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On Conservative and Dissipative Finite Difference Scheme

of Barotropic Gas Dynamics and Its Application to Prob-

lems of Calculation of Large-scale Sea Currents Using

Shallow Water Model

F.B. Imranov∗, A.G. Sokolov

Abstract. In this paper we consider the approximation of a differential continuity equation by
conservative difference scheme with non-negative solution. The grid analogue of energy inequality
is obtained for nonlinear difference scheme for barotropic gas. The scheme allows to calculate
the solution in the case when density is equal to zero. The obtained scheme is applied to the
calculations of large-scale currents of the Black and Caspian seas on shallow water model.
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1. Introduction

In continuum mechanics, the model of the dynamics of non-viscous compressible gas,
consisting of the law of conservation of mass and Euler’s equation, appears to be most
simple. At the same time, to date the conditions of existence of the solution of the initial-
boundary value problems are not fully clarified for such a model. Moreover, it remains an
open question what is the functional space to which the solution of such problems should
belong to. It even turned out to be easier to consider problems with viscosity elements in
Euler equations of motion and with additional regularization of the continuity equation.
The construction of difference schemes for such problems is much easier of course, but
also the solutions obtained by numerical methods in such schemes may be quite different
than described by not simplified system of equations. In this paper we consider difference
schemes for the original conservation laws of continuum mechanics, constructed using
the principle of ”difference against the flow”, which managed to get a number of useful
properties.
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2. Main Results

We consider the following boundary value problem (compressible Euler equations [5])
for t > 0, x ∈ Ω :

∂ρ

∂t
+ div(ρu) = 0,

∂ρu

∂t
+ div(ρu× u) + grad p = 0,

p = ργ ,

(1)

where ρ is the gas density, u is a velocity, p is a pressure, and γ = const > 1 is a given
constant.

The conditions of impermeability are defined on the boundary of the domain. In
one-dimensional case Ω = [0, 1]:

u(t, 0) = u(t, 1) = 0.

In case of two dimensions Ω = [0, 1] × [0, 1],u = (u1, u2):

u1(t, 0, x2) = u1(t, 1, x2) = 0, u2(t, x1, 0) = u2(t, x1, 1) = 0.

And the initial conditions are

ρ|t=0 = ρ0(x) > 0,u|t=0 = u0(x), x ∈ Ω.

For the above problem under the conditions of existence, uniqueness and differentia-
bility of functions ρ, u one can formally obtain the integral identity

∫

Ω

(

ρ(t, x)
u2(t, x)

2
+

p(t, x)

γ − 1

)

dx =

∫

Ω

(

ρ(0, x)
u2(0, x)

2
+

p(0, x)

γ − 1

)

dx,

and if the problem has a viscosity

∂ρu

∂t
+ div(ρu× u) + Lu+ grad p = 0,

with some linear symmetric positive definite operator L (supplemented if necessary with
boundary conditions), then, assuming non-negativity of the function ρ(t, x), it is possible
to obtain the energy inequality

∫

Ω

(

ρ(t, x)
u2(t, x)

2
+

p(t, x)

γ − 1

)

dx 6

∫

Ω

(

ρ(0, x)
u2(0, x)

2
+

p(0, x)

γ − 1

)

dx. (2)

Next, we construct a difference scheme for this problem. The purpose of the work is
to get the difference analogues of the non-negativity condition for the density function,
conditions of conservatism

∫

Ω

ρ(t, x)dx =

∫

Ω

ρ(0, x)dx, ∀t > 0
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and energy inequality (2).
We introduce a uniform grid on Ω. In one-dimensional case xi = ih, i = 0, ..., N,Nh =

1, in two-dimensional case x1,i = ih1, x2,j = jh2, i = 0, ..., N1, j = 0, ..., N2, N1h1 =
1, N2h2 = 1. We use a constant step in the time variable τ .

We define grid functions ρni , 0 6 i 6 N − 1, uni , 0 6 i 6 N,un0 = unN = 0 in one-
dimensional case; and in case of two spatial directions ρnij , 0 6 i 6 N1 − 1, 0 6 j 6

N2 − 1, un1,ij , 0 6 i 6 N1, 0 6 j 6 N2 − 1, un1,ij = 0at i = 0or i = N1, u
n
2,ij , 0 6 i 6

N1 − 1, 0 6 j 6 N2, u
n
2,ij = 0at j = 0or j = N2. We assume that the grid functions are

zero outside the boundaries of the above indices. As usual, not shifted indices n, i will be
omitted. We use standard notations of the difference schemes theory [6]: y = yni , yt,i =
(yn+1

i − yni )/τ, yx̄,i = (yni − yni−1)/h.
In one-dimensional case, the approximation of continuity equation is

ρt + ({ρn+1}u)x = 0,

{ρn+1} = ρn+1 − hρn+1
x̄ max(0, sign(u)) =

ρn+1
i + ρn+1

i−1

2
−

h

2
ρn+1
x̄ sign(u),

or

{ρn+1} = [ρn+1
i ]−

h

2
ρn+1
x̄ sign(u), where [ρn+1

i ] =
ρn+1
i + ρn+1

i−1

2
.

Operator braces {.} depend on the grid function u.
In two-dimensional case

ρt + ({ρn+1}1u1)x1
+ ({ρn+1}2u2)x2

= 0,

{ρn+1}1 = ρn+1 − hρn+1
x̄1

max(0, sign(u1)) = [ρn+1]1 −
h

2
ρn+1
x̄1

sign(u1),

{ρn+1}2 = ρn+1 − hρn+1
x̄2

max(0, sign(u2)) = [ρn+1]2 −
h

2
ρn+1
x̄2

sign(u2).

Operators braces {.}1, {.}2 depend on the grid functions u1, u2.
The difference equation for the one-dimensional case in indices

ρn+1
i − ρni

τ
+

+
−ρn+1

i+1 (−ui+1 + |ui+1|) + ρn+1
i (ui+1 + |ui+1| − ui + |ui|)− ρn+1

i−1 (ui + |ui|)

2h
= 0,

0 6 i 6 N − 1, n > 0.

