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A Characterization of Some Alternating Groups by Their
Orders and Character Degree Graphs

S. Liu

Abstract. The aim of this study was to characterize some alternating groups by their orders and
character degree graphs. To achieve this, G was used as a finite group. The character degree graph
Γ(G) of G is the graph whose vertices are the prime divisors of character degrees of G, and two
vertices p and q are joined by an edge if p · q divides some character degree of G. An was used as
an alternating group of degree n. Khosravi et. al (2014). have shown that An, with n = 5, 6, 7
are characterizable by the character degree graphs and their orders. The results of this study
achieved the conclusion of characterizing the alternating group An, where n = 8, 9, 10, by using its
character degree graph and order. In particular, the alternating groups A9 and A10 are not unique
determined by their character degree graphs and their orders.
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1. Introduction

In this paper, all groups investigated are finite. Let G be a finite group and Irr(G) be
the set of all complex irreducible characters of G. Let cd(G) = {χ(1) : χ ∈ Irr(G)} denote
the set of character degrees of G.

In [9], the concept of character degree graph was introduced. The graph that has been
most widely invested is the graph Γ(G) whose vertices are the prime divisors of character
degrees of the group G and two vertices p and q are joined by an edge if pq divides the
character degree of G. Let Ln(q) denote the projective special linear group of degree n
over a finite field of order q. Khosravi et. al. in [4] proved that the group L2(p

2), where
p is a prime, is characterizable by the degree graph and order. Khosravi et. al. in [3]
studied the simple groups of order less than 6000 by using the character degree graph and
order. Let An be the alternating group of degree n. We know that An with n = 5, 6, 7 is
characterized by the degree graph and its order. The only remaining alternating group A8

whose character degree graph is not complete, has not been characterized by considering
the character degree graph and its order. So we prove the following theorem.
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Main Theorem 1. Let G be a group such that |G| = |A8| = 26 · 32 · 5 · 7 = 20160 and
Γ(G) = Γ(A8). Then G is isomorphic to A8.

In fact, not all simple groups are characterized by their character degree graphs and
their orders. For instance, U3(3) whose order is 6048, is not characterizable by its degree
graph and its order (see [3, Remark 1]).

Note the fact that the only pairs of simple groups of the same order are A8, L3(4) and
PSp(2n, q), PΩO(2n + 1, q), where n ≥ 3 and q is odd. These groups are determined by
their smallest character degree larger than 1 [6]. Therefore there are some simple groups
which are determined by their orders and their character degree graphs. We know that
A7 is characterized by its character degree graph and order. But for the alternating A9

with Γ(A9) complete, what’s the influence of its character degree graph and order on the
structure of groups? We will try to answer this question.

Main Theorem 2. Let G be a group such that |G| = |A9| = 26 · 34 · 5 · 7 = 181440 and
Γ(G) = Γ(A9). Then G has one of the following structures:

(1) G = H ×A7, where H is a group of order 72.

(2) G = H × (Z2.A7), where H is a group of order 36.

(3) G = H × S7, where H is a group of order 36 and Sn is a symmetric group of degree
n.

(4) G = (Z3 o Z3)×A8.

(5) G = Z3 × SL3(4).

(6) G = A9

Also we give the structure of groups under the condition that Γ(A10) = Γ(G) and order
|A10| = |G|. Obviously, it has more complicated structures.

Main Theorem 3. Let G be a group such that |G| = |A10| = 27 · 34 · 52 · 7 = 1814400 and
Γ(G) = Γ(A10). Then G has one of the following structures:

(1) G = H ×A7, where H is a group of order 720.

(2) G = H × (Z2.A7), where H is a group of order 360.

(3) G = H × S7, where H is a group of order 360.

(4) G = H × L3(4) where |H| = 90 and 2 ∈ cd(H).

(5) G = H × (Z2.L3(4)) where |H| = 45.

(6) G = H × (S3.L3(4)) where |H| = 15.

(7) G = Z3 × SL3(4).
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(8) G = H ×A8, where H is a group of order 90.

(9) G = H × (Z2.A8), where H is a group of order 45.

(10) G = H × S8, where H is a group of order 45.

