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On Approximation by Stancu Type Jakimovski-Leviatan-
Durrmeyer Operators
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Abstract. In this paper we introduce and study the Stancu type generalization of the Jakimovski-
Leviatan-Durrmeyer operators and examine their approximation properties. We investigate the
convergence of these operators with the help of Korovkin’s approximation theorem. Also, we
study local approximation properties and some direct theorems for these operators.
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1. Introduction and preliminaries

The approximation process given by Korovkin gave a new shoot up to the ap-
proximation theory. It arises naturally in many situations connected with measure theory,
functional analysis, partial differential equations, harmonic analysis, probability theory,
etc. One of the most useful operators of the type are the Favard-Szász operators defined
as follows:

Sn(f ;x) = e−nx
∞∑
k=0

(nx)k

k!
f

(
k

n

)
,

where x ≥ 0 and f ∈ C[0,∞), provided the sum converges. Several authors have in-
vestigated many interesting properties of these operators in [1, 3, 4, 5, 6, 11, 12, 15, 16].
Later Jakimovski and Leviatan generalized these operators in [8] using Appell polynomials
defined as follows:

Let g(z) =
∞∑
k=0

akz
k (a0 6= 0) be an analytic function defined in the disk |z| <

R, (R > 0) with g(1) 6= 0. The Appell polynomials are generated by the functions of the
type

g(u)eux =

∞∑
k=0

pk(x)uk, (1)
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with the condition that pk(x) ≥ 0 for every x ∈ [0,∞). Jakimovski and Leviatan intro-
duced the following positive linear operators:

Pn(f ;x) =
e−nx

g(1)

∞∑
k=0

pk(nx)f

(
k

n

)
.

They investigated approximation properties of these operaors in [8]. Ismail [7] generalized
these operators using Sheffer polynomials and studied some approximation properties.
Büyükyazici et al. [2] obtained Chlodowsky type generalization of these operators and
investigated many poroperties by using Appell polynomials. Mursaleen et al. obtained
another Chlodowsky type generalization and examined several approximation properties
of these operators in [14]. Karaisa gave Durrmeyer type generalization of these operators
and investigated the approximation properties in [9]. The Durrmeyer type generalization
of these operators is defined as follows:

Sn(f ;x) =
e−nx

g(1)

∞∑
k=0

pk(nx)

B(n+ 1, k)

∫ ∞
0

tk−1

(1 + t)n+k+1
f(t)dt, x ≥ 0, (2)

where B(n+ 1, k) is the beta function defined by

B(x, y) =

∫ ∞
0

tx−1

(1 + t)x+y
dt =

Γ(x)Γ(y)

Γ(x+ y)
, x, y > 0.

2. Construction of Operators

We introduce the Stancu type generalization of the Jakimovski-Leviatan-Durrmeyer
operators as follows:

Ln(f ;x) =
e−nx

g(1)

∞∑
k=0

pk(nx)

B(n+ 1, k)

∫ ∞
0

tk−1

(1 + t)n+k+1
f

(
nt+ α

n+ β

)
dt, x ≥ 0, (3)

where B(x, y) is the beta function defined above and α, β are such that 0 ≤ α ≤ β.
Taking α = 0, β = 0 in (3), we get the Jakimovski-Leviatan-Durrmeyer operators (2).
To examine the approximation results for the newly constructed operators, we need the
following lemmas.

Lemma 1. By the Appell polynomials (1), we easily get

(1)
∞∑
k=0

pk(nx) = enxg(1),

(2)
∞∑
k=0

kpk(nx)) = enx[nxg(1) + g′(1)],

(3)
∞∑
k=0

k2pk(nx)) = enx[n2x2g(1) + nx(2g′(1) + g(1)) + g′′(1) + g′(1)],
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(4)
∞∑
k=0

k3pk(nx)) = enx[n3x3g(1) + n2x2(3g′(1) + 4g(1)) + nx(3g′′(1) + 8g′(1)) + g(1))

+ g′′′(1) + 4g′′(1) + g′(1)],

(5)
∞∑
k=0

k4pk(nx)) = enx[n4x4g(1) + n3x3(4g′(1) + 10g(1)) + n2x2(6g′′(1) + 30g′(1)

+ 14g(1)) + nx(4g′′′(1) + 30g′′(1) + 28g′(1)) + g(1)) + g′′′′(1)
+ 1og′′′ + 14g′′(1) + g′(1)].

