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Boundedness of Pseudo-differential Operators on Homo-
geneous Herz-type Hardy Space with Variable Exponent
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Abstract. In this paper, we obtain some boundedness of the pseudo-differential operator 1" on
homogeneous Herz-type Hardy space with variable exponent.

Key Words and Phrases: pseudo-differential operator, Herz-type Hardy space, variable expo-
nent.

2010 Mathematics Subject Classifications: 42B30, 42B35, 46E30

1. Introduction

The theory of function spaces with variable exponent has been extensively studied
by researchers since the work of Kovacik and Rakosnik [5] appeared in 1991. In [1] and
[7], the boundedness of some integral operators on variable LP spaces was studied. In
[8], the Herz-type Hardy spaces with variable exponent were defined and their atomic
characterizations were given.

The boundedness of pseudo-differential operators on Herz-type Hardy spaces was stud-
ied by many authors (see [2, 6]). Inspired by [3, 8], we will prove the boundedness of
pseudo-differential operators of order zero on the space H K;)‘(’g (R™), which generalizes
some known results.

We first briefly recall some standard notations. Given an open set 2 C R", and a
measurable function p(-) : @ — [1,00), LP)(Q) denotes the set of measurable functions
f on Q such that for some A > 0,

[ () e

This set becomes a Banach function space when equipped with the Luxemburg-Nakano

norm -
p(x
Fllroeroy =Iinf < A >0: @)l der <1;.
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These spaces are referred to as variable LP spaces, since they generalized the standard LP
spaces: if p(x) = p is constant, then LP()(Q) is isometrically isomorphic to LP(£).
The space LI (')(Q) is defined by

loc

Lp(')(Q) .= {f: f € LPV)(E) for all compact subsets E C Q}.

loc

Define P(£2) to be the set of p(+) : @ — [1,00) such that
p~ =essinf{p(z) :x € Q} > 1, pT =esssup{p(x):z € Q} < .

Denote p'(x) = p(z)/(p(x) — 1). Let B(€2) be the set of p(-) € P(2) such that the Hardy-
Littlewood maximal operator M is bounded on LP()(Q).
In variable L? spaces there are some important lemmas.

Lemma 1 ([5]). Let p(-) € P(Q). If f € LPO)(Q) and g € LP'O)(Q), then fg is integrable
on Q and

/Q 1 (@)g(@)ldw < ryll Fll ooy lgll oo

where
rp=1+1/p" — 1/p*.

The last inequality is called the generalized Hoélder inequality with respect to the
variable LP spaces.

Lemma 2 ([4]). Let p(-) € B(R™). Then there exists a positive constant C' such that for
all balls B in R™ and all measurable subsets S C B,

X8l Lpe) (mm) < C@, Ixsl Lee) @) < (\S\)él and Xl o) ) <C <|S|>52,
slogn — 1817 Txslmogn — - \IBI sl o —  \IB]
where 1,09 are constants with 0 < 61,02 < 1 and xg, xB are the characteristic functions

of S, B, respectively.

Throughout this paper J2 is the same as in Lemma 2.

Lemma 3 ([4]). Suppose p(-) € B(R™). Then there exists a constant C > 0 such that for
all balls B in R"™,

1
@HXB”LP(')(R")”XBHLP'H(]R’I) <C.
Next we recall the definition of the homogeneous Herz-type spaces with variable expo-
nent. Let By = {x € R" : |z| < 2¥} and Ay = By \ By_; for k € Z. Denote by Z, and N

the sets of all positive and non-negative integers, respectively. Also denote xj = x4, for
k € 7Z, Xk = Xk ifk€Z+ andf(():XBo.

Definition 1 ([4]). Let a € R,0 < p < oo and q(-) € P(R"). The homogeneous Herz
space with variable exponent K&’.)(R") is defined by

Kh(®") = (f € LI @\ {0)) : [ fll ey < 00},
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where
o

1/p
Wieggn ={ 32 21l |

k=—o00

In [8], the authors gave the definition of homogeneous Herz-type Hardy space with
variable exponent H K;(’f[)’ (R™) and the atomic decomposition characterization. S(R™)

denotes the space of Schwartz functions, and S’(R™) denotes the dual space of S(R™). Let
GnN(f)(x) be the grand maximal function of f(x) defined by

Gn(f)(z) = sup |og(f)(2)],

PEAN

where Ay = {¢p € S(R") :  sup |2°Dp(z)| <1} and N > n+1, ¢% is the nontangen-
o], | BI<N
tial maximal operator defined by

o (f)(x) = sup |¢s* f(y)l

ly—z|<t

with ¢y () =t "¢(z/t).

