# A Characterization of Some Alternating Groups by Their Orders and Character Degree Graphs 

S. Liu


#### Abstract

The aim of this study was to characterize some alternating groups by their orders and character degree graphs. To achieve this, $G$ was used as a finite group. The character degree graph $\Gamma(G)$ of $G$ is the graph whose vertices are the prime divisors of character degrees of $G$, and two vertices $p$ and $q$ are joined by an edge if $p \cdot q$ divides some character degree of $G . A_{n}$ was used as an alternating group of degree n . Khosravi et. al (2014). have shown that $A_{n}$, with $n=5,6,7$ are characterizable by the character degree graphs and their orders. The results of this study achieved the conclusion of characterizing the alternating group $A_{n}$, where $n=8,9,10$, by using its character degree graph and order. In particular, the alternating groups $A_{9}$ and $A_{10}$ are not unique determined by their character degree graphs and their orders.


Key Words and Phrases: character degree graph, alternating groups, simple groups, group order.

2010 Mathematics Subject Classifications: 20C15, 20C33

## 1. Introduction

In this paper, all groups investigated are finite. Let $G$ be a finite group and $\operatorname{Irr}(G)$ be the set of all complex irreducible characters of $G$. Let $\operatorname{cd}(G)=\{\chi(1): \chi \in \operatorname{Irr}(G)\}$ denote the set of character degrees of $G$.

In [9], the concept of character degree graph was introduced. The graph that has been most widely invested is the graph $\Gamma(G)$ whose vertices are the prime divisors of character degrees of the group $G$ and two vertices $p$ and $q$ are joined by an edge if $p q$ divides the character degree of $G$. Let $L_{n}(q)$ denote the projective special linear group of degree $n$ over a finite field of order $q$. Khosravi et. al. in [4] proved that the group $L_{2}\left(p^{2}\right)$, where $p$ is a prime, is characterizable by the degree graph and order. Khosravi et. al. in [3] studied the simple groups of order less than 6000 by using the character degree graph and order. Let $A_{n}$ be the alternating group of degree $n$. We know that $A_{n}$ with $n=5,6,7$ is characterized by the degree graph and its order. The only remaining alternating group $A_{8}$ whose character degree graph is not complete, has not been characterized by considering the character degree graph and its order. So we prove the following theorem.

Main Theorem 1. Let $G$ be a group such that $|G|=\left|A_{8}\right|=2^{6} \cdot 3^{2} \cdot 5 \cdot 7=20160$ and $\Gamma(G)=\Gamma\left(A_{8}\right)$. Then $G$ is isomorphic to $A_{8}$.

In fact, not all simple groups are characterized by their character degree graphs and their orders. For instance, $U_{3}(3)$ whose order is 6048 , is not characterizable by its degree graph and its order (see [3, Remark 1]).

Note the fact that the only pairs of simple groups of the same order are $A_{8}, L_{3}(4)$ and $P S p(2 n, q), P \Omega O(2 n+1, q)$, where $n \geq 3$ and $q$ is odd. These groups are determined by their smallest character degree larger than $1[6]$. Therefore there are some simple groups which are determined by their orders and their character degree graphs. We know that $A_{7}$ is characterized by its character degree graph and order. But for the alternating $A_{9}$ with $\Gamma\left(A_{9}\right)$ complete, what's the influence of its character degree graph and order on the structure of groups? We will try to answer this question.

Main Theorem 2. Let $G$ be a group such that $|G|=\left|A_{9}\right|=2^{6} \cdot 3^{4} \cdot 5 \cdot 7=181440$ and $\Gamma(G)=\Gamma\left(A_{9}\right)$. Then $G$ has one of the following structures:
(1) $G=H \times A_{7}$, where $H$ is a group of order 72 .
(2) $G=H \times\left(Z_{2} \cdot A_{7}\right)$, where $H$ is a group of order 36 .
(3) $G=H \times S_{7}$, where $H$ is a group of order 36 and $S_{n}$ is a symmetric group of degree $n$.
(4) $G=\left(Z_{3} \rtimes Z_{3}\right) \times A_{8}$.
(5) $G=Z_{3} \times S L_{3}(4)$.
(6) $G=A_{9}$

Also we give the structure of groups under the condition that $\Gamma\left(A_{10}\right)=\Gamma(G)$ and order $\left|A_{10}\right|=|G|$. Obviously, it has more complicated structures.

Main Theorem 3. Let $G$ be a group such that $|G|=\left|A_{10}\right|=2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7=1814400$ and $\Gamma(G)=\Gamma\left(A_{10}\right)$. Then $G$ has one of the following structures:
(1) $G=H \times A_{7}$, where $H$ is a group of order 720 .
(2) $G=H \times\left(Z_{2} \cdot A_{7}\right)$, where $H$ is a group of order 360 .
(3) $G=H \times S_{7}$, where $H$ is a group of order 360 .
(4) $G=H \times L_{3}(4)$ where $|H|=90$ and $2 \in \operatorname{cd}(H)$.
(5) $G=H \times\left(Z_{2} \cdot L_{3}(4)\right)$ where $|H|=45$.
(6) $G=H \times\left(S_{3} . L_{3}(4)\right)$ where $|H|=15$.
(7) $G=Z_{3} \times S L_{3}(4)$.
(8) $G=H \times A_{8}$, where $H$ is a group of order 90 .
(9) $G=H \times\left(Z_{2} . A_{8}\right)$, where $H$ is a group of order 45 .
(10) $G=H \times S_{8}$, where $H$ is a group of order 45 .
(11) $G=H \times A_{9}$, where $|H|=10$.
(12) $G=Z_{5} \times\left(Z_{2} . A_{9}\right)$.
(13) $G=Z_{5} \times S_{9}$.
(14) $G=H \times S L_{3}(4)$, where $H$ is a group of order 30 .
(15) $G=Z_{3} \times J_{2}$
(16) $G=A_{10}$.

It follows from Main Theorems 2 and 3 that the groups $A_{9}$ and $A_{10}$ are not uniquely determined by the degree graphs and their orders.

