < p + 1 and
E(0) < 0; (B) 2m ≥ p + 1, E(0) < 0, and L > 4p

(p−1)(p+1) . Later, Liu et al. [18] improved
theses results for the solution with nonnegative initial energy.

In this paper we consider problem (1) which contains the viscoelastic term. We are
interested in the interaction among the viscoelastic term

∫ t
0 g(t − s)yxxds, the boundary

damping −|yt(L, t)|
m−1yt(L, t) and the interior source |y(t)|p−1y(t). We obtain two blow-

up results for the solution with negative initial energy as well as nonnegative initial energy.
This paper is organized as follows. In Section 2, we present some notations needed for

our work and state our main blow-up results (see Theorem 2 and Theorem 3 below). In
Section 3, we give the proof of Theorem 2. Section 4 is dedicated to the proof of Theorem
3.

2. Notations and main results

As in [8], we introduce the notation ‖ · ‖q = ‖ · ‖Lq(0,L) and the Hilbert space

H1
left(0, L) := {u ∈ H1(0, L) : u(0) = 0}.

We define the following functionals:

E(t) =
1

2
‖yt(t)‖

2
2 +

1

2

(

1−

∫ t

0
g(s)ds

)

‖yx(t)‖
2
2 +

1

2
(g ◦ yx)(t)−

1

p+ 1
‖y(t)‖p+1

p+1, (3)

I(t) =

(

1−

∫ t

0
g(s)ds

)

‖yx(t)‖
2
2 + (g ◦ yx)(t)− ‖y(t)‖p+1

p+1, (4)
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where

(g ◦ v)(t) =

∫ t

0
g(t− τ)‖v(t) − v(τ)‖22dτ.

Then, we make the following assumptions on g:

g(0) > 0, 1−

∫

∞

0
g(s)ds = l > 0, g(t) ≥ 0, g′(t) ≤ 0, ∀t ≥ 0. (5)

By taking a derivative of (3), we get

E′(t) = −|yt(L, t)|
m+1 +

1

2
(g′ ◦ yx)(t)−

1

2
g(t)‖yx(t)‖

2
2 ≤ 0, ∀t ≥ 0.

Next, we state the local existence theorem, which can be proved by adopting the
arguments of [2, 10].

Theorem 1. Assume that (y0, y1) ∈ H1
left(0, L)×L2(0, L) and g is a C1 function satisfying

(5). Then problem (1) has a unique local solution y(x, t) satisfying

y(x, t) ∈ C(0, Tm;H1
left(0, L)), yt(x, t) ∈ C(0, Tm;L2(0, L)), yt(L, t) ∈ Lm+1(0, Tm)

for some Tm > 0.

Now, we state our main results as follows.

Theorem 2. Let y(x, t) be a solution of problem (1). Assume that 2m < p+ 1, (5) and
∫

∞

0
g(s)ds <

p− 1

p− 1 + [1/(p + 1)]
, (6)

hold, and the initial energy satisfies E(0) < 0, where

E(0) =
1

2
‖y1‖22 +

1

2
‖y0x‖

2
2 −

1

p+ 1
‖y0‖p+1

p+1.

Then the solution blows up in finite time.

Set

E1 :=

(

1

2
−

1

p+ 1

)

α0l, α0 :=

(

l

Cp+1
∗

)
2

p−1

, (7)

where C∗ is the optimal constant of the Sobolev embedding ‖y‖p+1 ≤ C∗‖yx‖2, for any
y ∈ H1

left(0, L). We have the following result.

Theorem 3. Let y(x, t) be a solution of problem (1). Assume that 2m < p+1, I(0) < 0,
(5) and

∫

∞

0
g(s)ds <

p− 1

p− 1 + 1/[(1 − ηθ)2(p− 1) + 2(1− ηθ)]
, (8)

hold, where η = 2
(p+1)−θ(p−1) ∈ (0, 1). Suppose that for any fixed 0 < θ < 1, 0 ≤ E(0) <

θE1. Then the solution blows up in finite time.
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3. Proof of Theorem 2

In this section, we consider the blow-up result in the case of E(0) < 0. Our proof tech-
nique follows the arguments of [8, 21], with some modifications needed for our problems.