Definition 2 ([8]). Let a € R,0 < p < 00,¢(-) € P(R") and N > n+1. The homogeneous

Herz-type Hardy space with variable exponent H K:;‘(’?)) (R™) is defined by

HEGB(®R") = {f € SR : Gu(f)(2) € K35 (®")]

and Hf”HKC“(?; Rn) = [|Gn(f )HK;’?;(Rn)-
For € R we denote by [z] the largest integer less than or equal to x.

Definition 3 ([8]). Let nds < a < 00, ¢(+) € P(R™), and non-negative integer s > [a—nda].
A function a(x) on R™ is said to be a central (o, q(+))-atom, if it satisfies

(i) suppa C B(0,r) = {x € R": |z| < r}.

(ii) l|all Lot @y < [BO, 7)|7/™

(1) [gn al mﬂdx =0,|8] <s.

If 7 = 2% for some k € Z in Definition 3, then the corresponding central (a, g(-))-atom
is called a dyadic central (a, ¢(+))-atom.

Lemma 4 ([8]). Let nds < a < oo, 0 < p < oo and q(-) € B(R™). Then f € HK;Z?;(R”)
if and only if

f= Z Agag, in the sense of S&'(R"),

k=—o0
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oo
where each ay, is a central («, q(+))-atom with support contained in By and Z |Ak]P < oo.

k=—o00
Moreover

o] 1/p
HfHHK;(g(Rn)%inf< > w) ,
k=—o00

where the infimum is taken over all above decompositions of f.

In [9], we gave some real-variable characterizations for H K;‘(’?)) (R™). Let ¢ € S(R™)
with integral 1. For ¢ > 0, set ¢¢(z) = t "¢(x/t). For f € S'(R™), define the maximal

operator ¢7, ¢ y (with N > 1) and ¢}; (with M € N) by

¢4 () = sup (f x de) ()], oy n(f)(x) =sup  sup |(f *¢)(y)]

t>0 |z—y|<Nt

and

M
w(H@) = sup |<f*¢t><y>|(t) |

(y.)eRH v —yl+1

Lemma 5 ([9]). Let 0 < a < 00,0 < p < oo and ¢(-) € B(R™). For f € §'(R"), the
following statements are equivalent:

(i) f € HE 5 (R™).

(ii) For some N > 1, ¢ (f) € K;(’_’;(R”).

(i#) 6% (f) € K57 (B,

(iv) 6% (f) € Ko7 (™).

Moreover

I W rgcern ey = 1969, 8 (D | o ey 2 165 (D g p @ny = 103 (Dl icop e

2. Main result and its proof

In this section, we will prove the boundedness of pseudo-differential operators on ho-
mogeneous Herz-type Hardy space with variable exponent.

Jr

Theorem 1. Let nd2 < a < 00,0 <p < oo and q(-) € B(R"). If Tf(z) =
| < C,

o f(2)o(z,€)
(L +1€

e de with o € SO, that is, o € C®°(R™ x R") and \Dnga(a:,ﬁ) < ™ ‘BI
then ||Tf”HK;‘(7;(R”) < CHfHHK;)‘(I;(R")
Proof. Let f € H K;“(’.I)’ (R™). By Lemma 4, we have f(z Z Akay () in distribu-

k=—o00
tional sense. Then we consider two cases with 0 < p <1 and 1 < p < o0.
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The case 0 < p < 1. In this case, we only need to show that HTakHHKa(,;;(Rn) < C and
o
C is independent of ay. If k¥ <0, then

o0
I Ta|%, HESP(®r) > PNGN(Tar) s g

j=—o0
k+2

o0
= Z 2]ap||GN(Tak)XjHiqw(Rn)+ Z 2]ap||GN(Tak)XjHi"”(Rn)
= j=k+3
= I1+I2-

For Iy, using the L) (R")-boundedness of M, we have

k+2
Il = Z 2‘7ap||GN(Tak’)X]HLq()(Rn)
j=—00
k+2 '
< Y PMTa)?,, -
j=—o00
k+2
<O Pl
]—700
k+2
< C Z 9(i—k)ap <C.
j=—o00
To estimate I2, by Theorem 4 in [3], we can write
¢ * (Tag)(z) = Ki(z,x — z)ag(z)dz.