## 2. Notation and some preliminary results

We introduce some notation which will be used to prove the main theorem. Let $S_{n}$ and $A_{n}$ be the symmetric and alternating groups of degree $n$, respectively. If $N \unlhd G$ and $\theta \in \operatorname{Irr}(N)$, then the inertia group of $\theta$ in $G$ is $I_{G}(\theta)=\left\{g \in G \mid \theta^{g}=\theta\right\}$. If $n$ is an integer and $r$ is a prime divisor of $n$, then we write either $n_{r}=r^{a}$ or $r^{a} \| n$ if $r^{a} \mid n$ but $r^{a+1} \nmid n$. Let $G$ be a group and $r$ is a prime, then denote the set of Sylow $r$-subgroups $G_{r}$ of $G$ by $\operatorname{Syl}_{r}(G)$. If $H$ is a characteristic subgroup of $G$, we write $H \operatorname{ch} G$. All other notation is standard (see [1]).

Lemma 1. Let $A \unlhd G$ be abelian. Then $\chi(1)$ divides $|G: A|$ for all $\chi \in \operatorname{Irr}(G)$.
Proof. See Theorem 6.5 of [2].
Lemma 2. Let $N \unlhd G$ and let $\chi \in \operatorname{Irr}(G)$. Let $\theta$ be an irreducible constituent of $\chi_{N}$ and suppose that $\theta_{1}, \cdots, \theta_{t}$ are distinct conjugates of $\theta$ in $G$. Then $\chi_{N}=e \sum_{i=1}^{t} \theta_{i}$, where $e=\left[\chi_{N}, \theta\right]$ and $t=\left|G: I_{G}(\theta)\right|$. Also $\theta(1) \mid \chi(1)$ and $\left.\frac{\chi(1)}{\theta(1)} \right\rvert\, \frac{|G|}{|N|}$.

Proof. See Theorems 6.2, 6.8 and 11.29 of [2].

Lemma 3. Let $G$ be a non-soluble group. Then $G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that $K / H$ is a direct product of isomorphic non-abelian simple groups and $|G / K| \mid$ $|\operatorname{Out}(K / H)|$.

Proof. See Lemma 1 of [13].

Lemma 4. Let $G$ be a finite soluble group of order $p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}$, where $p_{1}, p_{2}, \cdots, p_{n}$ are distinct primes. If $k p_{n}+1 \nmid p_{i}^{a_{i}}$ for each $i \leq n-1$ and $k>0$, then the Sylow $p_{n}$-subgroup is normal in $G$.

## Proof. See Lemma 2 of [14].

We also need the structure of non-abelian simple group whose largest prime divisor is less than 7.

Lemma 5. If $S$ is a finite non-abelian simple group such that $\pi(S) \subseteq\{2,3,5,7\}$, then $S$ is isomorphic to one of the following simple groups in Table 1.

Proof. [15].
Table 1. Finite non-abelian simple groups $S$ with $\pi(S) \subseteq\{2,3,5,7\}$

| S | Order of $S$ | Out $(S)$ | S | Order of $S$ | Out $(S)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{5}$ | $2^{2} \cdot 3 \cdot 5$ | 2 | $L_{2}(49)$ | $2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$ | $2^{2}$ |
| $L_{2}(7)$ | $2^{3} \cdot 3 \cdot 7$ | 2 | $U_{3}(5)$ | $2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$ | $S_{3}$ |
| $A_{6}$ | $2^{3} \cdot 3^{2} \cdot 5$ | $2^{2}$ | $A_{9}$ | $2^{6} \cdot 3^{4} \cdot 5 \cdot 7$ | 2 |
| $L_{2}(8)$ | $2^{3} \cdot 3^{2} \cdot 7$ | 3 | $J_{2}$ | $2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$ | 2 |
| $A_{7}$ | $2^{3} \cdot 3^{2} \cdot 5 \cdot 7$ | 2 | $S_{6}(2)$ | $2^{9} \cdot 3^{4} \cdot 5 \cdot 7$ | 1 |
| $U_{3}(3)$ | $2^{5} \cdot 3^{3} \cdot 7$ | 2 | $A_{10}$ | $2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$ | 2 |
| $A_{8}$ | $2^{6} \cdot 3^{2} \cdot 5 \cdot 7$ | 2 | $U_{4}(3)$ | $2^{7} \cdot 3^{6} \cdot 5 \cdot 7$ | $D_{8}$ |
| $L_{3}(4)$ | $2^{6} \cdot 3^{2} \cdot 5 \cdot 7$ | $D_{12}$ | $S_{4}(7)$ | $2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4}$ | 2 |
| $U_{4}(2)$ | $2^{6} \cdot 3^{4} \cdot 5$ | 2 | $O_{8}^{+}(2)$ | $2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7$ | $S_{3}$ |

## 3. The proofs of Main Theorems

In this section, we present the proofs of main theorems separately.
We know from [3], that the alternating groups $A_{n}$ with $n=5,6,7$ are characterizable by their character degree graphs and orders. So in the following, we consider alternating groups $A_{n}$ with $n=8,9,10$ separately by using the character degree graphs and their orders.

### 3.1. The proof of Main Theorem 1

Proof. It is easy to get from [1, p. 22] that

$$
\operatorname{cd}\left(A_{8}\right)=\{1,7,14,20,21,28,35,45,56,64,70\}
$$

and

$$
|G|=\left|A_{8}\right|=2^{6} \cdot 3^{2} \cdot 5 \cdot 7=20160
$$

It follows that $\Gamma(G)$ is the graph with vertex set $\{2,3,5,7\}$ and there is an edge between the vertices 5 and 7 . So there is a character $\chi \in \operatorname{Irr}(G)$ with $5 \cdot 7 \mid \chi(1)$.

It is easy to get $O_{5}(G)=1$ and $O_{7}(G)=1$. In fact, if $O_{7}(G) \neq 1$, then since $\left|G_{7}\right|=7$, $O_{7}(G)$ is a normal Sylow 7 -subgroup of $G$ of order 7 and so $O_{7}(G)$ is abelian. Then by

Lemma 1, for all $\chi \in \operatorname{Irr}(G), \chi(1)| | G: O_{7}(G) \mid$, a contradiction. Similarly we can prove that $O_{5}(G)=1$.