(11) G = H ×A9, where |H| = 10.

(12) G = Z5 × (Z2.A9).

(13) G = Z5 × S9.

(14) G = H × SL3(4), where H is a group of order 30.

(15) G = Z3 × J2

(16) G = A10.

It follows from Main Theorems 2 and 3 that the groups A9 and A10 are not uniquely
determined by the degree graphs and their orders.

2. Notation and some preliminary results

We introduce some notation which will be used to prove the main theorem. Let Sn
and An be the symmetric and alternating groups of degree n, respectively. If N EG and
θ ∈ Irr(N), then the inertia group of θ in G is IG(θ) = {g ∈ G | θg = θ}. If n is an integer
and r is a prime divisor of n, then we write either nr = ra or ra‖n if ra | n but ra+1 - n.
Let G be a group and r is a prime, then denote the set of Sylow r-subgroups Gr of G by
Sylr(G). If H is a characteristic subgroup of G, we write H chG. All other notation is
standard (see [1]).

Lemma 1. Let AEG be abelian. Then χ(1) divides |G : A| for all χ ∈ Irr(G).

Proof. See Theorem 6.5 of [2]. J

Lemma 2. Let N E G and let χ ∈ Irr(G). Let θ be an irreducible constituent of χN

and suppose that θ1, · · · , θt are distinct conjugates of θ in G. Then χN = e
t∑
i=1

θi, where

e = [χN , θ] and t = |G : IG(θ)|. Also θ(1) | χ(1) and χ(1)
θ(1) |

|G|
|N | .

Proof. See Theorems 6.2, 6.8 and 11.29 of [2]. J

Lemma 3. Let G be a non-soluble group. Then G has a normal series 1 EH EK E G,
such that K/H is a direct product of isomorphic non-abelian simple groups and |G/K| |
|Out(K/H)|.

Proof. See Lemma 1 of [13]. J
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Lemma 4. Let G be a finite soluble group of order pa11 p
a2
2 · · · pann , where p1, p2, · · · , pn are

distinct primes. If kpn + 1 - paii for each i ≤ n− 1 and k > 0, then the Sylow pn-subgroup
is normal in G.

Proof. See Lemma 2 of [14]. J

We also need the structure of non-abelian simple group whose largest prime divisor is
less than 7.

Lemma 5. If S is a finite non-abelian simple group such that π(S) ⊆ {2, 3, 5, 7}, then S
is isomorphic to one of the following simple groups in Table 1.

Proof. [15]. J

Table 1. Finite non-abelian simple groups S with π(S) ⊆ {2, 3, 5, 7}
S Order of S Out(S) S Order of S Out(S)

A5 22 · 3 · 5 2 L2(49) 24 · 3 · 52 · 72 22

L2(7) 23 · 3 · 7 2 U3(5) 24 · 32 · 53 · 7 S3
A6 23 · 32 · 5 22 A9 26 · 34 · 5 · 7 2

L2(8) 23 · 32 · 7 3 J2 27 · 33 · 52 · 7 2

A7 23 · 32 · 5 · 7 2 S6(2) 29 · 34 · 5 · 7 1

U3(3) 25 · 33 · 7 2 A10 27 · 34 · 52 · 7 2

A8 26 · 32 · 5 · 7 2 U4(3) 27 · 36 · 5 · 7 D8

L3(4) 26 · 32 · 5 · 7 D12 S4(7) 28 · 32 · 52 · 74 2

U4(2) 26 · 34 · 5 2 O+
8 (2) 212 · 35 · 52 · 7 S3

3. The proofs of Main Theorems

In this section, we present the proofs of main theorems separately.
We know from [3], that the alternating groups An with n = 5, 6, 7 are characterizable

by their character degree graphs and orders. So in the following, we consider alternating
groups An with n = 8, 9, 10 separately by using the character degree graphs and their
orders.

3.1. The proof of Main Theorem 1

Proof. It is easy to get from [1, p. 22] that

cd(A8) = {1, 7, 14, 20, 21, 28, 35, 45, 56, 64, 70}

and
|G| = |A8| = 26 · 32 · 5 · 7 = 20160.