Lemma 1. Let y(x, t) be a solution of problem (1). Assume that E(0) < 0 and 2 ≤ s ≤
p+ 1. Then there exists a positive constant C > 0 such that

‖y‖sp+1 ≤ C(‖yx‖
2
2 + ‖y‖p+1

p+1). (9)

Proof. If ‖y‖p+1 ≤ 1, then it follows from Sobolev embedding and the fact E(t) ≤
E(0) < 0 that

‖y‖sp+1 ≤ ‖y‖2p+1 ≤ C‖yx‖
2
2 ≤ C‖y‖p+1

p+1.

If ‖y‖p+1 > 1, then

‖y‖sp+1 ≤ ‖y‖p+1
p+1. (10)

Therefore (9) follows.◭

Set

H(t) := −E(t). (11)

As a result of (3) and (9), we have

Lemma 2. ([21]) Let the assumptions of Lemma 1 hold. Then we have

‖y‖sp+1 ≤ C(−H(t)− ‖yt‖
2
2 − (g ◦ yx)(t) + ‖y‖p+1

p+1), for all t ∈ [0, T ),

for any y(·, t) ∈ H1
left(0, L).

Taking the conditions m ≥ 1, p > 1 and 2m < p + 1 into account, it follows that
2

p+1 ,
m

p+1−m < 1. As in [8], we can choose a constant r such that

0 < max

{

2

p+ 1
,

m

p+ 1−m

}

< r < 1. (12)

Then we infer that

2 ≤ m+ 1,m
r + 1

r
,
p+ 1

2
(1 + r) < p+ 1. (13)

Lemma 3 ([8]). Let y(x, t) be a solution of problem (1) with E(0) < 0. Then there exists
a positive constant C such that

|y(L, t)|m+1 ≤ C

[

‖y‖m+1
p+1 + ‖y‖

m r+1

r

p+1 + ‖y‖
p+1

2
(1+r)

p+1

]

, (14)

for all t ∈ [0,+∞).
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Define a functional L(t) as

L(t) := H1−σ(t) + ε

∫ L

0
y(t)yt(t)dx, (15)

for ε small to be chosen later and

0 < σ < min

{

p− 1

2(p + 1)
,

p−m

m(p+ 1)
,
1

m
−

1 + r

r(p+ 1)
,
1

m
−

1 + r

2m

}

, (16)

where r is defined in (12). Then we have the following lemma.

Lemma 4 ([8]). Let y(x, t) be a solution of problem (1) with E(0) < 0 and 2m < p + 1.
Then there exists a positive constant C such that

Hσm(t)|y(L, t)|m+1 ≤ C‖y(t)‖p+1
p+1, (17)

for all t ∈ [0,+∞).

Now we are ready to prove our first result.
Proof. (Proof of Theorem 2) Taking a derivative of (15) yields

L′(t) ≥(1− σ)H−σ(t)|yt(L, t)|
m+1 + ε

∫ L

0
[y2t − |yx|

2](x, t)dx+ ε

∫ L

0
|y(t)|p+1dx−

− ε|yt(L, t)|
m|y(L, t)|+ ε

∫ t

0
g(t− τ)

∫ L

0
yx(t)[yx(τ)− yx(t)]dxdτ+

+ ε

∫ t

0
g(t− τ)‖yx(t)‖

2
2dτ.

Using Schwarz inequality, we obtain

L′(t) ≥(1− σ)H−σ(t)|yt(L, t)|
m+1 + ε

∫ L

0
[y2t − |yx|

2](x, t)dx+ ε

∫ L

0
|y(t)|p+1dx−

− ε|yt(L, t)|
m|y(L, t)| − ε

∫ t

0
g(t− τ)‖yx(t)‖2‖yx(τ)− yx(t)‖2dτ+

+ ε

∫ t

0
g(t− τ)‖yx(t)‖

2
2dτ. (18)

By using Young’s inequality, (3) and (11), we obtain from (18)

L′(t) ≥(1− σ)H−σ(t)|yt(L, t)|
m+1 + ε

∫ L

0
y2t (x, t)dx− ε

(

1−

∫ t

0
g(s)ds

)