We first assume that $G$ is soluble and $M$ is a minimal normal subgroup of $G$. Then $M$ is an elementary abelian $p$-group. where $p=2$ or $p=3$. Note that $|G|_{p}=p$ for $p=5,7$ and in $\Gamma(G)$, there is a character $\chi \in \operatorname{Irr}(G)$ such that $5 \cdot 7$ divides $\chi(1)$. Therefore we consider the following two cases.
(1) Let $M$ be a 3-group.

Since there is an edge between 3 and 7 , then $|M|=3$. Let $H / M$ be a Hall subgroup of $G / M$ of order $2^{6} \cdot 5 \cdot 7$. Then $|G / M: H / M|=3$. It follows that $(G / M) /(L / M) \hookrightarrow$ $S_{3}$, where $S_{3}$ is the symmetric group of degree 3 and $L / M=\operatorname{Core}_{G / M}(H / M):=$ $\bigcap_{g M \in G / M}(H / M)^{g M}$, the core of $H / M$ in $G / M$. So $|L / M|=\left|H_{G} / M\right|=2^{6} \cdot 5 \cdot 7$, or $|L / M|=2^{5} \cdot 5 \cdot 7$. In what follows, two cases are considered.
(1.1) $|L / M|=2^{5} \cdot 5 \cdot 7$.

Then $L=H_{G}=H$ and $|G: L|=3$. Let $\theta \in \operatorname{Irr}(L)$ with $e=\left[\chi_{L}, \theta\right] \neq 0$. Then $5 \cdot 7=\operatorname{et} \theta(1)$, where $t=\left[G: I_{G}(\theta)\right]$. Since $e$ and $t$ are divisors of $|G: L|=3$. Therefore $e=t=1$ and so $\chi_{L}=\theta$. Let $\eta \in \operatorname{Irr}(M)$ be such that $e^{\prime}=\left[\theta_{M}, \eta\right] \neq 0$. Therefore $\theta(1)=e^{\prime} t^{\prime}$, where $e^{\prime}$ and $t^{\prime}$ are divisors of $L: M$, and $t^{\prime}=\left[L: I_{L}(\eta)\right]$. Since there are three linear characters, then $t^{\prime} \leq 3$ and so $t^{\prime}=1$. It follows that $e^{\prime}=5 \cdot 7$. Therefore $(5 \cdot 7)^{2} \leq|L: M|=2^{5} \cdot 5 \cdot 7$, a contradiction.
(1.2) $|L / M|=2^{6} \cdot 5 \cdot 7$.

Similarly as in the Case 1.1 above, we can have that $\left(e_{2}^{\prime}, t_{2}^{\prime}\right)=(2 \cdot 7,1),\left(e_{3}^{\prime}, t_{3}^{\prime}\right)=$ $(2 \cdot 5,1),\left(e_{4}^{\prime}, t_{4}^{\prime}\right)=(6,1)$ or $(2,3),\left(e_{5}^{\prime}, t_{5}^{\prime}\right)=(15,1)$ or $(5,3)$ and $\left(e_{7}^{\prime}, t_{7}^{\prime}\right)=(21,1)$ or $(7,3)$. In these cases, $\sum e_{i}^{\prime} t_{i}^{\prime}$ is equal to at most 2123 which is less than $2^{6} \cdot 5 \cdot 7$. It means that there is a character $\chi$ such that $\chi(1)=p q r$ is the product of three different primes $p, q, r$ of $|L|$. Since $\pi(L)=\{2,3,5,7\}$, then the possible triples $(p, q, r)$ are $(2,3,7)$ or $(2,5,7)$, because there is no edge between the vertices 3 and 5 .
If $(p, q, r)=(2,5,7)$, then similar to the Case 1.1, we have that $e^{\prime}=2 \cdot 5 \cdot 7$ and $t^{\prime}=1$ and so $(2 \cdot 5 \cdot 7)^{2} \leq 2^{6} \cdot 5 \cdot 7=|L / M|$, a contradiction.
If $(p, q, r)=(2,3,7)$, then $e^{\prime}=42, t^{\prime}=1$ or $e^{\prime}=14, t^{\prime}=3$. If the former, then $42^{2}+35^{2} \leq|L / M|=2^{6} \cdot 5 \cdot 7$, a contradiction. If the latter, then $35^{2}+3 \cdot 14^{2}+$ $10^{2}+7^{2} \cdot 3+14^{2}+2^{2} \cdot 3=2268 \leq|L / M|=2^{6} \cdot 5 \cdot 7=2240$, a contradiction.
(2) Let $M$ be a 2 -group.

Similar to the Case 1.1, $e=t=1$ and $\chi_{L}=\theta$. Let $\eta \in \operatorname{Irr}(M)$ be such that $e^{\prime}=\left[\theta_{M}, \eta\right] \neq 0$. Therefore $\theta(1)=e^{\prime} t^{\prime}$, where $e^{\prime}$ and $t^{\prime}$ are divisors of $|G: L|=2^{6-k}$, and $t^{\prime}=\left[L: I_{L}(\eta)\right]$. As $\theta(1)^{2} \leq|L|=2^{k} \cdot 3 \cdot 5 \cdot 7$ and there is an edge between 2 and $3, k=4,5$.
If $|L|=2^{4} \cdot 3^{3} \cdot 5 \cdot 7$, let $\eta \in \operatorname{Irr}(M)$ be such that $e^{\prime}=\left[\theta_{M}, \eta\right] \neq 0$. Then $\theta(1)=$ $5 \cdot 7=e^{\prime} t^{\prime}$, where $t^{\prime}=\left[L: I_{L}(\eta)\right]$. Also $M$ has 16 linear characters and so $t^{\prime} \leq 16$.