It follows that Γ(G) is the graph with vertex set {2, 3, 5, 7} and there is an edge between
the vertices 5 and 7. So there is a character χ ∈ Irr(G) with 5 · 7 | χ(1).

It is easy to get O5(G) = 1 and O7(G) = 1. In fact, if O7(G) 6= 1, then since |G7| = 7,
O7(G) is a normal Sylow 7-subgroup of G of order 7 and so O7(G) is abelian. Then by
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Lemma 1, for all χ ∈ Irr(G), χ(1) | |G : O7(G)|, a contradiction. Similarly we can prove
that O5(G) = 1.

We first assume that G is soluble and M is a minimal normal subgroup of G. Then M
is an elementary abelian p-group. where p = 2 or p = 3. Note that |G|p = p for p = 5, 7
and in Γ(G), there is a character χ ∈ Irr(G) such that 5 · 7 divides χ(1). Therefore we
consider the following two cases.

(1) Let M be a 3-group.

Since there is an edge between 3 and 7, then |M | = 3. Let H/M be a Hall subgroup
of G/M of order 26 ·5 ·7. Then |G/M : H/M | = 3. It follows that (G/M)/(L/M) ↪→
S3, where S3 is the symmetric group of degree 3 and L/M = CoreG/M (H/M) :=⋂
gM∈G/M (H/M)gM , the core of H/M in G/M . So |L/M | = |HG/M | = 26 · 5 · 7, or

|L/M | = 25 · 5 · 7. In what follows, two cases are considered.

(1.1) |L/M | = 25 · 5 · 7.

Then L = HG = H and |G : L| = 3. Let θ ∈ Irr(L) with e = [χL, θ] 6= 0.
Then 5 · 7 = etθ(1), where t = [G : IG(θ)]. Since e and t are divisors of
|G : L| = 3. Therefore e = t = 1 and so χL = θ. Let η ∈ Irr(M) be such that
e′ = [θM , η] 6= 0. Therefore θ(1) = e′t′, where e′ and t′ are divisors of L : M ,
and t′ = [L : IL(η)]. Since there are three linear characters, then t′ ≤ 3 and
so t′ = 1. It follows that e′ = 5 · 7. Therefore (5 · 7)2 ≤ |L : M | = 25 · 5 · 7, a
contradiction.

(1.2) |L/M | = 26 · 5 · 7.

Similarly as in the Case 1.1 above, we can have that (e′2, t
′
2) = (2·7, 1), (e′3, t

′
3) =

(2 ·5, 1), (e′4, t
′
4) = (6, 1) or (2, 3), (e′5, t

′
5) = (15, 1) or (5, 3) and (e′7, t

′
7) = (21, 1)

or (7, 3). In these cases,
∑
e′it
′
i is equal to at most 2123 which is less than 26 ·5·7.

It means that there is a character χ such that χ(1) = pqr is the product of three
different primes p, q, r of |L|. Since π(L) = {2, 3, 5, 7}, then the possible triples
(p, q, r) are (2, 3, 7) or (2, 5, 7), because there is no edge between the vertices 3
and 5.

If (p, q, r) = (2, 5, 7), then similar to the Case 1.1, we have that e′ = 2 · 5 · 7 and
t′ = 1 and so (2 · 5 · 7)2 ≤ 26 · 5 · 7 = |L/M |, a contradiction.

If (p, q, r) = (2, 3, 7), then e′ = 42, t′ = 1 or e′ = 14, t′ = 3. If the former, then
422 + 352 ≤ |L/M | = 26 · 5 · 7, a contradiction. If the latter, then 352 + 3 · 142 +
102 + 72 · 3 + 142 + 22 · 3 = 2268 ≤ |L/M | = 26 · 5 · 7 = 2240, a contradiction.

(2) Let M be a 2-group.

Similar to the Case 1.1, e = t = 1 and χL = θ. Let η ∈ Irr(M) be such that
e′ = [θM , η] 6= 0. Therefore θ(1) = e′t′, where e′ and t′ are divisors of |G : L| = 26−k,
and t′ = [L : IL(η)]. As θ(1)2 ≤ |L| = 2k · 3 · 5 · 7 and there is an edge between 2 and
3, k = 4, 5.

