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Boundedness of Generalized Fractional Integral Opera-
tors From the Morrey Space L1,φ(X;µ) to the Campanato
Space L1,ψ(X;µ) Over Non-doubling Measure Spaces

D.I. Hakim, Y. Sawano∗, T. Shimomura

Abstract. The present paper supplements our earlier works. Our goal in the present paper is
to establish the boundedness of generalized fractional integral operators from the Morrey space
L1,φ(X;µ) to the Campanato space L1,ψ(X;µ) over non-doubling measure spaces (X, d, µ). What
is new in the present paper is that µ satisfies a minimal condition; 0 = µ({x}) < µ(B(x, r)) < ∞
for all x ∈ X and r > 0. We first review some elementary facts on the fractional integral operators,
generalized Morrey spaces, and analysis on metric measure spaces.
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1. Introduction

We consider the modified fractional integral operator Ĩρ,µ,τ , which we define in (2)
below, on a connected separable metric measure space (X, d, µ) to supplement our recent
works [6, 28] in this paper, where ρ and τ denote its generalized order and its modification
parameter, respectively. By B(x, r) we denote the open ball centered at x ∈ X of radius
r > 0. We write d(x, y) for the distance between the points x and y in X. For simplicity,
for any x ∈ X and any r > 0, we assume

µ({x}) = 0 < µ(B(x, r)) <∞. (1)

The linear operator Ĩρ,µ,τ acts on the generalized Morrey space L1,φ(X;µ), whose norm
is given by (5) below. We aim to justify the condition on the order function ρ proposed in
our earlier papers [6, 28]. Define the modified fractional integral operator of generalized
order ρ with modification parameter τ by:

Ĩρ,µ,τf(x) ≡
∫
X\{x}

K(x, y)f(y) dµ(y), (2)
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where a ball B = B(x0, 1) with the basepoint x0 ∈ X is fixed and the integral kernel is
given by:

K(x, y) ≡ ρ(d(x, y))

µ(B(x, τd(x, y)))
− ρ(d(x0, y))

µ(B(x0, τd(x0, y)))
χX\B(y) (x, y ∈ X).

From the viewpoint of applications, it is natural to postulate some other weak conditions
proposed by Pérez [22]: ∫ 1

0

ρ(t)

t
dt <∞, (3)

sup
r/2≤s≤r

ρ(s) ≤ Cρ
∫ k2r

k1r

ρ(t)

t
dt (r > 0) (4)

for some Cρ > 0 and 0 < k1 < k2 ≤ 2k1 < ∞. We denote the set of all the functions
satisfying (3) and (4) by G0.

Next, we define the generalized Morrey space L1,φ(X;µ) and generalized Campanato
spaces L1,φ(X;µ). For a function φ : (0,∞) → (0,∞), let the generalized Morrey space
L1,φ(X;µ) be the set of all functions f ∈ L1

loc(X;µ) such that

‖f‖L1,φ(X;µ) ≡ sup
z∈X, r>0

1

φ(r)µ(B(z, 2r))

∫
B(z,r)

|f(x)| dµ(x) <∞, (5)

and let the generalized Campanato space L1,φ(X;µ) be the set of all functions f ∈
L1
loc(X;µ) such that

‖f‖L1,φ(X;µ) ≡ sup
z∈X, r>0

inf
cB(z,r)∈C

1

φ(r)µ(B(z, 18r))

∫
B(z,r)

|f(x)− cB(z,r)| dµ(x) <∞.

There are various conditions on φ. According to the observation by Nakai [13, p.446], it
is standard to consider the following classes G and G1 as conditions on φ: Let G be the
set of all functions from (0,∞) to itself with the doubling condition; that is, there exists
a constant cφ ≥ 1 such that

1

cφ
≤ φ(r)

φ(s)
≤ cφ for r, s > 0 with

1

2
≤ r

s
≤ 2. (6)

Let G1 be the set of all almost decreasing functions in G. Remark that we deal with three
classes G,G0,G1 in this paper.