Therefore $e^{\prime}=35$ and $t^{\prime}=1$. It follows that $35^{2} \leq|L: M|=3^{2} \cdot 5 \cdot 7$. Similarly as $|L|=2^{5} \cdot 5 \cdot 7$, we can rule out.

Therefore $G$ is insoluble and so by Lemma $3, G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that $K / H$ is a direct product of isomorphic non-abelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$.

We will prove that $5,7 \in \pi(K / H)$. Assume the contrary. Then by [5, Lemma 6(d)] and [8, Lemma 2.13], $|\operatorname{Out}(K / H)|$ is divisible by neither 5 nor 7 . If the primes 5 and 7 belong to $\pi(H)$, then by Burnside's theorem $K / H$ is soluble since $\pi(K / H)=\{2,3\}$ and $\left|G_{p}\right|=p$ where $p=5,7$, a contradiction. If 5 divides the order $|H|$ but $7 \nmid|H|$, then $7 \in \pi(K / H)$ (otherwise $K / H$ is soluble by Burnside's theorem) and $G_{5}$ is characteristic in $H$. We also get a contradiction by Lemma 1. Similarly, $7 \nmid|H|$.

Therefore by Lemma 5 and considering group order of $A_{8}, K / H$ is isomorphic to one of the simple groups: $A_{7}, A_{8}$ or $L_{3}(4)$.

If $K / H \cong A_{7}$, then $A_{7} \leq G / H \leq \operatorname{Aut}\left(A_{7}\right)$. If $G / H \cong A_{7}$, then there is an edge between the vertices 2 and 3 in $\Gamma(G)$, a contradiction since $\operatorname{cd}\left(A_{7}\right)=\{1,6,10,14,15,21,35\}$. Similarly, we can rule out when $G / H \cong S_{7}$.

If $K / H \cong L_{3}(4)$, then $L_{3}(4) \leq G / H \leq \operatorname{Aut}\left(L_{3}(4)\right)$. If $G / H \cong L_{3}(4)$, then $H=1$ and so $G \cong L_{3}(4)$. But $\Gamma\left(L_{3}(4)\right)$ has no edge between the vertices 2 and 7 , a contradiction since $\operatorname{cd}\left(L_{3}(4)\right)=\{1,20,35,45,63,64\}$ by [1, p. 24]. For the remaining cases, order consideration rules out.

If $K / H \cong A_{8}$, then $A_{8} \leq G / H \leq S_{8}$. If $G / H \cong A_{8}$, then $H=1$ and so $G \cong A_{8}$. If $G / H \cong S_{8}$, then order consideration rules out.

This completes the proof.

Corollary 1. Let $G$ be a finite group with $\operatorname{cd}(G)=\operatorname{cd}\left(A_{8}\right)$ and $|G|=\left|A_{8}\right|$. Then $G$ is isomorphic to $A_{8}$.

Proof. Since $G_{7}$ is a Sylow 7 -subgroup of $G$ with order 7, then $O_{7}(G)=1$. In fact, if $O_{7}(G) \neq 1$, then there is a character $\chi$ such that $\chi(1)=70$. So $\chi(1)\left|\left|G: O_{7}(G)\right|\right.$ by Lemma 1. Similarly, $O_{5}(G)=1$.

Assume that $G$ is soluble and let $M$ be a normal minimal subgroup of $G$. Then $M$ is an elementary abelian $p$-group. From the above arguments, we have $p=2,3$. If $p=2$, then $|M| \geq 2$ and since $M$ is abelian, there is no character $\chi$ such that $\chi(1)=64| | G: M \mid$, a contradiction. If $p=3$, then similarly, there is no character $\chi$ such that $\chi(1)=9| | G: M \mid$, a contradiction.

Therefore $G$ is insoluble and so by Lemma $3, G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that $K / H$ is a direct product of isomorphic non-abelian simple groups and $|G / K| \mid$ $|\operatorname{Out}(K / H)|$. By [5, Lemma 6(d)] and [8, Lemma 2.13], $|\operatorname{Out}(K / H)|$ is divisible by neither 5 nor 7. Also $5,7 \nmid|H|$ since $O_{5}(G)=1=O_{7}(G)$. Hence $K / H$ is isomorphic to $A_{7}, A_{8}$ or $L_{3}(4)$. If $K / H \cong A_{7}$, then $\Gamma(G)$ is complete, a contradiction since $\Gamma\left(A_{7}\right)$ is complete. If $K / H \cong L_{3}(4)$, then $G \cong L_{3}(4)$, a contradiction since the vertices 2 and 7 are joined by an edge. If $K / H \cong A_{8}$, then $G \cong A_{8}$, this is the desired result.

This completes the proof.

### 3.2. The proof of Main Theorem 2

Proof. We can get from [1, p. 37], that $\operatorname{cd}\left(A_{9}\right)=\{1,8,21,28,35,42,48,56$, $84,105,120,162,168,189,216\}$. Therefore $\Gamma(G)$ is a complete graph with vertex set $\{2,3,5,7\}$. Then there is a character $\chi \in \operatorname{Irr}(G)$ such that $5 \cdot 7 \mid \chi(1)$. If $O_{5}(G) \neq 1$, then since $\left|G_{5}\right|=5, O_{5}(G)$ is a normal Sylow 5 -subgroup of $G$ and so for all $\chi \in \operatorname{Irr}(G)$, $\chi(1)\left|\left|G: O_{5}(G)\right|\right.$, contradicting Lemma 1. Therefore $O_{5}(G)=1$. Similarly, $O_{7}(G)=1$.

Suppose that $G$ is soluble and let $M$ be a minimal normal subgroup of $G$. Then $M$ is an elementary abelian normal $p$-group. Since $O_{5}(G)=O_{7}(G)=1$, then either $p=2$ or $p=3$. Since $\Gamma(G)$ is complete, then there is a character $\beta$ such that $6 \mid \beta(1)$ and so, $|M| \mid 2^{5}$ or $|M| \mid 3^{3}$. We consider two cases.