If |L| = 24 · 33 · 5 · 7, let η ∈ Irr(M) be such that e′ = [θM , η] 6= 0. Then θ(1) =
5 · 7 = e′t′, where t′ = [L : IL(η)]. Also M has 16 linear characters and so t′ ≤ 16.
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Therefore e′ = 35 and t′ = 1. It follows that 352 ≤ |L : M | = 32 · 5 · 7. Similarly as
|L| = 25 · 5 · 7, we can rule out.

Therefore G is insoluble and so by Lemma 3, G has a normal series 1EHEKEG, such that
K/H is a direct product of isomorphic non-abelian simple groups and |G/K| | |Out(K/H)|.

We will prove that 5, 7 ∈ π(K/H). Assume the contrary. Then by [5, Lemma 6(d)]
and [8, Lemma 2.13], |Out(K/H)| is divisible by neither 5 nor 7. If the primes 5 and 7
belong to π(H), then by Burnside’s theorem K/H is soluble since π(K/H) = {2, 3} and
|Gp| = p where p = 5, 7, a contradiction. If 5 divides the order |H| but 7 - |H|, then
7 ∈ π(K/H)(otherwise K/H is soluble by Burnside’s theorem) and G5 is characteristic in
H. We also get a contradiction by Lemma 1. Similarly, 7 - |H|.

Therefore by Lemma 5 and considering group order of A8, K/H is isomorphic to one
of the simple groups: A7, A8 or L3(4).

If K/H ∼= A7, then A7 ≤ G/H ≤ Aut(A7). If G/H ∼= A7, then there is an edge be-
tween the vertices 2 and 3 in Γ(G), a contradiction since cd(A7) = {1, 6, 10, 14, 15, 21, 35}.
Similarly, we can rule out when G/H ∼= S7.

If K/H ∼= L3(4), then L3(4) ≤ G/H ≤ Aut(L3(4)). If G/H ∼= L3(4), then H = 1 and
so G ∼= L3(4). But Γ(L3(4)) has no edge between the vertices 2 and 7, a contradiction
since cd(L3(4)) = {1, 20, 35, 45, 63, 64} by [1, p. 24]. For the remaining cases, order
consideration rules out.

If K/H ∼= A8, then A8 ≤ G/H ≤ S8. If G/H ∼= A8, then H = 1 and so G ∼= A8. If
G/H ∼= S8, then order consideration rules out.

This completes the proof. J

Corollary 1. Let G be a finite group with cd(G) = cd(A8) and |G| = |A8|. Then G is
isomorphic to A8.

Proof. Since G7 is a Sylow 7-subgroup of G with order 7, then O7(G) = 1. In fact,
if O7(G) 6= 1, then there is a character χ such that χ(1) = 70. So χ(1) | |G : O7(G)| by
Lemma 1. Similarly, O5(G) = 1.

Assume that G is soluble and let M be a normal minimal subgroup of G. Then M is an
elementary abelian p-group. From the above arguments, we have p = 2, 3. If p = 2, then
|M | ≥ 2 and since M is abelian, there is no character χ such that χ(1) = 64 | |G : M |, a
contradiction. If p = 3, then similarly, there is no character χ such that χ(1) = 9 | |G : M |,
a contradiction.

Therefore G is insoluble and so by Lemma 3, G has a normal series 1 EH EK E G,
such that K/H is a direct product of isomorphic non-abelian simple groups and |G/K| |
|Out(K/H)|. By [5, Lemma 6(d)] and [8, Lemma 2.13], |Out(K/H)| is divisible by neither
5 nor 7. Also 5, 7 - |H| since O5(G) = 1 = O7(G). Hence K/H is isomorphic to A7, A8

or L3(4). If K/H ∼= A7, then Γ(G) is complete, a contradiction since Γ(A7) is complete.
If K/H ∼= L3(4), then G ∼= L3(4), a contradiction since the vertices 2 and 7 are joined by
an edge. If K/H ∼= A8, then G ∼= A8, this is the desired result.