Here we verify that the integral inequality (8) below is natural by establishing the
boundedness of the generalized modified fractional integral operator Ĩρ,µ,τ from the gen-
eralized Morrey spaces L1,φ(X;µ) to the generalized Campanato space L1,ψ(X;µ) over
non-doubling metric measure spaces.
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Theorem 1. Let ε > 0. Let ρ ∈ G0, φ ∈ G1, and ψ ∈ G1. If, in addition, there exists a
constant C > 0 such that∣∣∣∣ ρ(d(z, y))

µ(B(z, 4d(z, y)))
− ρ(d(x, y))

µ(B(x, 4d(x, y)))

∣∣∣∣ ≤ C (d(x, z)

d(y, z)

)ε ρ(d(z, y))

µ(B(z, 4d(z, y)))
, (7)

for all x, y, z ∈ X with 2d(x, z) < d(y, z) and there exists a constant C ′ > 0 such that

φ(r)

∫ r

0

ρ(t)

t
dt+ rε

∫ ∞
r

ρ(t)φ(t)

t1+ε
dt ≤ C ′ψ(r) (r > 0), (8)

then Ĩρ,µ,4 is bounded from L1,φ(X;µ) to L1,ψ(X;µ).

This result extends [16, Theorem 3.3] to a metric measure setting. Thus, we can say
that the underlying metric measure space (X, d, µ) does not affect the condition on φ, ψ,
and ρ. Remark also that the metric measure space (X, d, µ) does not satisfy the doubling
condition µ(B(x, 2r)) ≤ Cµ(B(x, r)); we overcome this disadvantage by introducing a
parameter τ .

Now let us investigate the relationship between the operator Ĩρ,µ,τ and the ones ap-
pearing in our earlier papers. The authors in [6] investigated the boundedness property
of the generalized Riesz potential Iρ given by:

Iρf(x) ≡
∫
Rn

ρ(|x− y|)
|x− y|n

f(y) dy (x ∈ X).

The authors in [6] obtained some necessary and sufficient conditions on the boundedness
of Iρ on generalized Morrey spaces. A natural passage to the metric measure setting is
the following generalized Riesz potential Iρ,µ,τ defined by:

Iρ,µ,τf(x) ≡
∫
X\{x}

ρ(d(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y) (x ∈ X).

To investigate the super-critical case, we consider the modified version (2).
We organize the remaining part of the present paper as follows: Section 2 is dedicated

to the proof of Theorem 1. In Section 3, we overview the recent motivation of generalization
we made in the present paper. In Section 3.1, we consider why the doubling metric measure
spaces are not sufficient. We explain why we need to introduce the function φ in Section
3.2. We survey the researches on the boundedness of Iρ on generalized Morrey spaces in
Section 3.3. Finally, in Section 3.4, we present examples of ρ in the context of the partial
differential equations.

2. Proof of Theorem 1

Let z ∈ X, r > 0, and f ∈ L1,φ(X;µ) be fixed. We have to show that

1

µ(B(z, 18r))

∫
B(z,r)

|Ĩρ,µ,4f(x)− cB| dµ(x) ≤ Cψ(r)‖f‖L1,φ(X;µ), (9)
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for some constant cB = cB(z,r).
To this end, we let f1 ≡ χB(z,4r)f and f2 ≡ f − f1. Define

cB,1 ≡ −
∫
B(z,4r)

ρ(d(x0, y))

µ(B(x0, 4d(x0, y)))
χX\B(y)f(y) dµ(y),

cB,2 ≡ Ĩρ,µ,4f2(z) and cB ≡ cB,1 + cB,2.

We claim that cB does the job by proving that

1

µ(B(z, 18r))

∫
B(z,r)

|Ĩρ,µ,4f1(x)− cB,1| dµ(x) ≤ Cψ(r)‖f‖L1,φ(X;µ), (10)

and that

1

µ(B(z, 18r))

∫
B(z,r)

|Ĩρ,µ,4f2(x)− cB,2| dµ(x) ≤ Cψ(r)‖f‖L1,φ(X;µ). (11)

First we deal with f1. We have

1

µ(B(z, 18r))

∫
B(z,r)

|Ĩρ,µ,4f1(x)− cB,1| dµ(x) ≤

≤ 1

µ(B(z, 18r))

∫
B(z,r)

(∫
B(z,4r)

ρ(d(x, y))

µ(B(x, 4d(x, y)))
|f(y)| dµ(y)

)
dµ(x) ≤

≤ 1

µ(B(z, 18r))

∫
B(z,r)

(∫
B(x,5r)

ρ(d(x, y))

µ(B(x, 4d(x, y)))
|f(y)| dµ(y)

)
dµ(x).