Case 1. Let $M$ be a 3 -group.
Then $|M|=3^{a}$ with $1 \leq a \leq 3$ and so $|G / M|=2^{6} \cdot 3^{4-a} \cdot 5 \cdot 7$. Let $H / M$ be a Hall subgroup of order $2^{6} \cdot 5 \cdot 7$. Then $|G / M: H / M|=3^{4-a}$ and so $G / H_{G} \rightharpoonup S_{3^{4-a}}$. Let $L=H_{G}$. Then the order of $L / M$ is equal to $|L / M|=\left|H_{G} / M\right|=2^{6} \cdot 5 \cdot 7$ or $|L / M|=2^{5} \cdot 5 \cdot 7$. Similar to the Case 1 of Theorem 1, we only consider the following cases: $(p, q, r)=(2,3,5)$ and $(p, q, r)=(3,5,7)$ with $|L / M|=\left|H_{G} / M\right|=2^{6} \cdot 5 \cdot 7$.
$(p, q, r)=(2,3,5)$ and $|L / M|=\left|H_{G} / M\right|=2^{6} \cdot 5 \cdot 7$.
In this case, there is a character such that $\chi(1)=2 \cdot 3 \cdot 5$. Let $\theta \in \operatorname{Irr}(L)$ with $e=\left[\chi_{L}, \theta\right] \neq 0$. Then $2 \cdot 3 \cdot 5=\operatorname{et\theta }(1)$, where $t=\left[G: I_{G}(\theta)\right]$. Since $e$ and $t$ are divisors of $|G: L|=3^{4-a}$ where $a \in\{1,2,3\}$. Therefore $(e, t)=(1,1),(3,10)$ or $(1,30)$.
Let $(e, t)=(1,1)$. Then $\chi_{l}=\theta$. Let $\eta \in \operatorname{Irr}(M)$ be such that $e^{\prime}=\left[\theta_{M}, \eta\right] \neq 0$. Therefore $\theta(1)=e^{\prime} t^{\prime}$, where $e^{\prime}$ and $t^{\prime}$ are divisors of $|L: M|$, and $t^{\prime}=\left[L: I_{L}(\eta)\right]$. Since there are $3^{a}$ linear characters, then $t^{\prime} \leq 3^{a}$ and so $t^{\prime}=1, e^{\prime}=2 \cdot 3 \cdot 5$ or $t^{\prime}=3$, $t^{\prime}=10$. Similar to the Case 1.1 of Theorem 1, $\left(e_{2}^{\prime}, t_{2}^{\prime}\right)=(2 \cdot 7,1),\left(e_{3}^{\prime}, t_{3}^{\prime}\right)=(2 \cdot 5,1)$, $\left(e_{4}^{\prime}, t_{4}^{\prime}\right)=(6,1)$ or $(2,3),\left(e_{5}^{\prime}, t_{5}^{\prime}\right)=(15,1)$ or $(5,3)$ and $\left(e_{7}^{\prime}, t_{7}^{\prime}\right)=(21,1)$ or $(7,3)$. Therefore $e^{\prime 2} \cdot t^{\prime}+\sum_{i=2}^{7} e_{i}^{\prime 2} \cdot t_{i}^{\prime} \leq 2240$, a contradiction. If the latter, we also can rule out similarly.
Also we can rule out " $(e, t)=(3,10)$ or $(1,30)$ ".
$(p, q, r)=(3,5,7)$ and $|L / M|=\left|H_{G} / M\right|=2^{6} \cdot 5 \cdot 7$.
Similar to the Case 1.1 of Theorem 2, we have either $t^{\prime}=1$ and $e=105$ or $t^{\prime}=3$ and $e^{\prime}=35$. If the former, then $(105)^{2} \leq|L / M|=2^{6} \cdot 5 \cdot 7$, a contradiction. If the latter, then $3 \cdot(35)^{2} \leq 2^{6} \cdot 5 \cdot 7$, also a contradiction.
Case 2. Let $M$ be a 2 -group.
Then since there is an edge between 2 and 3 in $\Gamma(G),|M|=2^{a}$ with $1 \leq a \leq 5$. Hence we have $|G / M|=2^{6-a} \cdot 3^{4} \cdot 5 \cdot 7$. Let $H / M$ be a Hall subgroup of order $3^{4} \cdot 5 \cdot 7$ of $G / M$.

If $3 \leq a \leq 5$, then $\frac{G}{H_{G}} \hookrightarrow S_{2^{6-a}}$. Let $L=H_{G}$. Then $|L / M|=3^{4} \cdot 5 \cdot 7$ or $|L / M|=$ $3^{3} \cdot 5 \cdot 7$. By Lemma $4, G_{7} M / M$ is normal in $L / M$. Since $G_{7}$ is normal in $G_{7} M$, then $G_{7} M=G_{7} \times M$. It follows that $G_{7}$ is normal in $L$. As $L \operatorname{ch} G, G_{7}$ is normal in $G$, a contradiction.

If $1 \leq a \leq 2$, then by [11], $\frac{G}{C_{G}(M)} \lesssim G L(a, 3)$, where $G L(n, q)$ is the general linear group of degree $n$ over finite field of order $q$. Therefore $G=C G(M),\left|C_{G}(M)\right|=2^{5} \cdot 3^{4} \cdot 5 \cdot 7$, $C_{G}(M) \mid=2^{2} \cdot 3^{3} \cdot 5 \cdot 7$. Let $C=C_{G}(M)$.
(2.1) Let $|G|=|C|$. In this case, there is a 2-group which is normal in $G$. So we rule out this case as the minimality of $M$.
(2.2) Let $|C|=2^{5} \cdot 3^{4} \cdot 5 \cdot 7$. Then we can rule out it as the Case 1.1 of Theorem 1 .
(2.3) Let $|C|=2^{2} \cdot 3^{3} \cdot 5 \cdot 7$. Then $G_{7}$ is normal in $C$ by Lemma 4. Since $C$ ch $G$, then $G_{7}$ is normal in $G$, a contradiction.

Therefore $G$ is insoluble and so by Lemma $3, G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that $K / H$ is a direct product of isomorphic non-abelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$.