It is assumed that the grid function ρn+1
i is equal to zero for i = −1, i = N . The matrix

of the grid operator Aρn+1 = ({ρn+1}u)x is

1

2h













u1 + |u1| u1 − |u1| 0 . . . 0
−u1 − |u1| u2 + |u2| − u1 + |u1| u2 − |u2| 0 . . .

0 −u2 − |u2| u3 + |u3| − u2 + |u2| u3 − |u3| 0

0 . . . −u3 − |u3|
. . . 0

· · · · · · · · ·
. . . AN−2,N−1

0 . . . 0 AN−1,N−2 AN−1,N−1













.
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It has the following properties: the diagonal consists of non-negative numbers, out off
the diagonal there are only non-positive numbers; the sum of elements in every column is
equal to zero. The matrix is tridiagonal, and if for some i : Ai,i+1 6= 0, then the Ai+1,i = 0,
and if the matrix has three non-zero elements in the row for some i, then the i-th column
consists of only one nonzero diagonal element.

In one-dimensional case, the matrix E+ τA can be inverted by Gauss-Jordan elimina-
tion and the elements of the inverse matrix (E + τA)−1 are non-negative numbers. The
same conclusion can to be reached even under easier arguments that are presented below,
including the case of two spatial variables.

In case of two spatial directions, the matrix Aρn+1 = ({ρn+1}1u1)x1
+ ({ρn+1}2u2)x2

has the same properties: on the diagonal there are non-negative numbers, out off diagonal
there are non-positive numbers; the sum of the elements in a column is zero.

Let’s consider the matrix B = (E + τA)T , dimB = M . It has non-negative numbers
on the diagonal non-positive numbers out of the diagonal, and there is a strict diagonally
dominance by row. For a matrix with these properties iterative methods of Jacobi and
Seidel converge with any initial condition. Let SLAE Bx = b be solved by Jacobi method
with initial condition x0 = 0, and the right-hand side vector b consist of non-negative
numbers. Let’s consider the computational scheme of Jacobi method

xn+1
i =

1

Bi,i



bi −

M∑

k=1,k 6=i

Bi,kx
n
k



 , i = 1, 2, ...,M.

It implies that xni > 0, i = 1, 2, ...,M, n = 1, 2, .... The limit vector will also be non-
negative. Thus, for any non-negative vector b, vector x = B−1b will be non-negative. So,
the matrix B−1 consists of non-negative numbers. Accordingly, the matrix (E + τA)−1 =
(B−1)T exists and consists of the non-negative numbers.

The matrix A has the following property.

Lemma 1. In one-dimensional case for any given grid function u, in two-dimensional

case for any grid functions u1, u2 and for ∀τ > 0 :
∥
∥
∥
∥
∥

(
1

τ
E +A

)−1
∥
∥
∥
∥
∥
1

= τ.

Moreover, the sum of the matrix elements

(
1

τ
E +A

)−1

in every column is exactly

equal to τ , and the maximum element in every row is reached on the diagonal element,
and this maximum is strict.

In order to prove the equality
M∑

i=1

(
1

τ
E +A

)−1

i,j

=
1

τ
it is enough to consider the

auxiliary problem
1

τ
ρ1 + Aρ1 =

1

τ
ρ0 with a given vector ρ0 = {0, ...0, 1

︸︷︷︸

j

, 0, ...0}, j ∈

[1,M ], and then take the sum over the grid
1

τ
=

M∑

i=1
ρ1j =

M∑

i=1

(
1

τ
E +A

)−1

i,j

.
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The mentioned properties of matrix elements can be proved by a direct calculation
of inverse matrix elements, for example, using Cramer’s rule. Such calculations are very
simple, but rather cumbersome, so a detailed proof of the Lemma 1 is not given here,
especially because the Lemma is not used for any further considerations.

Theorem 1. A difference scheme for the equation of continuity ρt +A(un)ρn+1 = 0 with

any given grid function un has a unique solution, and if ρ0 > 0, then ρn > 0 for ∀n.
Difference scheme is conservative, i.e.

N−1∑

i=0

hρni =

N−1∑

i=0

hρ0i

in one-dimensional case and

N1−1∑

i=0

N2−1∑

j=0

h1h2ρ
n
ij =

N1−1∑

i=0

N2−1∑

j=0

h1h2ρ
0
ij ,

in case of two spatial dimensions.

From the non-negativity and conservatism we get ‖ρn‖L1,h
= const for ∀n. If un is a

given function and ρ0 > 0, then the obtained equality is the condition of the weak stability
of the difference scheme. However, L1,h →/ L1 as h → 0 because L1 is not reflexive.
Even in the one-dimensional case with a given function u = sin(3πx) the solution of

equation
∂ρ

∂t
+ div(ρu) = 0 will eventually be collected in two δ−functions at the points

x = π, x = 3π with different coefficients depending on the initial conditions ρ0 > 0,
and in other points of the interval [0, 1] ρ(t, x) → 0, t → ∞. The calculations with the
specified difference schemes provide these results. Thus, the continuity equation should be
understood in the sense of theory of distributions and generalized function: (the density
of the continuous medium) ρ(t, x) > 0 everywhere (a.e. inappropriate) and belongs to the
space of non-negative measures [1].

For the approximation of the equations of motion, we use the principle ”difference
against the flow”, the same as in the approximation of continuity equation. Let’s consider
a fully implicit nonlinear difference scheme (Scheme I)

ρt + ({ρn+1}un+1)x = 0,

(ρu)t + ({ρn+1un+1}un+1)x +
γ

γ − 1
ρn+1((ρn+1)γ−1)x̄ = 0,

in one-dimensional case and

ρt + ({ρn+1}1u
n+1
1 )x1

+ ({ρn+1}2u
n+1
2 )x2

= 0,

(ρu1)t + ({ρn+1un+1
1 }1u

n+1
1 )x1

+ ({ρn+1un+1
1 }2u

n+1
2 )x2

+
γ

γ − 1
ρn+1((ρn+1)γ−1)x̄1

= 0,

(ρu2)t + ({ρn+1un+1
2 }1u

n+1
1 )x1

+ ({ρn+1un+1
2 }2u

n+1
2 )x2

+
γ

γ − 1
ρn+1((ρn+1)γ−1)x̄2

= 0,
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in two-dimensional case. Operator braces {.}∗ are determined by the function un+1 in
one-dimensional case and by the functions un+1

1 , un+1
2 in two-dimensional case.