This completes the proof. J
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3.2. The proof of Main Theorem 2

Proof. We can get from [1, p. 37], that cd(A9) = {1, 8, 21, 28, 35, 42, 48, 56,
84, 105, 120, 162, 168, 189, 216}. Therefore Γ(G) is a complete graph with vertex set
{2, 3, 5, 7}. Then there is a character χ ∈ Irr(G) such that 5 · 7 | χ(1). If O5(G) 6= 1,
then since |G5| = 5, O5(G) is a normal Sylow 5-subgroup of G and so for all χ ∈ Irr(G),
χ(1) | |G : O5(G)|, contradicting Lemma 1. Therefore O5(G) = 1. Similarly, O7(G) = 1.

Suppose that G is soluble and let M be a minimal normal subgroup of G. Then M
is an elementary abelian normal p-group. Since O5(G) = O7(G) = 1, then either p = 2
or p = 3. Since Γ(G) is complete, then there is a character β such that 6 | β(1) and so,
|M | | 25 or |M | | 33. We consider two cases.

Case 1. Let M be a 3-group.
Then |M | = 3a with 1 ≤ a ≤ 3 and so |G/M | = 26 · 34−a · 5 · 7. Let H/M be a Hall

subgroup of order 26·5·7. Then |G/M : H/M | = 34−a and so G/HG ⇀ S34−a . Let L = HG.
Then the order of L/M is equal to |L/M | = |HG/M | = 26 ·5 ·7 or |L/M | = 25 ·5 ·7. Similar
to the Case 1 of Theorem 1, we only consider the following cases: (p, q, r) = (2, 3, 5) and
(p, q, r) = (3, 5, 7) with |L/M | = |HG/M | = 26 · 5 · 7.

(1.1) (p, q, r) = (2, 3, 5) and |L/M | = |HG/M | = 26 · 5 · 7.

In this case, there is a character such that χ(1) = 2 · 3 · 5. Let θ ∈ Irr(L) with
e = [χL, θ] 6= 0. Then 2 · 3 · 5 = etθ(1), where t = [G : IG(θ)]. Since e and t are
divisors of |G : L| = 34−a where a ∈ {1, 2, 3}. Therefore (e, t) = (1, 1), (3, 10) or
(1, 30).

Let (e, t) = (1, 1). Then χl = θ. Let η ∈ Irr(M) be such that e′ = [θM , η] 6= 0.
Therefore θ(1) = e′t′, where e′ and t′ are divisors of |L : M |, and t′ = [L : IL(η)].
Since there are 3a linear characters, then t′ ≤ 3a and so t′ = 1, e′ = 2 · 3 · 5 or t′ = 3,
t′ = 10. Similar to the Case 1.1 of Theorem 1, (e′2, t

′
2) = (2 · 7, 1), (e′3, t

′
3) = (2 · 5, 1),

(e′4, t
′
4) = (6, 1) or (2, 3), (e′5, t

′
5) = (15, 1) or (5, 3) and (e′7, t

′
7) = (21, 1) or (7, 3).

Therefore e′2 · t′+
∑7

i=2 e
′2
i · t′i ≤ 2240, a contradiction. If the latter, we also can rule

out similarly.

Also we can rule out “(e, t) = (3, 10) or (1, 30)”.

(1.2) (p, q, r) = (3, 5, 7) and |L/M | = |HG/M | = 26 · 5 · 7.

Similar to the Case 1.1 of Theorem 2, we have either t′ = 1 and e = 105 or t′ = 3
and e′ = 35. If the former, then (105)2 ≤ |L/M | = 26 · 5 · 7, a contradiction. If the
latter, then 3 · (35)2 ≤ 26 · 5 · 7, also a contradiction.

Case 2. Let M be a 2-group.
Then since there is an edge between 2 and 3 in Γ(G), |M | = 2a with 1 ≤ a ≤ 5. Hence

we have |G/M | = 26−a · 34 · 5 · 7. Let H/M be a Hall subgroup of order 34 · 5 · 7 of G/M .
If 3 ≤ a ≤ 5, then G

HG
↪→ S26−a . Let L = HG. Then |L/M | = 34 · 5 · 7 or |L/M | =

33 · 5 · 7. By Lemma 4, G7M/M is normal in L/M . Since G7 is normal in G7M , then
G7M = G7 ×M . It follows that G7 is normal in L. As L chG, G7 is normal in G, a
contradiction.
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If 1 ≤ a ≤ 2, then by [11], G
CG(M) / GL(a, 3), where GL(n, q) is the general linear

group of degree n over finite field of order q. Therefore G = CG(M), |CG(M)| = 25 ·34 ·5·7,
CG(M)| = 22 · 33 · 5 · 7. Let C = CG(M).