Similarly as in the proof of Theorem 1 , the primes 5 and 7 divide $|K / H|$. Therefore by Lemma 5 and considering group orders, $K / H$ is isomorphic to one of the simple groups: $A_{7}, A_{8}, L_{3}(4)$ or $A_{9}$.

If $K / H \cong A_{7}$, then $A_{7} \leq G / H \leq \operatorname{Aut}\left(A_{7}\right)$. We know that $\operatorname{cd}\left(A_{7}\right)=\{1,6,10,14,15$, $21,35\}$ and that $\Gamma(G)$ and $\Gamma\left(A_{7}\right)$ are complete.
(a) $G / H \cong A_{7}$. Then $|H|=72$ and so the two possibilities for $G$ are $G=H \times A_{7}$ and $G=M \times\left(Z_{2} \cdot A_{7}\right)$, where $M$ is a group of order 36 .

In order to prove our claims, note that the order of $\operatorname{Aut}(H)$ is smaller than the order of $A_{7}$. Now let $C=C_{G}(H)$. Then $N_{G}(H) / C_{G}(H)=G / C$ is isomorphic to a subgroup of the automorphism group of $H$. It means that $|G / C|<\left|A_{7}\right|$ and $C \nless H$. Thus $C H>H$ (if $C H=H$, then $G / C$ is embedded in a subgroup of $\operatorname{Aut}(H)$, but the order of $G / C$ is larger than that of $\operatorname{Aut}(H)$, a contradiction.) and $G=C H$. Let $D=C \cap H$. Then $C$ centralizes $D$ and since $D \leq C, H$ centralizes $D$. Therefore $D \leq Z(G)$. Since $G / H=C H / H \cong C / D$ is isomorphic to $A_{7}$ and $D \leq Z(C)$. Since the Schur multiplier of $A_{7}$ has order 2 , then $C^{\prime} \cap D$ has order 1 or 2 . If $C^{\prime} \cap D=1$, then $C^{\prime}=A_{7}$ and $C=D \times C^{\prime}$. In this case, $A_{7}$ is a direct factor of $G$. If $\left|C^{\prime} \cap D\right|=2$, then $C^{\prime}=Z_{2} . A_{124}$ and $C^{\prime}$ is a direct factor of $G$.
(b) $G / H \cong S_{7}$. Then $|H|=36$ and so $G=H \times S_{7}$.

If $K / H \cong L_{3}(4)$, then $L_{3}(4) \leq G / H \leq \operatorname{Aut}\left(L_{3}(4)\right)$. If $G / H \cong L_{3}(4)$, then $|H|=9$. But since $\operatorname{cd}\left(L_{3}(4)\right)=\{1,20,35,45,63,64\}$ by $[1, \mathrm{p} .24], \Gamma\left(L_{3}(4)\right)$ has no edge between the vertices 2 and 7 , a contradiction. If $G / H \cong S L_{3}(4)$, then $|H|=3$ and by [10], $\operatorname{cd}\left(S L_{3}(4)\right)=\{1,15,20,21,35,45,63,64,84,105\}$ and so $\Gamma\left(S L_{3}(4)\right)$ is complete. It follows that there is only one possible group for this case. If $G / H \cong Z_{3} . L_{3}(4)$, then $|H|=3$ and so $G=Z_{3} \times\left(Z_{3} \cdot L_{3}(4)\right)$. Also in this case, $\Gamma\left(Z_{3} \cdot L_{3}(4)\right)$ has no edge between the vertices 2 and 7 , a contradiction.

If $K / H \cong A_{8}$, then $A_{8} \leq G / H \leq S_{8}$. We know that $\operatorname{cd}\left(A_{8}\right)=\{1,7,14,20,21,28,35$, $45,56,64,70\}$ and so there is no edge between the vertices 2 and 3 .
(a) If $G / H \cong A_{8}$, then $|H|=9$. Since the possible groups of order 9 are $Z_{9}$ and $Z_{3} \rtimes Z_{3}$, the semidirect product of $Z_{3}$ by $Z_{3}$. Hence there are groups satisfying that $\Gamma(G)$ is complete.
(b) If $G / H \cong S_{8}$, then order consideration rules out.

If $K / H \cong A_{9}$, then $G \cong A_{9}$ or $G \cong S_{9}$. If the latter, order consideration rules out. So $G \cong A_{9}$.

This completes the proof.

### 3.3. The proof of Main Theorem 3

Proof. From [1, p. 48], $\operatorname{cd}\left(A_{10}\right)=\{1,9,35,36,42,75,84,90,126,160,210,224$, $225,252,288,300,315,350,384,450,525,567\}$ and so $\Gamma(G)$ is complete. Since there is an edge between the vertices 5 and 7 , then there is a character $\chi \in \operatorname{Irr}(G)$ such that $5 \cdot 7 \mid \chi(1)$. Similarly as in the proof of Main Theorem 2, we have $O_{7}(G)=1$.

Assume that $G$ is soluble and let $M$ be a minimal normal subgroup of $G$. Then $M$ is a normal abelian elementary $p$-group. Since $O_{7}(G)=1$, then $p=2,3$ or 5 . Since $\Gamma(G)$ is complete, then there is a character $\beta$ such that $2 \cdot 3 \cdot 5 \mid \beta(1)$ and so, $|M|\left|2^{6},|M|\right| 3^{3}$ or $|M|=5$. We consider three cases.

Case 1. Let $M$ be a 5 -group.
Similarly as in Case 1.1 of Theorem 1, we rule out.
Case 2. Let $M$ be a 3 -group.
Similarly as in the proof of Case 1 of Theorem 2, we can rule out.
Case 3. Let $M$ be a 2-group.
Similarly as in the proof of Case 2 of Theorem 2, we can rule out.
Therefore $G$ is insoluble and so by Lemma $3, G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$, such that $K / H$ is a direct product of isomorphic non-abelian simple groups and $|G / K| \mid$ $|\operatorname{Out}(K / H)|$.