Further reasoning is not essentially different in one- and two-dimensional cases, so only
one-dimensional finite-difference scheme is considered in detail.

Since the scheme is non-linear and implicit, it is required to ensure the solvability of
the step problem

ρn+1 + τ({ρn+1}un+1)x = ρn,

ρn+1un+1 + τ({ρn+1un+1}un+1)x + τ
γ

γ − 1
ρn+1((ρn+1)γ−1)x̄ = ρnun.

Let’s consider an iterative process, in which the operator braces {.} are defined by the
function vk

̺k+1 + τ({̺k+1}vk)x = ρ,

̺k+1vk+1 + τ({̺k+1vk+1}vk)x + τ
γ

γ − 1
̺k+1((̺k+1)γ−1)x̄ = ρu,

when k = 0, 1, ... with initial condition v0 = u. We assume that the initial velocity is
compatible with the points of vanishing of ρ, i.e. v0 = u = 0 if ρ = 0 at the points of the
grid Ωh.

From the first equation of the iterative process we get ̺1 for any already known v0,
and according to the above theorem ̺1 > 0 and ‖̺1‖L1,h

= ‖ρ‖L1,h
.

The obtained grid function ̺1 has no more points of zeroing than ρ. Some points of
zeroing ρ can remain points of zeroing of ̺1, but not necessarily.

From the second equation of the iterative process we exclude the points of zeroing of
̺1. Let v1 = 0 at this point.

After exclusion of points of zeroing of ̺1 = 0 from the second equation of iterative
process, we obtain the system of linear algebraic equations for finding v1 with the matrix
that has the following properties: on diagonal there are strictly positive numbers, off
the diagonal there are non-positive numbers; there are strict diagonal dominance by the
column. For such a matrix there exists an inverse, hence a grid function v1 is uniquely
determined. Then we assume that the velocity v1 is compatible with the points of vanishing
of ρ, i.e. v1 = 0 if ρ = 0 at the points of the grid Ωh.

So, two grid functions uniquely determined on a given grid function v0 = u : first ̺1

and then v1. The transition from the k-th iteration step to the k + 1-th is carried out by
the same rules used in the transition from 0 to 1.

The convergence of this iterative process is not considered. We only need to get uniform
on k estimates of ̺k and vk in some grid norms. Estimates that we need may depend on
τ, h as the spaces of grid functions are finite-dimensional. Grid functions ̺k and vk of the
iterative process exist, so we can estimate them.

We multiply the first equation of the iterative process by −
(vk+1)2

2
, and the second

equation is multiplied by vk+1. Then we add the resulting equations together and sum
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them up all over the grid Ωh. We use the following equalities

1

τ
(̺k+1vk+1 − ρu)vk+1 = vk+1 1

τ
(̺k+1 − ρ)vk+1 + ρ

1

τ
(vk+1 − u)vk+1 =

=
1

2τ
(̺k+1(vk+1)2 − ρu2) + ρ

1

2τ
(vk+1 − u)2 +

1

2τ
(̺k+1 − ρ)(vk+1)2,

(

({̺k+1vk+1}vk)x, v
k+1
)

−

(
1

2
({̺k+1}vk)x, (v

k+1)2
)

=

=

(
1

2
h({̺k+1

i+1 }|v
k
i+1|), ((v

k+1)x)
2

)

≥ 0.

The result is the summation identity

N−1∑

i=1
h
1

2τ
(̺k+1

i (vk+1
i )2 − ρiu

2
i ) +

N−1∑

i=1
hρ

1

2τ
(vk+1 − u)2+

+
N−1∑

i=1
h
1

2
h({̺k+1}|vk|)((vk+1)x̄)

2 = −
N−1∑

i=1
h

γ

γ − 1
̺k+1
i ((̺k+1

i )γ−1)x̄v
k+1
i .

Since ‖̺k+1‖L1,h
= ‖ρ‖L1,h

for any k, this identity gives a uniform on k estimate

‖̺k+1(vk+1)2‖L1,h
6 C(h, ρ, u). Such an estimate is not sufficient to obtain an estimate

‖vk+1‖ 6 C. To obtain this estimate, it is possible to use a term in the summation identity
N−1∑

i=1
hρ

1

2τ
(vk+1−u)2, but let there be a vanishing density ρi = 0, vki = 0 at the point i, and

in the next step of the iterative process this point becomes ”massive”, i.e. ̺k+1
i > 0. It

is impossible to estimate this value from below through the first equation of the iterative
process

̺k+1
i − ρi

τ
+
−̺k+1

i+1 (−vki+1 + |vki+1|) + ̺k+1
i (vki+1 + |vki+1| − vki + |vki |)− ̺k+1

i−1 (v
k
i + |vki |)

2h
= 0,

thus |vk+1
i | can not be estimated from above. An iterative process was considered only to

obtain summation identity.

Let’s consider the case where there exist no points of zeroing ρ, i.e. at all points of
grid ρ > 0.

State the step problem as follows

̺+ τ({̺}v)x = ρ,

̺v + τ({̺v}v)x + τ
γ

γ − 1
̺((̺)γ−1)x̄ = ρu.

Braces operators {.} are defined by the unknown function v. Grid functions ρ > 0, u are
given.

To prove the solvability of a nonlinear system of equations, we apply the following
version of the principle of Leray-Schauder [2].
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Let A be a compact operator in a separable normed space F , and let any possible

solution X ∈ F of the equation X +αA(X) = 0 be uniformly bounded for α ∈ (0, 1]. Then

there exists at least one solution of the equation X +A(X) = 0.

In our case, F is the space of vectors

X =

(
̺
v

)

= (̺0, ̺1, . . . , ̺N−1, v0, v1, . . . , vN )T , and v0 = vN = 0.