‖yx(t)‖
2
2+

+ ε

[

(p + 1)H(t) +
p+ 1

2
‖yt(t)‖

2
2 +

p+ 1

2

(

1−

∫ t

0
g(s)ds

)

‖yx(t)‖
2
2+

+
p+ 1

2
(g ◦ yx)(t)

]

− ε|yt(L, t)|
m|y(L, t)| − εβ(g ◦ yx)(t)−

ε

4β

∫ t

0
g(s)ds‖yx(t)‖

2
2 ≥
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≥(1− σ)H−σ(t)|yt(L, t)|
m+1 + ε

(

1 +
p+ 1

2

)
∫ L

0
y2t (x, t)dx+ ε(p + 1)H(t)+

+ ε

(

p+ 1

2
− β

)

(g ◦ yx)(t)− ε|yt(L, t)|
m|y(L, t)|+

+ ε

[(

p+ 1

2
− 1

)

−

(

p+ 1

2
− 1 +

1

4β

)
∫ t

0
g(s)ds

]

‖yx(t)‖
2
2, (19)

for some number β with 0 < β < p+1
2 . Since (6) holds, (19) reduces to

L′(t) ≥(1− σ)H−σ(t)|yt(L, t)|
m+1 + ε

(

1 +
p+ 1

2

)
∫ L

0
y2t (x, t)dx+ ε(p + 1)H(t)+

+ εa1(g ◦ yx)(t) + εa2‖yx(t)‖
2
2 − ε|yt(L, t)|

m|y(L, t)|,

where

a1 =
p+ 1

2
− β > 0, a2 =

p+ 1

2
− 1−

(

p+ 1

2
− 1 +

1

4β

)
∫ t

0
g(s)ds > 0.

Using Young’s inequality, we have

L′(t) ≥(1− σ)H−σ(t)|yt(L, t)|
m+1 + ε

(

1 +
p+ 1

2

)
∫ L

0
y2t (x, t)dx+ ε(p + 1)H(t)+

+ εa1(g ◦ yx)(t) + εa2‖yx(t)‖
2
2 −

mε

m+ 1
δ−

m+1

m |yt(L, t)|
m+1−

−
ε

m+ 1
δm+1|y(L, t)|m+1.

If we let δm+1 = k−mHσm, i.e., δ−
m+1

m = kH−σ, k > 0 to be determined later, then

L′(t) ≥

(

1− σ −
kmε

m+ 1

)

H−σ(t)|yt(L, t)|
m+1 + ε

(

1 +
p+ 1

2

)
∫ L

0
y2t (x, t)dx+

+ ε(p + 1)H(t) + εa1(g ◦ yx)(t) + εa2‖yx(t)‖
2
2 −

k−mε

m+ 1
Hσm(t)|y(L, t)|m+1.

It follows from Lemma 4 that

L′(t) ≥

(

1− σ −
kmε

m+ 1

)

H−σ(t)|yt(L, t)|
m+1 + ε

(

1 +
p+ 1

2

)
∫ L

0
y2t (x, t)dx+

+ ε(p + 1)H(t) + εa1(g ◦ yx)(t) + εa2‖yx(t)‖
2
2 −

Ck−mε

m+ 1
‖y(t)‖p+1

p+1. (20)

By noting that

H(t) ≥
1

p+ 1
‖y(t)‖p+1

p+1 −
1

2
‖yt(t)‖

2
2 −

1

2
‖yx(t)‖

2
2 −

1

2
(g ◦ yx)(t),
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and writing p+ 1 = 2a3 + (p+ 1− 2a3), where a3 = min{a1, a2}, (20) becomes

L′(t) ≥

(

1− σ −
kmε

m+ 1

)

H−σ(t)|yt(L, t)|
m+1 + ε

(

1 +
p+ 1

2
− a3

)

‖yt(t)‖
2
2+

+ ε(a1 − a3)(g ◦ yx)(t) + ε(a2 − a3)‖yx(t)‖
2
2 + ε[(p + 1)− 2a3]H(t)+

+ ε

(

2a3
p+ 1

−
Ck−m

m+ 1

)