Similarly as in the proof of Theorem 1 , the primes 5 and 7 divide $|K / H|$. Therefore by Lemma 5 and considering group orders, $K / H$ is isomorphic to one of the simple groups: $A_{7}, A_{8}, L_{3}(4), A_{9}, J_{2}$ or $A_{10}$.

If $K / H \cong A_{7}$, then $A_{7} \leq G / H \leq \operatorname{Aut}\left(A_{7}\right)$. We know that $\operatorname{cd}\left(A_{7}\right)=\{1,6,10,14,15$, $21,35\}$ and that $\Gamma(G)$ and $\Gamma\left(A_{7}\right)$ are complete.
(a) $G / H \cong A_{7}$. Then $|H|=720$ and so the two possibilities for $G$ are $G=H \times A_{7}$ and $G=M \times\left(Z_{2} \cdot A_{7}\right)$, where $M$ is a group of order 360 . In this case, we can prove it similarly as in the case " $G / H \cong A_{7}$ " of Theorem 2.
(b) $G / H \cong S_{7}$. Then $|H|=360$ and so $G=H \times S_{7}$.

If $K / H \cong L_{3}(4)$, then $L_{3}(4) \leq G / H \leq \operatorname{Aut}\left(L_{3}(4)\right)$. We know that $\operatorname{Mult}\left(L_{3}(4)\right)=$ $4 \times 4 \times 3$ and $\operatorname{Out}\left(L_{3}(4)\right)$ has the structure $2 . S_{3}$ by [1, p. 23].
(a) Let $G / H \cong L_{3}(4)$. But since $\operatorname{cd}\left(L_{3}(4)\right)=\{1,20,35,45,63,64\}$ by $\left[1\right.$, p. 24], $\Gamma\left(L_{3}(4)\right)$ has no edge between the vertices 2 and 7 . We know that $\Gamma(G)$ is complete and so, we need to consider that there is an edge between 2 and 7 in $\Gamma(G)$.
(a1) Let $G / H \cong L_{3}(4)$. Then $G=H \times L_{3}(4)$ with $|H|=90$ and $2 \in \operatorname{cd}(H)$.
(a2) Let $G / H \cong Z_{2} \cdot L_{3}(4)$. Then $|H|=45$ and so $G=H \times\left(Z_{2} \cdot L_{3}(4)\right)$.
(a3) Let $G / H \cong Z_{4} \cdot L_{3}(4)$. Then order consideration rules out. Similarly we rule out $G / H \cong Z_{2} . S_{3} . L_{3}(4)$ and $G / H \cong Z_{3} . L_{3}(4)$.
(a4) Let $G / H \cong S_{3} . L_{3}(4)$. Then $G=H \times\left(S_{3} . L_{3}(4)\right)$.
In order to prove our claims, note that the order of $\operatorname{Aut}(H)$ is smaller than the order of $L_{3}(4)$. Now let $C=C_{G}(H)$. Then $N_{G}(H) / C_{G}(H)=G / C$ is isomorphic to a subgroup of the automorphism group of $H$. It means that $|G / C|<\left|L_{3}(4)\right|$ and $C \nless H$. Thus $C H>H$ and $G=C H$ since $H$ is a maximal soluble subgroup of $G$. Let $D=C \cap H$. Then $C$ centralizes $D$ and since $D \leq C, H$ centralizes $D$. Therefore $D \leq Z(G)$. Since $G / H=C H / H \cong C / D$ is isomorphic to $L_{3}(4)$ and $D \leq Z(C)$. Since the Schur multiplier of $L_{3}(4)$ has order 48 , then $C^{\prime} \cap D$ has order $n$ with $n \mid 48$ and, also $n \mid 90$. We consider the following cases by using the order of $H$.
If $C^{\prime} \cap D=1$, then $C^{\prime}=L_{3}(4)$ and $C=D \times C^{\prime}$. In this case, $L_{3}(4)$ is a direct factor of $G$.
If $\left|C^{\prime} \cap D\right|=2$, then $C^{\prime}=Z_{2} \cdot L_{3}(4)$ and $C^{\prime}$ is a direct factor of $G$.
If $\left|C^{\prime} \cap D\right|=3$, then $C^{\prime}=Z_{3} . L_{3}(4)$ and $C^{\prime}$ is a direct factor of $G$.
If $\left|C^{\prime} \cap D\right|=6$, then $C^{\prime}=Z_{6} . L_{3}(4)$ or $S_{3} . L_{3}(4)$ since there are only two types of groups of order 6: cyclic group, $Z_{6}$ and symmetric group, $S_{3}$. In this case, also $C^{\prime}$ is a direct factor of $G$.
(b) If $G / H \cong S L_{3}(4)$, then $|H|=3$. By $[10], \operatorname{cd}\left(S L_{3}(4)\right)=\{1,15,20,21,35,45,63$, $64,84,105\}$ and so $\Gamma\left(S L_{3}(4)\right)$ is complete. Therefore $G=Z_{3} \times S L_{3}(4)$.

If $K / H \cong A_{8}$, then $A_{8} \leq G / H \leq S_{8}$. We know that $\operatorname{cd}\left(A_{8}\right)=\{1,7,14,20,21,28,35$, $45,56,64,70\}$ and so there is no edge between the vertices 2 and 3 .
(a) If $G / H \cong A_{8}$, then $|H|=90$. Since $\Gamma(G)$ is complete, then the possibilities for $G$ are $G=H \times A_{8}$, where $3 \in \operatorname{cd}(H)$, and $G=M \times\left(Z_{2} \cdot A_{8}\right)$, where $M$ is a group of order 45. In this case, we can prove it similarly as in the case $G / H \cong A_{7}$ of Theorem 2 .
(b) If $G / H \cong S_{8}$, then $|H|=45$. Since $\operatorname{cd}\left(S_{8}\right)=\{1,7,14,20,21,28,35,42,56,64,70$, $90\}[7]$, then $\Gamma\left(S_{8}\right)$ is complete and so $G=H \times S_{8}$, where $H$ is a group of order 45 .