(2.1) Let |G| = |C|. In this case, there is a 2-group which is normal in G. So we rule out
this case as the minimality of M .

(2.2) Let |C| = 25 · 34 · 5 · 7. Then we can rule out it as the Case 1.1 of Theorem 1.

(2.3) Let |C| = 22 · 33 · 5 · 7. Then G7 is normal in C by Lemma 4. Since C chG, then G7

is normal in G, a contradiction.

Therefore G is insoluble and so by Lemma 3, G has a normal series 1EHEKEG, such that
K/H is a direct product of isomorphic non-abelian simple groups and |G/K| | |Out(K/H)|.

Similarly as in the proof of Theorem 1, the primes 5 and 7 divide |K/H|. Therefore by
Lemma 5 and considering group orders, K/H is isomorphic to one of the simple groups:
A7, A8, L3(4) or A9.

If K/H ∼= A7, then A7 ≤ G/H ≤ Aut(A7). We know that cd(A7) = {1, 6, 10, 14, 15,
21, 35} and that Γ(G) and Γ(A7) are complete.

(a) G/H ∼= A7. Then |H| = 72 and so the two possibilities for G are G = H × A7 and
G = M × (Z2.A7), where M is a group of order 36.

In order to prove our claims, note that the order of Aut(H) is smaller than the
order of A7. Now let C = CG(H). Then NG(H)/CG(H) = G/C is isomorphic to a
subgroup of the automorphism group of H. It means that |G/C| < |A7| and C 
 H.
Thus CH > H(if CH = H, then G/C is embedded in a subgroup of Aut(H), but
the order of G/C is larger than that of Aut(H), a contradiction.) and G = CH. Let
D = C ∩ H. Then C centralizes D and since D ≤ C, H centralizes D. Therefore
D ≤ Z(G). Since G/H = CH/H ∼= C/D is isomorphic to A7 and D ≤ Z(C). Since
the Schur multiplier of A7 has order 2, then C ′ ∩D has order 1 or 2. If C ′ ∩D = 1,
then C ′ = A7 and C = D×C ′. In this case, A7 is a direct factor of G. If |C ′∩D| = 2,
then C ′ = Z2.A124 and C ′ is a direct factor of G.

(b) G/H ∼= S7. Then |H| = 36 and so G = H × S7.

If K/H ∼= L3(4), then L3(4) ≤ G/H ≤ Aut(L3(4)). If G/H ∼= L3(4), then |H| = 9.
But since cd(L3(4)) = {1, 20, 35, 45, 63, 64} by [1, p. 24], Γ(L3(4)) has no edge between
the vertices 2 and 7, a contradiction. If G/H ∼= SL3(4), then |H| = 3 and by [10],
cd(SL3(4)) = {1, 15, 20, 21, 35, 45, 63, 64, 84, 105} and so Γ(SL3(4)) is complete. It follows
that there is only one possible group for this case. If G/H ∼= Z3.L3(4), then |H| = 3 and
so G = Z3 × (Z3.L3(4)). Also in this case, Γ(Z3.L3(4)) has no edge between the vertices
2 and 7, a contradiction.

If K/H ∼= A8, then A8 ≤ G/H ≤ S8. We know that cd(A8) = {1, 7, 14, 20, 21, 28, 35,
45, 56, 64, 70} and so there is no edge between the vertices 2 and 3.
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(a) If G/H ∼= A8, then |H| = 9. Since the possible groups of order 9 are Z9 and Z3oZ3,
the semidirect product of Z3 by Z3. Hence there are groups satisfying that Γ(G) is
complete.

(b) If G/H ∼= S8, then order consideration rules out.