Rn

Then we expand K (z,z — z) in a Taylor series about z = 0. By the vanishing moments
of ay, we get that

¢¢ % (Tag)(z) = / DKy (xz,x — 0z)z%(2)dz,
|o|=N+1

where § € (0,1) and N € Z, satisfying a — nda < N + 1. Noting that € A; with
j > k+ 3, by Theorem 4 in [3], we can obtain that

C
|¢t * (T(Ik)(l’)| < W /Rn |Z|N+1ak(z)d2

CQk(N+1)
S N /}R ax(z)dz

C2k(N+1)

WH%HM (R™) \|XBk||Lq<> (R™)
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CQk(N—l-l)
—a/n
= W’BH HXBkHLq () (Rn)*

So by Lemma 2 and Lemma 3 we have

00 a/n
k(N+1)—j(n+N+1 ’B| b
j=k+3

w (1B v
o 3 o (B s (B0, 1 )
j=k+3

e vatea [ IXB Lo @\
o Y ptavea) (PO

IN

< C Z op(k—=j)(N+1-a+nd2) < 1
j=k+3

If £ > 0, we choose a radial smooth function n such that suppn C B(0,1) and 7 equals 1
near the origin. We split 7' = T} 4+ T» by decomposing K (z,z) = Ki(z,z) + Ko(z,z) =
n(2)K (x,2)+(1—n(2))K (x, z). Then Tj and T} are of order zero. Noting supp ¢ (Tiay) C
Bj+1 and L10)(R™)-boundedness of M, we get

k+1
ITaaklly gopgy, = D 27165 (Tran)xi o0 g,
a(’) i——
J=—0Q
k+1 ‘
C Z QJOZPHM(Tlak)Hiq(.)(Rn)
Jj=—00
k+1 '
C > DTl g
Jj=—00
k+1
O Pl )
_]7—00
k+1
< C Z oli=ker < ¢

j=—o0

IN

IA

IN

Now let’s estimate Thay(x). We have
|(K2)i(z,2)] < Car(1+ [2) ™ (1)

for any M > n (see [3, Theorem 4]). Then we write

o0
1 Toarll7, HEKSH®RR) > PPN (T2ak) X5 [ ot gy

j=—o0



46 H. Wang, Y. Wu

k+2 o)

= Y P Tean) s ] gy + D PPN (o)X g
Jj=—00 j=k+3

= Ji+ J.

For Ji, we can obtain the desirable estimate by a similar method used for I;. For Js,
noting that x € A; and [ > k + 3, by (1) we can obtain that

|0+ (Taar)(x)| = (Ka)i(, @ — 2)ar(2)dz|

.

1
< Cuy M|ak(z)|dz

ge (1+ |z — 2])

C
|x|"+N+1/Rn |ag(z)|dz

CQk(N—H) B
= W'Bk‘ Bl o ey

where we take N € Z, satisfying o — ndy < N + 1. So it easily follows that J, < C.
The case 1 < p < co. In this case, we write

o] 1/p
T ey = {Z 2’mpu¢:<Tf>xkrzq(.>(Rn)}

k=—o0
py 1/p
o0 oo
< 9> 2R L Il (Tag) Xl Lac) mmy
k=—00 j=—o00
N - py 1/p
< 830 2 D NI (Tag)xell oo ey
k=—o00 Jj=—00
py 1/p
00 0o
+9 30 20 (SN0 (Tag) el o eny

k=—o00 ji=k
= U; + Us.
Similar to I1, we can get the estimates of Us. For U;, we continue to decompose it as
follows
o) k—1 py 1/p
k
U= 3 2 S Il (Tag)xell oo ey
k=—o00 j=—00
py 1/p

IN

0 k-1
>0 2R N N0 (Tas) Xkl oo )

k=—o0 Jj=—00
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py 1/p
[e%e] k-1
n 22190410 Z |)\j\Hqﬁi(Tlaj)XkHan)(Rn)
k=1 Jj=—o00
R . py 1/p
+ Y 2R N N[0 (T2as) Xk oo oy
k=1 Jj=—o00

= Vi+Vo+ Vs

For Vs, it is easy to get the estimate by a similar method used for I;. Using the vanishing
moments for V; and (1) for Vi, we easily obtain that if z € Ay and k > j + 1, then

* * C2j(N+1) —a/n
|95 (Taj) ()], |93 (T2a;)(2)| < W’Bﬂ / X8, | L) (g

where we choose N € Z, such that « —nd2 < N + 1. From this, it easily follows that
Vi+Vs<C.
This completes the proof of Theorem 1. «
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