Lemma 2. For n > 3, we have the following:

(1) Ln(e0;x) = 1,

(2) Ln(e1;x) = 1
n+β (nx+ (A0 + α)),

(3) Ln(e2;x) = n2

n(n+1)(n+β)2
[n2x2 +nx(2A0 +1)+(A0 +B0)]+

2nα
(n+1)(n+β)2

[nx+(A0 +1)]

+ α2

(n+β)2
.

Proof. (1) Ln(e0;x) = e−nx

g(1)

∞∑
k=0

pk(nx)
B(n+1,k)

∫∞
0

tk−1

(1+t)n+k+1dt = e−nx

g(1)

∞∑
k=0

pk(nx)
B(n+1,k)B(k, n +

1) = 1.

(2) Ln(e1;x) = e−nx

g(1)

∞∑
k=0

pk(nx)
B(n+1,k)

∫∞
0

tk−1

(1+t)n+k+1

(
nt+α
(n+β)

)
dt

= e−nx

g(1)

∞∑
k=0

pk(nx)
B(n+1,k)

1
n+β [nB(k + 1, n) + αB(k, n+ 1)]

= 1
n+β (nx+ (A0 + α)).

(3) Ln(e2;x) = e−nx

g(1)

∞∑
k=0

pk(nx)
B(n+1,k)

∫∞
0

tk−1

(1+t)n+k+1

(
nt+α
n+β

)2
dt

=
e−nx

g(1)

∞∑
k=0

pk(nx)

B(n+ 1, k)

[
n2

(n+ β)2
B(k + 2, n− 1) +

2nα

(n+ β)2
B(k + 1, n)

+
α2

(n+ β)2
B(k, n+ 1)

]
=

e−nx

g(1)

∞∑
k=0

pk(nx)

[
n2

(n+ β)2
(k + 2)(k + 1)

n(n+ 1)
) +

2nα

(n+ β)2
(k + 1)

(n+ 1)
+

α2

(n+ β)2

]
=

n2

n(n+ 1)(n+ β)2
[
n2x2 + nx(2A0 + 1) + (A0 +B0)

]
+

2nα

n(n+ 1)(n+ β)2

× [nx+ (A0 + 1)] +
α2

(n+ β)2
.

Hence the lemma is proved. J

Theorem 1. For f ∈ C[0,∞), the operators Ln converge uniformly to f on the compact
domain [0, a], a > 0 as n→∞.
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Proof. By the Lemma 2, we have

lim
n→∞

Ln(e0;x) = 1,

lim
n→∞

Ln(e1;x) = x,

lim
n→∞

Ln(e2;x) = x2.

Thus the operators Ln converge unifomly to f , where f is one of the test functions 1, t,
t2 on the compact interval [0, a] . So by the Korovkin approximation theorem ([10], [13]),
the result is true for every continuous function f defined on the compact interval [0, a].
Hence the theorem is proved. J

3. Weighted Approximation

In this section, we investigate some approximation properties of the operators
Ln in the weighted space of continuous functions. We do this for the following class of
continuous functions defined on [0,∞).

Let Bx2 [0,∞) be the linear space of all functions h satisfying the condition |h(x)| ≤
Kh(1 + x2), where Kh is a constant connected with h. We denote the subspace of all
continuous functions of Bx2 [0,∞) by Cx2 [0,∞). Also, we denote by C∗x2 [0,∞), the sub-

class of Cx2 [0,∞) of those functions h for which lim
x→∞

h(x)
1+x2

is finite. It is obvious that

C∗x2 [0,∞) ⊂ Cx2 [0,∞) ⊂ Bx2 [0,∞). The norm for the space C∗x2 [0,∞) is defined by

‖h‖x2 = sup
x∈[0,∞)

| h(x) |
1 + x2

.

Lemma 3. Let ρ(x) = 1 + x2 be a weight function. Then

‖Ln(ρ;x)‖x2 ≤ K,

where K is a positive constant greater than unity.

Proof. For n > 1, using the Lemma 2, we get Ln(ρ;x) =

1 + n4

n(n+1)(n+β)2
x2 +

(
n3(2A0+1)

n(n+1)(n+β)2
+ 2αn2

(n+1)(n+β)2

)
x +n2((1+2α)A0+B0+2α)

n(n+1)(n+β)2
+ α2

(n+β)2
,

therefore

‖Ln(ρ;x)‖x2 = sup
x≥0

{
1

1 + x2
+

n4

n(n+ 1)(n+ β)2
x2

1 + x2
+

n3(2A0 + 1)

n(n+ 1)(n+ β)2
x

1 + x2

+
2αn2

(n+ 1)(n+ β)2
x

1 + x2
+
n2((1 + 2α)A0 +B0 + 2α)

n(n+ 1)(n+ β)2
1

1 + x2
+

α2

(n+ β)2
1

1 + x2

}
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≤ 1 +
n4

n(n+ 1)(n+ β)2
+

n3(2A0 + 1)

n(n+ 1)(n+ β)2
+

2αn2

(n+ 1)(n+ β)2

+
n2((1 + 2α)A0 +B0 + 2α)

n(n+ 1)(n+ β)2
+

α2

(n+ β)2
.