Let us concentrate on the inner integral. We calculate that∫
B(x,5r)

ρ(d(x, y))

µ(B(x, 4d(x, y)))
|f(y)| dµ(y) ≤ (12)

≤
∞∑
k=1

∫
B(x,24−kr)\B(x,23−kr)

ρ(d(x, y))

µ(B(x, 4d(x, y)))
|f(y)| dµ(y) ≤

≤
∞∑
k=1

(
sup

t∈[23−kr,24−kr]
ρ(t)

)
1

µ(B(x, 25−kr))

∫
B(x,24−kr)

|f(y)| dµ(y).

Meanwhile ∫
B(z,r)

(
1

µ(B(x, 25−kr))

∫
B(x,24−kr)

|f(y)| dµ(y)

)
dµ(x) =

=

∫
B(z,r)

(
1

µ(B(x, 25−kr))

∫
X
χB(x,24−kr)(y)|f(y)| dµ(y)

)
dµ(x) =

=

∫
X

(∫
B(z,r)

1

µ(B(x, 25−kr))
χB(x,24−kr)(y)|f(y)| dµ(x)

)
dµ(y).
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Note that if d(x, y) < 24−kr, then B(x, 25−kr) ⊃ B(y, 24−kr). Thus∫
B(z,r)

(
1

µ(B(x, 25−kr))

∫
B(x,24−kr)

|f(y)| dµ(y)

)
dµ(x) ≤

≤
∫
X

(
1

µ(B(y, 24−kr))

∫
B(z,r)

χB(x,24−kr)(y)|f(y)| dµ(x)

)
dµ(y) =

=

∫
X

(
1

µ(B(y, 24−kr))

∫
B(z,r)

χB(y,24−kr)(x)|f(y)| dµ(x)

)
dµ(y) =

=

∫
X

µ(B(z, r) ∩B(y, 24−kr))

µ(B(y, 24−kr))
|f(y)| dµ(y).

Notice that y ∈ B(z, 9r) in order that B(z, r) ∩ B(y, 24−kr) 6= ∅ for some k = 1, 2, . . ..
Therefore,∫

B(z,r)

(
1

µ(B(x, 25−kr))

∫
B(x,24−kr)

|f(y)| dµ(y)

)
dµ(x) ≤

∫
B(z,9r)

|f(y)| dµ(y). (13)

Thus, it follows from (12), (13), and (4), that

1

µ(B(z, 18r))

∫
B(z,r)

|Ĩρ,µ,4f1(x)− cB,1| dµ(x) ≤

≤
∞∑
k=1

(
sup

t∈[23−kr,24−kr]
ρ(t)

)
1

µ(B(z, 18r))

∫
B(z,9r)

|f(y)| dµ(y) ≤

≤ C
∞∑
k=1

∫ k224−kr

k124−kr

ρ(s)

s
ds

1

µ(B(z, 18r))

∫
B(z,9r)

|f(y)| dµ(y) ≤

≤ Cφ(r)

∫ 8k2r

0

ρ(s)

s
ds · ‖f‖L1,φ(X;µ) ≤

≤ Cψ(r)‖f‖L1,φ(X;µ).

In summary, we obtain (10).
We deal with f2. We shall consider

Ĩρ,µ,4f2(x)− cB,2 =

=

∫
X\B(z,4r)

(
ρ(d(x, y))

µ(B(x, 4d(x, y)))
− ρ(d(z, y))

µ(B(z, 4d(z, y)))

)
f(y) dµ(y) (x ∈ B(z, r)).