We define the operator Aε(X) with a parameter ε > 0:

Aε(X) =
1

ε

(
̺+ τ({̺}v)x − ρ

̺v + τ({̺v}v)x + τ
γ

γ − 1
̺((̺)γ−1)x̄ − ρu

)

.

Then the equation X + αAε(X) = 0 takes the form of a system of nonlinear difference
equations

ε

α
̺+ ̺+ τ({̺}v)x − ρ = 0,

ε

α
v + ̺v + τ({̺v}v)x + τ

γ

γ − 1
̺((̺)γ−1)x̄ − ρu = 0.

In the definition of the grid operator ({̺}v)x we used the operation sign, which can give
a discontinuous function, but ({̺}v)x = A(v)̺, where the matrix A(v) does not contain
operation sign and contains but only operation |. |, which is a continuous function of its
argument. Every convergent sequence Xk, which, due to finitedimensionality of vector
space F , converges pointwise, is converted into pointwise convergent sequence Aε(X

k) by
the operator of the problem. Therefore the conditions of the Leray-Schauder principle for
the operator Aε are satisfied.

Repeating the arguments of derivation of summation identity, but assuming the exis-
tence of a solution of X + αAε(X) = 0, we get the inequalities

( ε

α
+ 1
)−1

‖̺‖1 6 ‖ρ‖1,

N−1∑

i=1
h

(
ε

α
v2 + ρ

1

2τ
(v − u)2

)

6 C(h, ρ, u),

which are uniform on α. Thus, all the conditions of the Leray-Schauder principle are
satisfied, and there exists at least one solution of the problem

ε̺ε + ̺ε + τ({̺ε}vε)x − ρ = 0,

εvε + ̺εvε + τ({̺εvε}vε)x + τ
γ

γ − 1
̺ε((̺ε)

γ−1)x̄ − ρu = 0.

Next, we use the uniform on ε inequalities

(ε+ 1)−1 ‖̺ε‖1 6 ‖ρ‖1,
N−1∑

i=1
h

(

εv2ε + ρ
1

2τ
(vε − u)2

)

6 C(h, ρ, u)
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to pass to the limit as ε → 0. We take convergent at all points of the grid subsequence of
the uniformly bounded at all points of the grid functions ̺ε, vε, using a diagonal process.
Passing to the limit, we obtain the solution of the step problem.

Theorem 2. Suppose that the function ρ0 is strictly greater than zero at the initial time.

Then there exists a solution of the difference scheme

ρt + ({ρn+1}un+1)x = 0,

(ρu)t + ({ρn+1un+1}un+1)x +
γ

γ − 1
ρn+1((ρn+1)γ−1)x̄ = 0,

which satisfies the energy inequality

N−1∑

i=0

h

(

ρn+1 (u
n+1)2

2
+

1

γ − 1
(ρn+1)γ

)

6

N−1∑

i=0

h

(

ρn
(un)2

2
+

1

γ − 1
(ρn)γ

)

.

To prove this theorem, it suffices to verify the validity of the energy inequality. Once
again, repeating the arguments used in the derivation of summation identity, we obtain a
new summation identity

N−1∑

i=1
h
1

2τ
(ρn+1(un+1)2 − ρ(un)2) +

N−1∑

i=1
hρ

1

2τ
(un+1 − un)2+

+
N−1∑

i=1
h
1

2
h({ρn+1}|un|)((un+1)x̄)

2 = −
N−1∑

i=1
h

γ

γ − 1
ρn+1((ρn+1)γ−1)x̄u

n+1.

Now we take scalar product of the first equation of difference scheme by grid function
γ

γ − 1
(ρn+1)γ−1 and add it to the new summation identity. Using equalities

({ρn+1}un+1)x(ρ
n+1)γ−1 = ({ρn+1}un+1ρn+1

i )γ−1)x
︸ ︷︷ ︸

∑

Ωh

(.)=0

−{ρn+1
i+1 }u

n+1
i+1 ((ρ

n+1
i )γ−1)x =

= (.)
︸︷︷︸

∑

Ωh

(·)=0

−(ρn+1
i+1 − hρn+1

x max(0, sign(un+1
i+1 )))u

n+1
i+1 ((ρ

n+1
i )γ−1)x =

= (.)
︸︷︷︸

∑

Ωh

(·)=0

+hρn+1
x max(0, |un+1

i+1 |)((ρ
n+1)γ−1)x−(ρn+1

i+1 )u
n+1
i+1 ((ρ

n+1
i )γ−1)x

︸ ︷︷ ︸

reduced at
∑

Ωh

(·)

,

we obtain

N−1∑

i=1
h
1

2τ
(ρn+1(un+1)2 − ρ(un)2) +

N−1∑

i=1
hρ

1

2τ
(un+1 − un)2+

+
N−1∑

i=0
h
1

τ
(ρn+1 − ρn)

γ

γ − 1
(ρn+1)γ−1+

+
N−1∑

i=1
h
1

2
h({ρn+1}|un|)((un+1)x̄)

2 +
γ

γ − 1

N−1∑

i=1
h2ρn+1

x̄ max(0, |un+1|)))((ρn+1)γ−1)x̄ = 0.
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The last summand is non-negative, because the function f(ρ) = ργ−1 is monotone in ρ.
In the third summand, in all points of grid we have

(ρn+1 − ρn)
γ

γ − 1
(ρn+1)γ−1

> ((ρn+1)γ − (ρn)γ)
1

γ − 1
,

by virtue of the Young inequality.
Using Young’s inequality and removing non-negative terms in the last summation

identity, we obtain energy inequality. Theorem 2 is completely proved for one-dimensional
case.

For two-dimensional case Theorem 2 is also true.
A major shortcoming of Scheme I in the embodiment of non-linear implicit scheme is

the restriction that ρ0 is strictly greater than zero.
We introduce for Scheme I the following rule.