Now since lim
n→∞

n4

n(n+1)(n+β)2
= 1, lim

n→∞
n3

n(n+1)(n+β)2
= 0, lim

n→∞
n2

(n+1)(n+β)2
= 0,

lim
n→∞

n2

n(n+1)(n+β)2
= 0 and lim

n→∞
1

(n+β)2
= 0, there exists a positive constant K > 1 such

that
‖Ln(ρ;x)‖x2 ≤ K.

This completes the proof. J

By the Lemma 3, it is easily seen that the operators Ln defined by (3) act from the
space Cx2 [0,∞) to the space Bx2 [0,∞).

Theorem 2. Let Ln be the sequence of positive linear operators defined by (3) and ρ(x) =
1 + x2 be the weight function. Then, for each f ∈ C∗x2 [0,∞),

lim
n→∞

‖Ln(f ;x)− f(x)‖x2 = 0.

Proof. In view of the Korovkin Theorem it is sufficient to prove that

lim
n→∞

‖Ln(ti;x)− xi‖x2 = 0, i = 0, 1, 2.

By Lemma 2 (1), it is obvious that

lim
n→∞

‖Ln(1;x)− 1‖x2 = 0.

By Lemma 2 (2), ‖Ln(e1;x)− e1(x)‖x2 = sup
x≥0

∣∣∣ n
n+β

x
1+x2

+ A0+α
n+β

1
1+x2

− x
1+x2

∣∣∣
= sup

x≥0

∣∣∣∣( n

n+ β
− 1

)
x

1 + x2
+
A0 + α

n+ β

1

1 + x2

∣∣∣∣
=

β

n+ β
+
A0 + α

n+ β
,

therefore,
lim
n→∞

‖Ln(e1;x)− e1(x)‖x2 = 0.

By Lemma 2 (3), ‖Ln(e2;x)− e2(x)‖x2 = sup
x≥0

∣∣∣∣( n4

n(n+1)(n+β)2
− 1

)
x2

(1+x2)
+

(
n3(2A0+1)

n(n+1)(n+β)2

+
2αn2

(n+ 1)(n+ β)2

)
x

(1 + x2)
+

(
n2(A0 +B0)

n(n+ 1)(n+ β)2
+

2αn2(A0 + 1)

n(n+ 1)(n+ β)2

+
α2

(n+ β)2

)
1

1 + x2

∣∣∣∣



On Approximation by Stancu Type 21

≤
{(

n4

n(n+ 1)(n+ β)2
− 1

)
+

(
n3(2A0 + 1)

n(n+ 1)(n+ β)2
+

2αn2

(n+ 1)(n+ β)2

)
+

(
n2(A0 +B0)

n(n+ 1)(n+ β)2
+

2αn2(A0 + 1)

n(n+ 1)(n+ β)2
+

α2

(n+ β)2

)}
,

therefore,

lim
n→∞

‖Ln(e2;x)− e2(x)‖x2 = 0.

This proves the theorem. J

4. Rate of Convergence

In this section, we compute the rate of convergence of our operators in terms of the
modulus of continuity which is defined as follows:

The modulus of continuity of f , denoted by ωf (δ), gives the maximum oscillation of
f in any interval of length not exceeding δ(> 0) and it is given by the relation

ωf (δ) = sup
|x−y|≤δ

|f(x)− f(y)|, x, y ∈ [0, 1 + `].

It is known that lim
δ→0+

ωf (δ) = 0 for f ∈ C[0, 1 + `] and for any δ > 0 one has

|f(y)− f(x)| ≤ ωf (δ)

(
|y − x|
δ

+ 1

)
.

We denote by CE [0,∞), the set of all continuous functions f on [0,∞) with the property
that |f(x)| ≤ beax for all x ≥ 0 and for some positive finite constants a, b.