By the triangle inequality and (7), we have

|Ĩρ,µ,4f2(x)− cB,2| ≤ (14)

≤
∫
X\B(z,4r)

∣∣∣∣ ρ(d(x, y))

µ(B(x, 4d(x, y)))
− ρ(d(z, y))

µ(B(z, 4d(z, y)))

∣∣∣∣ |f(y)| dµ(y) ≤



122 D.I. Hakim, Y. Sawano, T. Shimomura

≤ C
∫
X\B(z,4r)

(
d(x, z)

d(y, z)

)ε ρ(d(z, y))

µ(B(z, 4d(z, y)))
|f(y)| dµ(y).

By the dyadic decomposition and (4), we obtain∫
X\B(z,4r)

(
d(x, z)

d(y, z)

)ε ρ(d(z, y))

µ(B(z, 4d(z, y)))
|f(y)| dµ(y) =

=
∞∑
k=1

∫
B(z,2k+2r)\B(z,2k+1r)

(
d(x, z)

d(y, z)

)ε ρ(d(z, y))

µ(B(z, 4d(z, y)))
|f(y)| dµ(y) ≤

≤
∞∑
k=1

1

2kε
1

µ(B(z, 2k+3r))
sup

t∈[2k+1r,2k+2r]

ρ(t)

∫
B(z,2k+2r)

|f(y)| dµ(y) ≤

≤ C
∞∑
k=1

∫ 2k+3k2r

2k+2k1r

φ(2k+2r)

2kε
ρ(s)

ds

s

1

φ(2k+2r)µ(B(z, 2k+3r))

∫
B(z,2k+2r)

|f(y)| dµ(y) ≤

≤ C‖f‖L1,φ(X;µ)

∞∑
k=1

∫ 2k+3k2r

2k+2k1r

φ(2k+2r)

2kε
ρ(s)

ds

s
.

Note that (8), together with the doubling property of φ, yields

∞∑
k=1

∫ 2k+3k2r

2k+2k1r

φ(2k+2r)

2kε
ρ(s)

ds

s
≤ Crε

∞∑
k=1

∫ 2k+3k2r

2k+2k1r

φ(s)

sε
ρ(s)

ds

s
≤ Cψ(r).

Thus ∫
X\B(z,4r)

(
d(x, z)

d(y, z)

)ε ρ(d(z, y))

µ(B(z, 4d(z, y)))
|f(y)| dµ(y) ≤ Cψ(r)‖f‖L1,φ(X;µ). (15)

From (14) and (15), it follows that

|Ĩρ,µ,4f2(x)− cB,2| ≤ Cψ(r)‖f‖L1,φ(X;µ) (x ∈ B(z, r)). (16)

If we integrate (16) over B(z, r), then we obtain (11). Combining (10) and (11), we obtain
(9).

3. Historical remarks

3.1. Function spaces with non-doubling measures

Recall again that a Radon measure µ is said to be doubling, if there exists a constant
C > 0 such that

µ(B(x, 2r)) ≤ Cµ(B(x, r)), (17)

for all x ∈ supp(µ)(= X) and r > 0; otherwise µ is said to be non-doubling.
A recent trend on analysis is to work on an infinite dimensional normed space. Un-

fortunately, the doubling condition is too strong a postulate as the folllowing proposition
shows.



Boundedness of Generalized Fractional Integral Operators 123

Proposition 1. Let X be an infinite dimensional normed space. Then there is no non-zero
doubling Radon measure µ on X.

Proof. Assume that such µ exists. Since X is infinite dimensional, we can choose
{xj}∞j=1 in a unit ball B and δ ∈ (0, 1) such that ‖xj−xk‖ > 2δ as long as j > k. Consider
a disjoint collection of balls {B(xj , δ)}∞j=1. A geometric observation shows

B ⊂ 2

δ
B(xj , δ).

Thus

Cµ(B) ≥ µ(2B) ≥
∞∑
j=1

µ (B(xj , δ)) ≥ C
∞∑
j=1

µ

(
2

δ
B(xj , δ)

)
≥ C

∞∑
j=1

µ(B),

implying that µ(B) = 0. As a result, µ does not charge

X =
∞⋃
j=1

j ·B.

This is a contradiction.