3. Rule of internal boundary conditions for Scheme I

At the grid point where ρni = 0 the approximation of the equation of motion is replaced

by an inner boundary condition un+1
i = 0 in one-dimensional case. In the case of two

spatial dimensions, at the points ρni,j = 0 the approximation of the equations of motion is

replaced by the internal boundary conditions un+1
1,i,j = un+1

2,i,j = 0.
When deriving the summation identity in one dimensional case, the equation of motion

was multiplied scalarly by un+1, the continuity equation by −
(un+1)2

2
, and the obtained

results were summarized. In the case of using the Rule of internal boundary conditions,
summation identity will be exactly the same. And the operator Aε(X), involved in the
proof of the solvability of the step difference scheme with the application of the principle of
Leray-Schauder will be defined on a smaller number of points vi, i ∈ {0, 1, ..., N : ρni 6= 0},
but it will be continuous, and the solution X +αAε(X) = 0 will be bounded uniformly in
ε.

Conclusion. Let ρn > 0. Then there exists a solution of the difference scheme with

the internal boundary conditions

ρt + ({ρn+1}un+1)x = 0,

(ρu)t + ({ρn+1un+1}un+1)x +
γ

γ − 1
ρn+1((ρn+1)γ−1)x̄ = 0, at ρn 6= 0,

un+1
i = 0 at ρni = 0,

which satisfies the energy inequality

N−1∑

i=0

h

(

ρn+1 (u
n+1)2

2
+

1

γ − 1
(ρn+1)γ

)

6

N−1∑

i=0

h

(

ρn
(un)2

2
−

1

γ − 1
(ρn)γ

)

.

In two-dimensional case a similar result is true.
Rule of internal boundary conditions specifies how to carry out practical calculations

for such schemes. If the density is too small (positive, e.g. due to the extremity of bit
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numbers in the computer), it is necessary to zero out the velocity. The density is calculated
for all grid points. If the density is greater than zero (takes i.e. the minimum value is
greater than a threshold) at some point of the grid, then at the next time step this point
should be included in the set of points, where equation of motion is approximated.

For practical calculations the Scheme I in the embodiment of the linear implicit scheme

ρt + ({ρn+1}un)x = 0,

(ρu)t + ({ρn+1un+1}un)x +
γ

γ − 1
ρn+1((ρn+1)γ−1)x̄ = 0

(the braces operators are determined by the functionun).

has a disadvantage because it does not preserve possible symmetry of the currents available
in the original problem.

Next, we consider another difference scheme, which we call the scheme II. In this
scheme, the symmetry of the difference derivatives is used and grid functions ρ, u is con-
sidered on the shifted grids.

• ◦
× ⋄

The numbering of the nodes of shifted grids in two-dimensional case:
• the indices i, j of the orthogonal grid,
⋄ the indices i, j for the grid function ρ,
× The indices i, j for the grid function u1,
◦ the indices i, j for the grid function u2.

For this scheme the energy inequality is true in the case of zeroing of density in the
previous time step at some points. We use the following rule.

4. Rule of internal boundary conditions for Scheme II

At the grid point, where [ρni ] = 0, the approximation of the equations of motion is

replaced by an inner boundary condition un+1
i = 0 in one-dimensional case. In two-

dimensional case, at point [ρni,j]1 = 0 the approximation of the first equation of motion

is replaced by an inner boundary condition un+1
1,i,j = 0, and at points [ρni,j]2 = 0 the ap-

proximation of the second motion equation is replaced by an inner boundary condition

un+1
2,i,j = 0.

In one-dimensional case

ρt + ({ρn+1}un+1)x = 0,

([ρ]u)t +
1

2
({ρn+1un+1}un+1)x +

1

2
({ρn+1} < un+1 > un+1)x̄+

+
γ

γ − 1
[ρn+1]((ρn+1)γ−1)x̄ = 0, at [ρn] 6= 0,

un+1 = 0 if [ρni ] = 0.

Here we used the notation

< un+1 >=
un+1
i+1 + un+1

i

2
−

h

2
(un+1)xsign(u

n+1
i ) =

= un+1 − h(un+1)x max(0, sign(un+1
i )) =

{
un+1
i , un+1

i > 0;

un+1
i+1 , un+1

i < 0.
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Operators {.}, < . > - depend on the unknown function un+1. The continuity equation
is approximated at all grid points, the equation of motion is approximated only at those
points where [ρ] > 0. At the points where [ρ] = 0 there is no approximation of the
equations of motion, and un+1 = 0 at such points, i.e. function un+1 at these points
is considered as the given one. And if such points exist, then the problem is divided
into subsegments with the given boundary conditions. But the calculation of grid density
function is not divided into subsegments, i.e. the calculation is carried out at all points.

In two-dimensional case

ρt + ({ρn+1}1u
n+1
1 )x1

+ ({ρn+1}2u
n+1
2 )x2

= 0,

([ρ]1u1)t +
1

2
({ρn+1un+1

1 }1u
n+1
1 )x1

+
1

2
({ρn+1}1 < un+1

1 >1 u
n+1
1 )x̄1

+

+([{ρn+1}2u
n+1
2 ]1[u

n+1
1 ]2)x2

+
γ

γ − 1
[ρn+1]1((ρ

n+1)γ−1)x̄1
= 0,

([ρ]2u2)t + ([{ρn+1}1u
n+1
1 ]2[u

n+1
2 ]1)x1

+
1

2
({ρn+1un+1

2 }2u
n+1
2 )x2

+
1

2
({ρn+1}2 < un+1

2 >2 u
n+1
2 )x̄2

+
γ

γ − 1
[ρn+1]2((ρ

n+1)γ−1)x̄2
= 0.

The first equation of motion is approximated at points where [ρ]1 > 0. At the points
where [ρ]1 = 0, the function un+1

1 = 0 is considered as given. The second equation of
motion is approximated at points where [ρ]2 > 0. At the points where [ρ]2 = 0, the
function un+1

2 = 0 is considered as given. And if there is such a point, then the problem
has internal boundary conditions, i.e. impermeability conditions on one of directions.

The choice of such a strange approximation in the equations of motion in divergent
terms by perpendicular direction is explained below. In practical calculations, we use the
corrected approximation of these terms.