‖y(t)‖p+1
p+1. (21)

At this point, choosing k large enough, we have (since 1+ p+1
2 −a3 > 0 and (p+1)−2a3 > 0)

L′(t) ≥

(

1− σ −
kmε

m+ 1

)

H−σ(t)|yt(L, t)|
m+1 + εγ[H(t) + ‖yt(t)‖

2
2 + ‖y(t)‖p+1

p+1], (22)

where γ > 0 is the minimum of the coefficients of H(t), ‖yt(t)‖
2
2, and ‖y(t)‖p+1

p+1 in (21).
Once k is fixed, we pick ε small enough so that

1− σ −
kmε

m+ 1
≥ 0,

and

L(0) = H1−σ(0) + ε

∫ L

0
y0(x)y1(x)dx > 0.

Therefore (22) takes the form

L′(t) ≥ εγ[H(t) + ‖yt(t)‖
2
2 + ‖y(t)‖p+1

p+1].

Consequently, we have

L(t) ≥ L(0) > 0, for all t ≥ 0.

We now estimate

∣

∣

∣

∣

∫ L

0
y(t)yt(x, t)dx

∣

∣

∣

∣

≤ ‖y(t)‖2‖yt(t)‖2 ≤ C‖y(t)‖p+1‖yt(t)‖2.

Again Young’s inequality gives us

∣

∣

∣

∣

∫ L

0
y(t)yt(x, t)dx

∣

∣

∣

∣

1/(1−σ)

≤ C[‖y(t)‖
µ/(1−σ)
p+1 + ‖yt(t)‖

θ/(1−σ)
2 ], (23)

for 1/µ+1/θ = 1. We take θ = 2(1−σ) to get µ/(1−σ) = 2/(1− 2σ) ≤ p+ 1. Therefore
(23) becomes

∣

∣

∣

∣

∫ L

0
y(t)yt(x, t)dx

∣

∣

∣

∣

1/(1−σ)

≤ C[‖y(t)‖sp+1 + ‖yt(t)‖
2
2],
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where s = 2/(1 − 2σ) ≤ p+ 1. By using Lemma 2 we obtain

∣

∣

∣

∣

∫ L

0
y(t)yt(x, t)dx

∣

∣

∣

∣

1/(1−σ)

≤ C[H(t) + ‖y(t)‖p+1
p+1 + ‖yt(t)‖

2
2],

for all t ≥ 0. Therefore we have

L1/(1−σ)(t) ≤ 21/(1−σ)

(

H(t) +

∣

∣

∣

∣

∫ L

0
y(t)yt(x, t)dx)

∣

∣

∣

∣

1/(1−σ)
)

≤

≤ C[H(t) + ‖y(t)‖p+1
p+1 + ‖yt(t)‖

2
2], (24)

for all t ≥ 0.
By combining (22) and (24) we arrive at

L′(t) ≥ ΓL1/(1−σ)(t), for all t ≥ 0, (25)

where Γ is a positive constant depending only on εγ. A simple integration of (25) over
(0, t) then yields

Lσ/(1−σ)(t) ≥
1

L−σ/(1−σ)(0)− Γtσ/(1− σ)
. (26)

Therefore (26) shows that L(t) blows up in time

T ∗ ≤
1− σ

Γσ[L(0)]σ/(1−σ)
.

This completes the proof.◭

4. Proof of Theorem 3

In this section, we shall combine the frameworks of [18] to improve the former blow-up
result to the case of 0 ≤ E(0) < θE1.

Lemma 5. Let y(x, t) be a solution of problem (1) with 0 ≤ E(0) < θE1 and I(0) < 0.
Then there exists a positive constant 0 < η < 1 such that

E1 < η
p− 1

2(p + 1)
‖y(x, t)‖p+1

p+1, ∀ t > 0. (27)

Proof. We adopt the manner which was first introduced in [23]. From (3) and Sobolev
embedding, we have

E(t) ≥
l

2
‖yx‖

2
2 −

1

p+ 1
‖y‖p+1

p+1 ≥
l

2
‖yx‖

2
2 −

Cp+1
∗

p+ 1
‖yx‖

p+1
2 .