If $K / H \cong A_{9}$, then $G / H \cong A_{9}$ or $G \cong S_{9}$.
(a) If $G / H \cong A_{9}$, then $|H|=10$ and so, we have either $G=H \times A_{9}$ or $G=M \times\left(Z_{2} . A_{9}\right)$, where $M$ is a group of order 5 . In this case, we can prove it similarly as in the case $G / H \cong A_{7}$ of Theorem 2.
(b) If $G / H \cong S_{9}$, then $|H|=5$ and so, $G=H \times S_{9}$, where $H$ is a group of order 5 .

If $K / H \cong J_{2}$, then $G / H \cong J_{2}$ or $G / H \cong \operatorname{Aut}\left(J_{2}\right)$. If $G / H \cong \operatorname{Aut}\left(J_{2}\right)$, order consideration rules out. If $G / H \cong J_{2}$, then $|H|=3$ and since $\operatorname{cd}\left(J_{2}\right)=\{1,14,21,36,63,70,90$, $126,160,175,189,224,225,288,300,336\}$, the graph $\Gamma\left(J_{2}\right)$ is complete. It follows that $G=Z_{3} \times J_{2}$.

If $K / H \cong A_{10}$, then $G / H \cong A_{10}$ or $G / H \cong S_{10}$. If the former, $H=1$ and so $G=A_{10}$. If the latter, order consideration rules out.

This completes the proof.

## 4. Non character-degree-graph characterizable alternating groups

We start this section with a result of D. L. White [12, Theorem 3.1] which is concerning simple alternating groups with the same character degree graph. More precisely, he proved the following:

Lemma 6. [12, Theorem 3.1] Let $G=A_{n}$, the alternating group of degree $n$, where $n \geq 5$. If $n$ is not 5,6 or 8 , then $\Gamma(G)$ is complete.

In fact, $\left|A_{p+r}\right|=\left|A_{p}\right| \times(p+1) \cdots \times(p+r)$ with $p \geq 11$ is a prime and $\pi((p+r)!) \subseteq \pi(p!)$. We let $n=(p+1) \cdots \times(p+r)$. Then $\Gamma\left(A_{p+r}\right)$ and $\Gamma\left(A_{p}\right)$ have the same degree graph. So the influence of degree graph and order of $A_{p+r}$ is largely dependent on the structure of groups of order $n$ and the number $r$.

We know that $A_{5}, A_{7}$ are characterizable by degree graphs and orders. Then we put forward the following conjecture.

Conjecture 1. Are all alternating groups $A_{p}$ with $p \geq 5$ a prime, characterizable by character degree graphs and their orders?

From Main Theorems 2 and $3, A_{9}$ and $A_{10}$ are not uniquely determined by the character degree graphs and their orders. If $p \geq 11$, then there are alternating group which have the same character-degree graph, and so there are at least two groups with these property, then we have the following conjecture.

Conjecture 2. Let $p \geq 11$ be a prime and $\pi((p+r)!) \subseteq \pi(p!)$. Then for all alternating groups $A_{p+r}$, there are at least 2 groups with the same character degree graphs and orders.

## Acknowledgments

This work was supported by the Opening Project of Sichuan Province University Key Laboratory of Bridge Non-Destruction Detecting and Engineering Computing (Grant Nos: 2013QYJ02 and 2014QYJ04); the Scientific Research Project of Sichuan University of Science and Engineering (Grant Nos: 2014RC02) and by the Department of Sichuan Province Education(Grant Nos: 15ZA0235 and 16ZA0256). The author is very grateful for the helpful suggestions of the referee.

## References

[1] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray.
[2] I.M. Isaacs, Character theory of finite groups, Dover Publications, Inc., New York, 1994. Corrected reprint of the 1976 original [Academic Press, New York].
[3] B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen, Recognition by character degree graph and order of simple groups of order less than 6000, Miskolc Math. Notes, 15(2), 2014, 537-544.
[4] B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen, Recognition of the simple group $\operatorname{PSL}\left(2, p^{2}\right)$ by character degree graph and order, Monatsh. Math., 178(2), 2015, 251257.
[5] A.S. Kondrat'ev, V.D. Mazurov, Recognition of alternating groups of prime degree from the orders of their elements, Sibirsk. Mat. Zh., 41(2), 2000, 359-369.
[6] V. Landazuri, G.M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra,32, 1974, 418-443.
[7] D.E. Littlewood, Group characters and the structure of groups, Proc. London Math. Soc., S2-39(1), 1934, 150-199.
[8] S. Liu, OD-characterization of some alternating groups, Turkish J. Math., 39(3), 2015, 395-407.
[9] O. Manz, R. Staszewski, W. Willems, On the number of components of a graph related to character degrees, Proc. Amer. Math. Soc., 103(1), 1998, 31-37.
[10] W.A. Simpson, J.S. Frame, The character tables for $\operatorname{SL}(3, q), \operatorname{SU}\left(3, q^{2}\right), \operatorname{PSL}(3, q)$, $\operatorname{PSU}\left(3, q^{2}\right)$, Canad. J. Math., 25, 1973, 486-494.
[11] U.M. Webb, The number of stem covers of an elementary abelian p-group, Math. Z., 182(3), 1983, 327-337.
[12] D.L. White, Degree graphs of simple groups Rocky Mountain J. Math., 39(5), 2009, 1713-1739.
[13] H. Xu, G. Chen, Y. Yan, A new characterization of simple $K_{3}$-groups by their orders and large degrees of their irreducible characters, Comm. Algebra, 42(12), 2014, 5374-5380.
[14] H. Xu, Y. Yan, G. Chen, A new characterization of Mathieu-groups by the order and one irreducible character degree, J. Inequal. Appl., 2013:209, 2013.
[15] A.V. Zavarnitsine, Finite simple groups with narrow prime spectrum, Sib. Elektron. Mat. Izv., 6, 2009, 1-12.

Shitian Liu<br>School of Science, Sichuan University of Science and Engineering 643000, Zigong Sichuan, P. R. China<br>E-mail: s.t.liu@yandex.com

Received 01 December 2015
Accepted 27 January 2016