In term of indices, in one-dimension case the approximation of the equation of motion
has the following form

1

2

(ρn+1
i + ρn+1

i−1 )u
n+1
i − (ρni + ρni−1)u

n
i

τ
+

1

2

(− |vi+1| ρi+1 − |vi| ρi + ρivi + ρi+1vi+1)ui+1

h
+

+
1

2

(|vi+1| ρi + |vi| ρi + |vi| ρi−1 + |vi−1| ρi−1 − viρi + ρivi+1 + ρi−1vi − ρi−1vi−1) ui
h

+

+
1

2

(− |vi| ρi−1 − |vi−1| ρi−2 − ρi−1vi − ρi−2vi−1) ui−1

h
+

+
γ

γ − 1

ρn+1
i + ρn+1

i−1

2

(ρn+1
i )γ−1 − (ρn+1

i−1 )
γ−1

h
= 0,

Here, middle line terms are grouped so that one can see the non-negativity of diagonal
elements and non-positivity of other elements in the three-diagonal matrix, multiplied by
un+1, upper indices omitted, which are n + 1, the grid function v = un+1 introduced for
clarity.
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The rest of reasoning is the same as for the difference scheme I.
Since the scheme is non-linear and implicit, it is required to ensure the solvability of

step problem

ρn+1 + τ({ρn+1}un+1)x = ρn,
[
ρn+1

]
un+1 +

τ

2
({ρn+1un+1}un+1)x +

τ

2
({ρn+1} < un+1 > un+1)x̄+

+τ
γ

γ − 1
[ρn+1]((ρn+1)γ−1)x̄ = [ρn]un.

The second equation is defined only at the points where [ρn] > 0.
To get estimates for the norms of the solutions of the difference scheme we consider

the iterative process

̺k+1 + τ({̺k+1}vk)x = ρ,
[
̺k+1

]
vk+1 +

τ

2
({ρk+1vk+1}vk)x +

τ

2
({̺k+1} < vk+1 > vk)x̄+

+τ
γ

γ − 1
[̺k+1]((̺k+1)γ−1)x̄ = [ρ]u.

when k = 0, 1, ... with initial condition v0 = u. The braces operators here are linear and
depend on the known grid function vk. Let us assume that the initial velocity is compatible
with the points of zeroing [ρ], i.e. v0 = u = 0 if [ρ] = 0 at the points of the grid Ωh, where
the grid function v is defined.

In Scheme II the internal boundary conditions are known in advance, i.e. from the
previous time step. At the grid point where [ρ] = 0 we have internal boundary condition
vk+1 = 0.

We need uniform on k estimates of some grid norms of ̺k and vk. These estimates
may arbitrarily depend on τ, h.

We multiply the second equation in the above iterative process by vk+1, apply the

operation [·] to the first equation for all [ρn] > 0 and multiply it by −
(vk+1)2

2
, and then

summarize the resulting equalities over the grid Ωh. If at some point of grid [ρn] = 0, then
vk+1 = 0 is a known boundary condition. We use the following equalities

1

τ
([̺k+1]vk+1 − [ρ]u)vk+1 = vk+1 1

τ
([̺k+1]− [ρ])vk+1 + [ρ]

1

τ
(vk+1 − u)vk+1 =

=
1

2τ
([̺k+1](vk+1)2 − [ρu2]) + [ρ]

1

2
τ(vk+1 − u)2

︸ ︷︷ ︸

>0

+
1

2
τ([̺k+1 − ρ])(vk+1)2.

By definition of directed differences

{̺k+1vk+1} = {̺k+1}{vk+1}, {vk+1} =
vk+1
i + vk+1

i−1

2
−

h

2
vk+1
x̄ sign(vk),

< vk+1 >=
vk+1
i+1 + vk+1

i

2
−

h

2
vk+1
x sign(vk),

{vk+1
i+1 }v

k+1
x =

1

2
((vk+1)2)x −

h

2
sign(vki+1)(v

k+1
x )2,

< vk+1
i−1 > vk+1

x̄ =
1

2
((vk+1)2)x̄ −

h

2
sign(vki−1)(v

k+1
x̄ )2.
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Using the rules of difference differentiation we get

(
1

2
({̺k+1vk+1}vk)x +

1

2
({̺k+1} < vk+1 > vk)x̄

)

︸ ︷︷ ︸

from the equation of motion

vk+1−

−
1

2
[({̺k+1}vk)x]
︸ ︷︷ ︸

from the equation of continuity

(vk+1)2 =

=
1

2
(({̺k+1}{vk+1}vk+1vk + {̺k+1} < vk+1 > vk+1vk − [{̺k+1}vk](vk+1)2))x
︸ ︷︷ ︸

∑

Ωh

(·)=0

+

+
1

4
h({̺k+1

i+1 }|v
k
i+1|)((v

k+1)x)
2 +

1

4
h({̺k+1

i−1 }|v
k
i−1|)((v

k+1)x̄)
2

︸ ︷︷ ︸

>0

−

−
1

4
({̺k+1

i−1 }v
k
i−1)((v

k+1)2)x̄ +
1

4
({̺k+1

i }vki )((v
k+1)2)x

︸ ︷︷ ︸
∑

Ωh

(·)=0

.

So, multiplying the difference equation of continuity by −
(vk+1)2

2
, the difference equation

of motion by vk+1 and summing over the grid, we obtain the summation identity

N−1∑

i=1
h[ρ]

1

2τ
(vk+1 − u)2 +

N−1∑

i=1
h
1

2τ
([̺k+1

i ](vk+1
i )2 − [ρi]u

2
i )+

+
N−1∑

i=1
h
1

4
h({̺k+1

i+1 }|v
k
i+1|)((v

k+1)x)
2 +

1

4
h({̺k+1

i−1 }|v
k
i−1|)(v

k+1)x̄ =

= −
N−1∑

i=1
h

γ

γ − 1
[̺k+1

i ]((̺k+1
i )γ−1)x̄v

k+1
i .

Since ‖̺k+1‖L1,h
= ‖ρ‖L1,h

for any k, from the summation identities we get uniform on k
estimate

‖[̺k+1](vk+1)2‖L1,h
6 C(h, ρ, u).

Now let’s explain the choice of approximation of divergence in two-dimensional case

∂(ρv1u2)

∂x2
∼ ([{ρn+1}2u

n+1
2 ]1[v

n+1
1 ]2)x2

.