Theorem 3. Let f ∈ CE [0,∞), x ≥ 0 and n > 1. Then we have∣∣Ln(f ;x)− f(x)
∣∣≤ 2ωf (δn,x) ,

where

δ2n,x = ωn,1x
2 + ωn,2x+ ωn,3 +

α2

(n+ β)2
,

with

ωn,1 =
n((n+ 1)β2)− 2(n+ β)− 2nβ − 3n2

(n+ 1)2(n+ β)2
,

ωn,2 =
n5 − n4(2α(1 + β) + 2A0(2 + β))− 2n3((1 + 2β)(A0 + α)− 2n2β(1 +A0))

n2(n+ 1)2(n+ β)2
,

ωn,3 =
n4(A0 +B0)

n2(n+ 1)2(n+ β)2
+

n3(A0 + 1)

n(n+ 1)(n+ β)2
.
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Proof. By linearity and positivity of the operators Ln, we get

∣∣Ln(f ;x)− f(x)
∣∣≤ ω (f, δ)

{
1 +

1

δ
(Ln((t− x)2;x))

1
2

}
.

Making use of the Lemma 2 and linearity of the operators Ln, for n > 1, we have Ln((t−

x)2;x) = 1
n2(n+1)2(n+β)2

(
(n3(n+ 1)β2 − 2(n+ β)− 2nβ − 3n2)x2

+(n5 − n4(2α(1 + β) + 2A0(2 + β)− 2n3(1 + 2β)(A0 + α)− 2n2β(A0 + 1)))x

+n4((A0 +B0) + (n+ 1)(A0 + 1)) + n2α2(n+ 1)2
)
.

Now using this and taking δn,x = δ, we arrive at the required inequality. Hence the
theorem is proved. J

5. Direct theorems

By CB[0,∞) we denote the space of all bounded and continuous functions f on [0,∞)
with the norm

‖f‖ = sup
x∈[0,∞)

|f(x)|.

For all δ > 0, the Peetre’s K-functional is defined by

K2(f, δ) = inf
h∈C2

B [0,∞)
{‖f − h‖+ δ‖h′′‖},

where C2
B[0,∞) = {h ∈ CB[0,∞) : h′, h′′ ∈ CB[0,∞)}. By [17, Theorem 2.4, p. 177],

there exists a constant C > 0 such that

K2(f, δ) ≤ Cω2(f, δ),

where ω2(h, δ), the second order modulus of continuity of h ∈ CB[0,∞), is defined as

ω2(h, δ
1
2 ) = sup

0<p<δ
1
2

sup
x∈[0,∞)

|h(x+ 2p)− 2h(x+ p) + h(x)|.

Also by ω(h, δ) we denote the first order modulus of continuity of h ∈ CB[0,∞). Next, for
f ∈ CB[0,∞), we define the following associated operators:

L̃n(f ;x) = Ln(f ;x)− 1

n+ β

(
(n+ β)x+ (A0 + α)

)
.

where x ≥ 0.
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Lemma 4. Let g ∈ C2
B[0,∞). Then for all x ≥ 0 and n > 1, we get

∣∣L̃n(g;x) − g(x)
∣∣≤

φα,βn (x)‖g′′‖,

where

φα,βn (x) =
1

n2(n+ 1)2(n+ β)2

(
an,x2x

2 + bn,xx+ cn +

(
A0 + α

n+ β

)2
)
,

an,x2 = n3
(
(n+ 1)β2 − 2(n+ β)− 1nβ − 3n2

)
,

bn,x = n5 − n4
(
2α(1 + β) + 2A0(2 + β)− 2n3(1 + 2β)(A0 + α)− 2n2β(A0 + 1)

)
and

cn = n2
(
n2(A0 +B0) + (n+ 1)((A0 + 1) + α(n+ 1))

)
.

Proof. It is obvious that L̃n(e1(x)− x;x) = 0. Let g ∈ C2
B[0,∞). Then by Taylor’s

expansion of g, we have

g(t)− g(x) = (t− x)g′(x) +

∫ t

x
(t− u)g′′(u)du,

where t ∈ [0,∞). Operating by L̃n on both sides of the above equality, we get L̃n(g;x)−
g(x) = g′(x)L̃n(t− x;x) + L̃n

( ∫ t
x(t− u)g′′(u)du;x

)
= L̃n

( ∫ t

x
(t− u)g′′(u)du;x

)
= Ln

( ∫ t

x
(t− u)g′′(u)du;x

)
−
∫ (n+β)x+(A0+α)

n+β

x

(
(n+ β)x+A0

n+ β
− u
)
g′′(u)du.