If K/H ∼= A9, then G ∼= A9 or G ∼= S9. If the latter, order consideration rules out. So
G ∼= A9.

This completes the proof. J

3.3. The proof of Main Theorem 3

Proof. From [1, p. 48], cd(A10) = {1, 9, 35, 36, 42, 75, 84, 90, 126, 160, 210, 224,
225, 252, 288, 300, 315, 350, 384, 450, 525, 567} and so Γ(G) is complete. Since there
is an edge between the vertices 5 and 7, then there is a character χ ∈ Irr(G) such that
5 · 7 | χ(1). Similarly as in the proof of Main Theorem 2, we have O7(G) = 1.

Assume that G is soluble and let M be a minimal normal subgroup of G. Then M is
a normal abelian elementary p-group. Since O7(G) = 1, then p = 2, 3 or 5. Since Γ(G) is
complete, then there is a character β such that 2 · 3 · 5 | β(1) and so, |M | | 26, |M | | 33 or
|M | = 5. We consider three cases.

Case 1. Let M be a 5-group.

Similarly as in Case 1.1 of Theorem 1, we rule out.

Case 2. Let M be a 3-group.

Similarly as in the proof of Case 1 of Theorem 2, we can rule out.

Case 3. Let M be a 2-group.

Similarly as in the proof of Case 2 of Theorem 2, we can rule out.

Therefore G is insoluble and so by Lemma 3, G has a normal series 1 EH EK E G,
such that K/H is a direct product of isomorphic non-abelian simple groups and |G/K| |
|Out(K/H)|.

Similarly as in the proof of Theorem 1, the primes 5 and 7 divide |K/H|. Therefore by
Lemma 5 and considering group orders, K/H is isomorphic to one of the simple groups:
A7, A8, L3(4), A9, J2 or A10.

If K/H ∼= A7, then A7 ≤ G/H ≤ Aut(A7). We know that cd(A7) = {1, 6, 10, 14, 15,
21, 35} and that Γ(G) and Γ(A7) are complete.

(a) G/H ∼= A7. Then |H| = 720 and so the two possibilities for G are G = H ×A7 and
G = M × (Z2.A7), where M is a group of order 360. In this case, we can prove it
similarly as in the case “G/H ∼= A7” of Theorem 2.

(b) G/H ∼= S7. Then |H| = 360 and so G = H × S7.

If K/H ∼= L3(4), then L3(4) ≤ G/H ≤ Aut(L3(4)). We know that Mult(L3(4)) =
4× 4× 3 and Out(L3(4)) has the structure 2.S3 by [1, p. 23].
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(a) Let G/H ∼= L3(4). But since cd(L3(4)) = {1, 20, 35, 45, 63, 64} by [1, p. 24], Γ(L3(4))
has no edge between the vertices 2 and 7. We know that Γ(G) is complete and so,
we need to consider that there is an edge between 2 and 7 in Γ(G).

(a1) Let G/H ∼= L3(4). Then G = H × L3(4) with |H| = 90 and 2 ∈ cd(H).

(a2) Let G/H ∼= Z2.L3(4). Then |H| = 45 and so G = H × (Z2.L3(4)).

(a3) Let G/H ∼= Z4.L3(4). Then order consideration rules out. Similarly we rule
out G/H ∼= Z2.S3.L3(4) and G/H ∼= Z3.L3(4).

(a4) Let G/H ∼= S3.L3(4). Then G = H × (S3.L3(4)).

In order to prove our claims, note that the order of Aut(H) is smaller than the
order of L3(4). Now let C = CG(H). Then NG(H)/CG(H) = G/C is isomorphic to
a subgroup of the automorphism group of H. It means that |G/C| < |L3(4)| and
C 
 H. Thus CH > H and G = CH since H is a maximal soluble subgroup of G.
Let D = C∩H. Then C centralizes D and since D ≤ C, H centralizes D. Therefore
D ≤ Z(G). Since G/H = CH/H ∼= C/D is isomorphic to L3(4) and D ≤ Z(C).
Since the Schur multiplier of L3(4) has order 48, then C ′∩D has order n with n | 48
and, also n | 90. We consider the following cases by using the order of H.