The equation in the iterative process corresponding to the first component of the velocity
is multiplied by vk+1

1 , and the operation [·]1 is applied to the first equation for all [ρn]1 > 0

which is then is multiplied by −
(vk+1

1 )2

2
. Then the resulting equalities are summed over
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the grid Ωh. Let u2 = vk2 , v1 = vk+1
1 .

from the equation of continuity
︷ ︸︸ ︷

−[({̺}2u2)x2
]1 ·

v21
2

= −([({̺}2u2)]1
v21
2
)x2

︸ ︷︷ ︸
∑

Ωh

(·)=0

+([{̺j+1}2u2,j+1]1)

(
v21
2

)

x2

=

= (.)
︸︷︷︸

∑

Ωh

(·)=0

+([{̺j+1}2u2,j+1]− 1)[v1,j+1]2v1x2
= (.)
︸︷︷︸

∑

Ωh

(·)=0

+([{̺}2u2]1[v1]2v1)x2
︸ ︷︷ ︸

∑

Ωh

(·)=0

−

− ([{̺}2u2]1[v1]2)x2
︸ ︷︷ ︸

from the 1st movement equation

·v1.

Thus, in the summation identity the corresponding scalar products mutually vanish. Note

that in this approximation there is no sign function , since {̺}2u2 = [̺]2u2 −
h2
2
̺x̄2

·

|u2|, and this approximation is a continuous operator of grid functions. However, for
practical calculations this approximation is unsuitable, because tridiagonal matrix, which
is multiplied by an unknown function (v1,i,j−1, v1,i,j, v1,i,j+1), not necessarily has non-
negative diagonal element, and non-positive other elements. This approximation can be
corrected by the same rule, which was used in the approximation of continuity equation,

i.e. we use the difference against the flow: ([{̺}2u2]1([v1]2−
h2
2
(v1)x̄2

sign([{̺}2u2]1)))x2
=

({v1}2[{̺}2u2]1)x2
= ({v1}2w2)x2

. This approximation may be a two-point or single-point
and does not contain the function sign. In terms of indices, this approximation has the
following form

1

2h2
(− |wi,j+1|+wi,j+1) v1i,j+1 +

1

2h2
(wi,j+1 + |wi,j+1| − wi,j − |wi,j|) v1i,j+

+
1

2h2
(−wi,j + |wi,j|) v1i,j−1,

where wi,j = [{̺}2u2]1 is a known function, which determines the matrix of the problem
for v1.

Back to one-dimensional problem, from the first term of summation identity we get
the estimate ‖(vk+1)2‖L1,h

6 C, since for the points where [ρ] > 0 there is a lower estimate

for [ρ] > min
[ρ]>0

[ρ] = const > 0, and at the points where [ρ] = 0 the function vk+1 = 0 is a

known internal boundary condition. Next, we consider the problem in the operator form

A

(
̺
v

)

= 0:

A

(
̺
v

)

=

(
̺+ τ({̺}v)x − ρ,

[̺] v +
τ

2
({ρv}v)x +

τ

2
({̺} < v > v)x̄ + τ

γ

γ − 1
[̺]((̺)γ−1)x̄ − [ρ]u

)

.

We pass from this problem to the one with ε > 0 in the following form: X + Aε(X) =

0, Aε =
1

ε
A. We apply to this problem the principle of Leray-Schauder. The operator Aε
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is continuous, as there is no sign function in the definitions of approximations for the first
and second equations and the function abs(a) = |a| is continuous. Then we repeat the
same arguments as in the derivation of estimates for the norms in the iterative process,
and it turns out that the solution of the problem X + αAε(X) = 0 with a completely
continuous (due to the finite dimensionality of the grid) operator Aε and any α ∈ (0, 1]
has bounded norms irrespective of α. Therefore the solution of the problem with α = 1
exists for ∀ε. Then we pass to the limit as ε → 0 in the problem of εX +A(X) = 0. Since
the estimates ‖̺‖L1,h

6 ‖ρ‖L1,h
, ‖(v)2‖L1,h

6 C are independent of ε, the limit functions
exist and are denoted by ρn+1, un+1.

Theorem 3. Let ρ0 > 0. The solution of the difference scheme II with internal boundary

conditions exists and satisfies the energy inequality. In one-dimensional case the energy

inequality takes the form

N−1∑

i=0

h
1

γ − 1
((ρn+1)γ − (ρn)γ) +

N−1∑

i=1

h
1

2
([ρn+1](un+1)2 − [ρn](un)2) 6 0.

To prove the theorem, it suffices to show the validity of energy inequality. We scalarly

multiply the first equation in the difference scheme by
γ

γ − 1
(ρn+1)γ−1 and add it to the

previously obtained summation identity. In one-dimensional case we obtain the inequality

N−1∑

i=0
hρn+1

t

γ

γ − 1
(ρn+1)γ−1 +

N−1∑

i=1
h
1

2τ
([ρn+1

i ](un+1)2 − [ρi](u
n)2)+

+
N−1∑

i=0
h({ρn+1}un+1)x

γ

γ − 1
(ρn+1)γ−1 +

N−1∑

i=1
h

γ

γ − 1
[ρn+1]((ρn+1)γ−1)x̄u

n+1 6 0.

We apply Young’s inequality to the first term as in the case of Scheme I, and for the last
two terms we have

N−1∑

i=0
h({ρn+1}un+1)x

γ

γ − 1
(ρn+1)γ−1 +

N−1∑

i=1
h

γ

γ − 1
[ρn+1]((ρn+1)γ−1)x̄u

n+1 =

=
1

2

N−1∑

i=1
h(|un+1|(ρn+1)x

γ

γ − 1
((ρn+1)γ−1)x > 0,

due to the monotonicity of the function f(ρ) = ργ−1.
For the case of two spatial variables Theorem 3 is generalized in an obvious way.