Therefore ∣∣Ln(g;x)− g(x)
∣∣≤ Ln(∣∣∣∣ ∫ t

x
(t− u)g′′(u)du

∣∣∣∣ ;x)+

+

∣∣∣∣∣
∫ (n+β)x+(A0+α)

n+β

x

(
(n+ β)x+A0

n+ β
− u
)
g′′(u)du

∣∣∣∣∣ . (4)

Since
∣∣∣ ∫ tx(t− u)g′′(u)du

∣∣∣ ≤ (t− x)2‖g′′‖, we get∣∣∣∣∣
∫ (n+β)x+(A0+α)

n+β

x

(
(n+ β)x+A0

n+ β
− u
)
g′′(u)du

∣∣∣∣∣ ≤
(
A0 + α

n+ β

)2

‖g′′‖.

By (4), we have

∣∣L̃n(g;x)− g(x)
∣∣≤ {Ln ((t− x)2;x

)
+

(
A0 + α

n+ β

)2}
‖g′′‖.
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Now using the expression for Ln
(
(t− x)2;x

)
from the Theorem 3, we get

∣∣L̃n(g;x)−g(x)
∣∣≤

1
n2(n+1)2(n+β)2

{
n3((n+ 1)β2 − 2(n+ β)− 1nβ − 3n2)x2

+(n5 − n4
(
2α(1 + β) + 2A0(2 + β)− 2n3(1 + 2β)(A0 + α)− 2n2β(A0 + 1)

)
x

+
(
n2
(
n2(A0 +B0

)
+ (n+ 1)((A0 + 1) + α(n+ 1))

)
+

(
A0 + α

n+ β

)2}
‖g′′‖

=
1

n2(n+ 1)2(n+ β)2

(
an,x2x

2 + bn,xx+ cn +

(
A0 + α

n+ β

)2
)
‖g′′‖.

where an,x2 , bn,x are respectively the coefficients of x2, x in the above expression and
cn = n2

(
n2(A0 +B0

)
+ (n+ 1)((A0 + 1) +α(n+ 1)). More succinctly, it can be writen as∣∣L̃n(g;x)− g(x)

∣∣≤ φα,βn (x)‖g′′‖,

where

φα,βn (x) =
1

n2(n+ 1)2(n+ β)2

(
an,xx

2 + bn,xx+ cn +

(
A0 + α

n+ β

)2
)

and hence the lemma is proved. J

Theorem 4. Let f ∈ CB[0,∞). Then for every x ≥ 0, there exists a constant K > 0
such that ∣∣Ln(f ;x)− f(x)

∣∣≤ Kω2

(
f,

√
φα,βn (x)

)
+ ω

(
f,
A0 + α

n+ β

)
,

where φα,βn (x) is as in Lemma 4 and ω(f, .), ω2(f, .) are respectively the first order modulus
of continuity and the second order modulus of continuity of f .

Proof. For f ∈ CB[0,∞), g ∈ C2
B[0,∞), by the definition of the operators L̃n, we

have ∣∣Ln(f ;x)− f(x)
∣∣≤ ∣∣L̃n(f − g;x)

∣∣+∣∣(f − g)(x)
∣∣+

+
∣∣L̃n(g;x)− g(x)

∣∣+∣∣∣∣f ((n+ β)x+ (A0 + α)

n+ β

)
− f(x)

∣∣∣∣.
But ∣∣L̃n(f ;x)

∣∣ ≤ ‖f‖Ln(1;x) + 2‖f‖ = 3‖f‖,

so we have ∣∣Ln(f ;x)− f(x)
∣∣≤ 4‖f − g‖+

∣∣L̃n(g;x)− g(x)
∣∣+ ω

(
f,
A0 + α

n+ β

)
.

Using Lemma 4, we easily get∣∣Ln(f ;x)− f(x)
∣∣≤ 4

(
‖f − g‖+ φα,βn (x)g′′

)
+ ω

(
f,
A0 + α

n+ β

)
.
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On taking the infimum over all g ∈ C2
B[0,∞) on the right hand side of above inequality,

we arrive at the desired result. J

6. Conclusions

In this paper, we introduced the operators

Ln(f ;x) =
e−nx

g(1)

∞∑
k=0

pk(nx)

B(n+ 1, k)

∫ ∞
0

tk−1

(1 + t)n+k+1
f

(
nt+ α

n+ β

)
dt, x ≥ 0,

which are Stancu type generalization of the Jakimovski-Leviatan-Durrmeyer operators
which are more general than the operators defined by Jakimovski and Leviatan as well
as Durrmeyer type operators. We have calculated the moments for these operators and
examined their approximation properties. We investigated the convergence of these oper-
ators with the help of Korovkin’s approximation theorem in the weighted function space
of continuous functions C∗x2 [0,∞). We also studied local approximation properties and
some direct theorems for these operators and computed the rate of convergence by means
of the modulus of continuity.
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