If C ′∩D = 1, then C ′ = L3(4) and C = D×C ′. In this case, L3(4) is a direct factor
of G.

If |C ′ ∩D| = 2, then C ′ = Z2.L3(4) and C ′ is a direct factor of G.

If |C ′ ∩D| = 3, then C ′ = Z3.L3(4) and C ′ is a direct factor of G.

If |C ′ ∩ D| = 6, then C ′ = Z6.L3(4) or S3.L3(4) since there are only two types of
groups of order 6: cyclic group, Z6 and symmetric group, S3. In this case, also C ′ is
a direct factor of G.

(b) If G/H ∼= SL3(4), then |H| = 3. By [10], cd(SL3(4)) = {1, 15, 20, 21, 35, 45, 63,
64, 84, 105} and so Γ(SL3(4)) is complete. Therefore G = Z3 × SL3(4).

If K/H ∼= A8, then A8 ≤ G/H ≤ S8. We know that cd(A8) = {1, 7, 14, 20, 21, 28, 35,
45, 56, 64, 70} and so there is no edge between the vertices 2 and 3.

(a) If G/H ∼= A8, then |H| = 90. Since Γ(G) is complete, then the possibilities for G are
G = H ×A8, where 3 ∈ cd(H), and G = M × (Z2.A8), where M is a group of order
45. In this case, we can prove it similarly as in the case G/H ∼= A7 of Theorem 2.

(b) If G/H ∼= S8, then |H| = 45. Since cd(S8) = {1, 7, 14, 20, 21, 28, 35, 42, 56, 64, 70,
90} [7], then Γ(S8) is complete and so G = H × S8, where H is a group of order 45.

If K/H ∼= A9, then G/H ∼= A9 or G ∼= S9.

(a) If G/H ∼= A9, then |H| = 10 and so, we have either G = H×A9 or G = M×(Z2.A9),
where M is a group of order 5. In this case, we can prove it similarly as in the case
G/H ∼= A7 of Theorem 2.
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(b) If G/H ∼= S9, then |H| = 5 and so, G = H × S9, where H is a group of order 5.

If K/H ∼= J2, then G/H ∼= J2 or G/H ∼= Aut(J2). If G/H ∼= Aut(J2), order consider-
ation rules out. If G/H ∼= J2, then |H| = 3 and since cd(J2) = {1, 14, 21, 36, 63, 70, 90,
126, 160, 175, 189, 224, 225, 288, 300, 336}, the graph Γ(J2) is complete. It follows that
G = Z3 × J2.

If K/H ∼= A10, then G/H ∼= A10 or G/H ∼= S10. If the former, H = 1 and so G = A10.
If the latter, order consideration rules out.

This completes the proof. J

4. Non character-degree-graph characterizable alternating groups

We start this section with a result of D. L. White [12, Theorem 3.1] which is concerning
simple alternating groups with the same character degree graph. More precisely, he proved
the following:

Lemma 6. [12, Theorem 3.1] Let G = An, the alternating group of degree n, where n ≥ 5.
If n is not 5, 6 or 8, then Γ(G) is complete.

In fact, |Ap+r| = |Ap|×(p+1) · · ·×(p+r) with p ≥ 11 is a prime and π((p+r)!) j π(p!).
We let n = (p + 1) · · · × (p + r). Then Γ(Ap+r) and Γ(Ap) have the same degree graph.
So the influence of degree graph and order of Ap+r is largely dependent on the structure
of groups of order n and the number r.

We know that A5, A7 are characterizable by degree graphs and orders. Then we put
forward the following conjecture.

Conjecture 1. Are all alternating groups Ap with p ≥ 5 a prime, characterizable by
character degree graphs and their orders?

From Main Theorems 2 and 3, A9 and A10 are not uniquely determined by the character
degree graphs and their orders. If p ≥ 11, then there are alternating group which have the
same character-degree graph, and so there are at least two groups with these property,
then we have the following conjecture.

Conjecture 2. Let p ≥ 11 be a prime and π((p + r)!) j π(p!). Then for all alternating
groups Ap+r, there are at least 2 groups with the same character degree graphs and orders.
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