Energy inequality takes on the form

N1−1∑

i=0

N2−1∑

j=0
h1h2

1

γ − 1
((ρn+1)γ − (ρn)γ) +

N1−1∑

i=1

N2−1∑

j=0
h1h2

1

2
([ρn+1]1(u

n+1
1 )2 − [ρn]1(u

n
1 )

2)+

+
N1−1∑

i=0

N2−1∑

j=1
h1h2

1

2
([ρn+1]2(u

n+1
2 )2 − [ρn]2(u

n
2 )

2) 6 0.

All results obtained for the difference Scheme II can be extended to non-orthogonal
curvilinear grids, as well as to the problems on the grids in spherical and other coordinates.
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By results we mean: conservative approximation of continuity equation, non-negativity
of density, the presence of energy inequality, the ability to solve problems with vanishing
density by zeroing the velocity in such cases.

In practical calculations, it is impossible to use non-linear implicit scheme. Therefore,
linear implicit scheme is used in most cases. Availability of energy inequality allows to
control stability of calculations by proper selection of time step τ in difference scheme.
In addition, as it was seen in the derivation of energy inequality, it is obvious that due
to the choice of approximation of the divergence operator in the equations of motion we
can increase or decrease the influence of the grid viscosity. Thus, our theoretical do have
practical importance.

Remark 1. In this work, we do not consider a difference schemes for the equation of

motion with viscous members and other skew-symmetric operators and nonzero external

forces
∂ρu

∂t
+ div(ρu× u) + S(u) +N(u) + grad p = ρ f .

The construction of such schemes seems obvious enough.

Remark 2. A more interesting problem is the formulation of boundary conditions for

problems with areas of inflow and leakage. Matrix form of finite difference schemes gives

advice on how to supply the boundary conditions to fulfil the conditions of conservatism, the

nonnegativity of the density, and the energy inequality. We plan to discuss these questions

in a separate article.

5. The problems of calculation of large-scale sea currents using shallow

water model

The system of equations of the shallow water theory [3] is very similar to barotropic

gas equations with ρ = h, p =
g h2

2
:

∂

∂t
h+

∂

∂x
(hu) +

∂

∂y
(h v) = 0,

∂

∂t
(hu) +

∂

∂x
(hu2 +

g h2

2
) +

∂

∂y
(hu v) = f1 − g h

∂

∂x
b,

∂

∂t
(h v) +

∂

∂x
(hu v) +

∂

∂y
(h v2 +

g h2

2
) = f2 − g h

∂

∂y
b,

where h is a water depth (non-negative), h+ b is a level of the free surface, b is a bottom
relief function, which, in this system of equations, may be defined up to an arbitrary
additive constant;

u, v are the components of the velocity vector;
g is an acceleration due to gravity;
f1, f2 are the functions of external forces (Coriolis force, friction, wind). Quadratic

friction is given by f = −
λv |v|

2
(here f = (f1, f2), v = (u, v) vectors), and λ is the

coefficient of hydraulic friction.
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The strength and direction of the wind vector are set as dependent on atmospheric
pressure and other parameters. The Coriolis force is given as the function of components
of velocity and determines a skew-symmetric operator.

In the problem of shallow water, the vanishing of the depth of water is possible, i.e. the
function hmay be equal to zero. First, it is possible at the boundaries of the reservoir where
wind and surge currents are calculated, and second, it is possible within the computational
domain. For example, suppose that the profile of the bottom has some camber close to the
water surface. Then as a result of level fluctuations of shallow water over the surface there
may appear an island, and it may disappear and reappear. In this case, in accordance
with the rule of the Scheme II, there are internal boundary conditions ”no flow through
the island”. Note also that the equations of motion in the Scheme II can be divided
into vanishing functions h, because the equations of motion are replaced by the internal
boundary conditions at the points where h = 0. Therefore, the coefficient of hydraulic

friction, for example, λ = 2 g n2 h(−
1

3
), n is a bottom roughness coefficient by Manning (

n = .7e-2), is defined for all points where the grid velocity is computed. But this ratio is
acceptable in the case of very shallow water. In our calculations the coefficient of hydraulic
friction was chosen in different form, i.e. it was defined experimentally.

The pictures below show the results of calculations for two tasks by Scheme II. The
calculation areas are located on the ellipsoid (more precisely, on the geoid), the system of
equations was written in the corresponding coordinate system, the vertical component of
the Coriolis force is not taken into account. Other parameters were chosen from Earth’s
data: the acceleration due to gravity, the speed of rotation of the Earth, shape of Earth’s
surface and the areas of location in latitude and longitude of the Earth.
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Calculations were performed on a linear implicit scheme similar to the iterative pro-
cess for Scheme II. To calculate the grid function h on the next time step we used the
factorization of the transition operator, which ensures the equivalence of directions. For
the equations of motion we also built a scheme that allow the efficient parallelization of
computations. The water depth in both seas was selected according to ETOPO1 grid with
increments of 1′.

The rule of internal boundary conditions was applied with a threshold of depth 1 mm.
For the values of the grid function h (averaged for the corresponding direction) less than
1 mm, the velocity was taken equal to zero.

We chose the initial conditions u = v = 0, h + b = const, which satisfy the equations
of the stationary problem. However, the corresponding solution is unstable. In this initial
state we introduced a very few distortion and then we tracked the entire path of transition
from one stationary solution (unstable) to another (steady) through a non stationary path
that is described by a system of shallow water equations.

In the first problem, the obtained stationary solution was compared to the experimental
data of the currents in the Black Sea [4]. In the second problem, related to the Caspian
Sea, the experimental data are not available or insufficient. However, the calculation
results of first problem are close to the experimental data, and this gives hope that the
obtained pictures of the currents in the Caspian Sea are proper.

Calculations were performed on computers with OS Windows7 using our own pro-
grams on C-language. We used the gcc compiler in the shell Dev-Cpp. Parallelization
of calculations was performed on multithread technology using pthreads.2 package. The
computational time on the grids with step 1′ on a computer with a Quad-core i7-2630 2.00
GHz was 8-10 hours, and the optimal number of threads based on the configuration of
areas was found to be 20. On the sparse grid in increments of 2′ calculation time does not
exceed 1 hour. For even more sparse grid in increments of 3′ computation time is only a
few minutes. The results of calculations on grids with different steps are almost identical.
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