In connection with the 5r-covering lemma, the doubling condition had been a key
condition in harmonic analysis. However, Nazarov, Treil and Volberg showed that the
doubling condition (17) is not necessary by using the modified maximal operator [19, 20];
see also [7, 9, 10, 24, 25, 26, 27, 30] as well as a textbook [32].

3.2. The generalized Morrey space

Next, let us recall the definition of generalized Morrey spaces in Rn. We denote by
B(z, r) the ball {x ∈ Rn : |x − z| < r} with center z and radius r > 0, and by |B(z, r)|
its Lebesgue measure, i.e. |B(z, r)| = ωnr

n, where ωn is the volume of the unit ball in
Rn. For 1 ≤ p < ∞ and a doubling function φ : (0,∞) → (0,∞), let the Morrey space
Lp,φ(Rn) be the family of all f ∈ Lploc(R

n) such that ‖f‖Lp,φ <∞, where

‖f‖Lp,φ ≡ sup
z∈Rn, r>0

1

φ(r)

(
1

|B(z, r)|

∫
B(z,r)

|f(x)|p dx

)1/p

. (18)

If φ ≡ 1, then Lp,φ(Rn) ∼ L∞(Rn) with norm coincidence by virtue of the Lebesgue
differentiation theorem. When φ(r) ≡ r−λ/p (r > 0), Lp,φ(Rn) coincides with Lp,λ(Rn)
defined by Adams [1].



124 D.I. Hakim, Y. Sawano, T. Shimomura

3.3. The fractional integral operator Iα on generalized Morrey spaces

If ρ(r) ≡ rα, r > 0 for 0 < α < n, then Iρf coincides with the classical Riesz potential
of order α. Let us recall the Riesz potential Iα of order α ∈ (0, n) for a locally Lebesgue
integrable function f on Rn. We define Iαf by:

Iαf(x) ≡
∫
Rn

f(y)

|x− y|n−α
dy (x ∈ Rn).

The operator Iα is also called the fractional integral operator.
Adams [1, Theorem 3.1] showed that there exists a constant C > 0 such that

‖Iαf‖Lq,λ ≤ C‖f‖Lp,λ ,

provided that the parameters p, q, λ satisfy

1 < p < q <∞, 0 < λ ≤ n, −λ
p

+
α

n
= −λ

q
.

If λ = n, then this is the Hardy-Littlewood-Sobolev theorem asserting that the fractional
integral operator Iα is bounded from Lp(Rn) to Lq(Rn); see also [23, 3, 12, 21, 11, 17, 4,
8, 31, 5] for a series of the study of the behavior of Iα in generalized Morrey spaces.

3.4. The condition on ρ

Nakai introduced the generalized Riesz potential Iρf in [14]. Nakai investigated the
boundedness of Iρf of functions in Lp,φ(Rn) in [8] assuming that ρ is a doubling function.
For the boundedness of Iρf , we also refer the reader to [15, 5, 28].

We remark that Pérez introduced the class G0 in [22]. As the following example shows,
G0 is a condition more suitable than the doubling condition.

Example 1. In view of [2], we see that (1 − ∆)−α/2 falls under the scope of our main
results, when ρ is given by

ρ(r) :=
r
n+α
2

2
n+α−2

2 πn/2Γ(α/2)
Kn−α

2
(r), (r > 0)

and Kn−α
2

(r) is the modified Bessel function of the third kind. As r ↓ 0, when 0 < α < n,

ρ(r) ∼ 1

2απ
n
2

Γ
(α

2

)−1
Γ

(
n− α

2

)
rα,

when α = n

ρ(r) ∼ rn

2n−1π
n
2

Γ
(α

2

)−1
log

1

r
,

and when α > n,

ρ(r) ∼ rn

2nπ
n
2

Γ
(α

2

)−1
Γ

(
α− n

2

)
.
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See [2, (4.2)]. Furthermore, as r →∞,

ρ(r) ∼ r
α+n−1

2 e−r

2
n+α−1

2 π
n−1
2 Γ

(
α
2

) .
See [2, (4.3)]. The above estimates mean that we have (4) with k1 = 1/4 and k2 = 1/2.
Note that ρ ∈ G implies (4). See also [29, Remark 2.2] and [18, Lemma 2.5].
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