Let h(ξ) = l
2ξ −

Cp+1
∗

p+1 ξ
p+1

2 . Then

E(t) ≥ h(ξ) with ξ = ‖yx‖
2
2.
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It is easy to see that h(ξ) is strictly increasing on [0, α0), strictly decreasing on (α0,+∞)
and takes its maximum value E1 at α0.

Since I(0) < 0, we have

l‖y0x‖
2
2 < ‖y0x‖

2
2 < ‖y0‖p+1

p+1 ≤ Cp+1
∗

‖y0x‖
p+1
2 ,

which leads to
‖y0x‖

2
2 > α0, for α0 defined in (7).

Furthermore, since
E1 > E(0) ≥ E(t) ≥ h(‖yx‖

2
2), ∀ t ≥ 0,

we can get that there exists no time t∗ such that ‖yx(t
∗)‖22 = α0. By the continuity of

‖yx‖
2
2, we obtain

‖yx‖
2
2 > α0, ∀ t ≥ 0.

On the other hand, we have

1

p+ 1
‖y‖p+1

p+1 ≥ −E(0) +
l

2
‖yx‖

2
2 > −θE1 +

l

2
α0 =

(

p+ 1

p− 1
− θ

)

E1,

which gives

E1 <
p− 1

2(p + 1)

2

(p+ 1)− θ(p− 1)
‖y‖p+1

p+1.

Taking η = 2
(p+1)−θ(p−1) ∈ (0, 1), we get the validity of (27).◭

Set
H1(t) = θE1 − E(t).

Then it is clear that H1(t) is increasing, H1(t) ≥ H1(0) > 0 and

H1(t) ≤
θη(p− 1) + 2

2(p + 1)
‖y‖p+1

p+1. (28)

Lemma 6. Under the assumptions of Lemma 5, there exists a positive constant C such
that

‖y‖sp+1 ≤ C‖y‖p+1
p+1,

for any 2 ≤ s ≤ p+ 1.

Proof. If ‖y‖p+1
p+1 ≥ 1, then ‖y‖sp+1 ≤ C‖y‖p+1

p+1, since s ≤ p + 1. If ‖y‖p+1
p+1 < 1, then

‖y‖sp+1 ≤ ‖y‖2p+1, since 2 ≤ s. By using Sobolev embedding inequality, (3), and Lemma
5, we have

‖y‖2p+1 ≤ C∗‖yx‖
2
2 ≤ C

(

E(t) + ‖y‖p+1
p+1

)

≤ C
(

E1 + ‖y‖p+1
p+1

)

≤ C‖y‖p+1
p+1.

This finishes the proof.◭

Similar to the proof of Theorem 2, we can prove the following lemmas.
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Lemma 7. Let the assumptions of Lemma 5 hold. Then we have

‖y‖sp+1 ≤ C(−H1(t)− ‖yt‖
2
2 − (g ◦ yx)(t) + ‖y‖p+1

p+1), for all t ∈ [0, T ),

for any y(·, t) ∈ H1
left(0, L).

We choose a constant r such that

0 < max

{

2

p+ 1
,

m

p+ 1−m

}

< r < 1.

Then we infer that

2 ≤ m+ 1,m
r + 1

r
,
p+ 1

2
(1 + r) < p+ 1.

Lemma 8. Under the assumptions of Lemma 5, there exists a positive constant C such
that

|y(L, t)|m+1 ≤ C

[

‖y‖m+1
p+1 + ‖y‖

m r+1

r

p+1 + ‖y‖
p+1

2
(1+r)

p+1

]

.

Set

L1(t) = H1−σ
1 (t) + ε

∫ L

0
y(t)yt(t)dx, (29)

for ε small to be chosen later and

0 < σ < min

{

p− 1

2(p + 1)
,

p−m

m(p+ 1)
,
1

m
−

1 + r

r(p+ 1)
,
1

m
−

1 + r

2m

}

.

Then we have the following lemma.

Lemma 9. Under the assumptions of Lemma 5, there exists a positive constant C such
that

Hσm
1 (t)|y(L, t)|m+1 ≤ C‖y‖p+1

p+1,

for any 2m < p+ 1.

Now we are ready to prove our second main result.
Proof. (Proof of Theorem 3) Taking a derivative of (29) yields

L′

1(t) ≥(1− σ)H−σ
1 (t)|yt(L, t)|

m+1 + ε

∫ L

0
[y2t − |yx|

2](x, t)dx+ ε

∫ L

0
|y(t)|p+1dx−

− ε|yt(L, t)|
m|y(L, t)|+ ε

∫ t

0
g(t− τ)

∫ L

0
yx(t)[yx(τ)− yx(t)]dxdτ+

+ ε

∫ t

0
g(t− τ)‖yx(t)‖

2
2dτ.

By using Schwarz and Young’s inequality, we have

L′

1(t) ≥(1− σ)H−σ
1 (t)|yt(L, t)|

m+1 + ε

∫ L

0
y2t (x, t)dx− ε

(

1−

∫ t

0
g(s)ds

)

‖yx(t)‖
2
2+
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+ ε

[

(p + 1)H1(t) +
p+ 1

2
‖yt(t)‖

2
2 +

p+ 1

2

(

1−

∫ t

0
g(s)ds

)

‖yx(t)‖
2
2+

+
p+ 1

2
(g ◦ yx)(t) − (p + 1)θE1

]

− ε|yt(L, t)|
m|y(L, t)| − εβ1(g ◦ yx)(t)−

−
ε

4β1

∫ t

0
g(s)ds‖yx(t)‖

2
2 ≥

≥(1− σ)H−σ
1 (t)|yt(L, t)|

m+1 + ε

(

1 +
p+ 1

2

)
∫ L

0
y2t (x, t)dx+ ε(p + 1)H1(t)−

− ε(p + 1)θE1 + ε

[(

p+ 1

2
− 1

)

−

(

p+ 1

2
− 1 +

1

4β1

)
∫ t

0
g(s)ds

]

‖yx(t)‖
2
2+

+ ε

(

p+ 1

2
− β1

)

(g ◦ yx)(t)− ε|yt(L, t)|
m|y(L, t)| ≥

≥(1− σ)H−σ
1 (t)|yt(L, t)|

m+1 + ε

(

1 +
p+ 1

2

)
∫ L

0
y2t (x, t)dx+ ε(p + 1)H1(t)+

+ ε

[

(1− ηθ)

(

p+ 1

2
− 1

)

−

(

(1− ηθ)

(

p+ 1

2
− 1

)

+
1

4β1

)
∫ t

0
g(s)ds

]

‖yx(t)‖
2
2+

+ ε

[

(1− ηθ)

(

p+ 1

2
− 1

)

+ (1− β1)

]

(g ◦ yx)(t)− ε|yt(L, t)|
m|y(L, t)|, (30)

for some number β1 with 0 < β1 < (1− ηθ)(p+1
2 − 1) + 1.

Since (8) holds, (30) reduces to

L′

1(t) ≥(1− σ)H−σ
1 (t)|yt(L, t)|

m+1 + ε

(

1 +
p+ 1

2

)
∫ L

0
y2t (x, t)dx+ ε(p + 1)H1(t)+

+ εb1(g ◦ yx)(t) + εb2‖yx(t)‖
2
2 − ε|yt(L, t)|

m|y(L, t)|,

where

b1 = (1− ηθ)

(

p+ 1

2
− 1

)

+ (1− β1) > 0,

b2 = (1− ηθ)

(

p+ 1

2
− 1

)

−

(

(1− ηθ)

(

p+ 1

2
− 1

)

+
1

4β1

)
∫ t

0
g(s)ds > 0.

Following the steps in the proof of Theorem 2, we get

L′

1(t) ≥

(

1− σ −
kmε

m+ 1

)

H−σ
1 (t)|yt(L, t)|

m+1 + ε

(

1 +
p+ 1

2

)
∫ L

0
y2t (x, t)dx+

+ ε(p + 1)H1(t) + εb1(g ◦ yx)(t) + εb2‖yx(t)‖
2
2 −

Ck−mε

m+ 1
‖y(t)‖p+1

p+1.

The remaining part is similar to the proof of Theorem 2, so we omit it.◭
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