Boundedness of Pseudo-differential Operators on Homogeneous Herz-type Hardy Space with Variable Exponent

H. Wang*, Y. Wu

Abstract

In this paper, we obtain some boundedness of the pseudo-differential operator T on homogeneous Herz-type Hardy space with variable exponent.

Key Words and Phrases: pseudo-differential operator, Herz-type Hardy space, variable exponent.

2010 Mathematics Subject Classifications: 42B30, 42B35, 46E30

1. Introduction

The theory of function spaces with variable exponent has been extensively studied by researchers since the work of Kováčik and Rákosník [5] appeared in 1991. In [1] and [7], the boundedness of some integral operators on variable L^{p} spaces was studied. In [8], the Herz-type Hardy spaces with variable exponent were defined and their atomic characterizations were given.

The boundedness of pseudo-differential operators on Herz-type Hardy spaces was studied by many authors (see $[2,6]$). Inspired by $[3,8]$, we will prove the boundedness of pseudo-differential operators of order zero on the space $H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)$, which generalizes some known results.

We first briefly recall some standard notations. Given an open set $\Omega \subset \mathbb{R}^{n}$, and a measurable function $p(\cdot): \Omega \longrightarrow[1, \infty), L^{p(\cdot)}(\Omega)$ denotes the set of measurable functions f on Ω such that for some $\lambda>0$,

$$
\int_{\Omega}\left(\frac{|f(x)|}{\lambda}\right)^{p(x)} d x<\infty
$$

This set becomes a Banach function space when equipped with the Luxemburg-Nakano norm

$$
\|f\|_{L^{p(\cdot)}(\Omega)}=\inf \left\{\lambda>0: \int_{\Omega}\left(\frac{|f(x)|}{\lambda}\right)^{p(x)} d x \leq 1\right\}
$$

[^0]These spaces are referred to as variable L^{p} spaces, since they generalized the standard L^{p} spaces: if $p(x)=p$ is constant, then $L^{p(\cdot)}(\Omega)$ is isometrically isomorphic to $L^{p}(\Omega)$.

The space $L_{\text {loc }}^{p(\cdot)}(\Omega)$ is defined by

$$
L_{\mathrm{loc}}^{p(\cdot)}(\Omega):=\left\{f: f \in L^{p(\cdot)}(E) \text { for all compact subsets } E \subset \Omega\right\}
$$

Define $\mathcal{P}(\Omega)$ to be the set of $p(\cdot): \Omega \longrightarrow[1, \infty)$ such that

$$
p^{-}=\operatorname{ess} \inf \{p(x): x \in \Omega\}>1, \quad p^{+}=\operatorname{ess} \sup \{p(x): x \in \Omega\}<\infty
$$

Denote $p^{\prime}(x)=p(x) /(p(x)-1)$. Let $\mathcal{B}(\Omega)$ be the set of $p(\cdot) \in \mathcal{P}(\Omega)$ such that the HardyLittlewood maximal operator \mathcal{M} is bounded on $L^{p(\cdot)}(\Omega)$.

In variable L^{p} spaces there are some important lemmas.
Lemma 1 ([5]). Let $p(\cdot) \in \mathcal{P}(\Omega)$. If $f \in L^{p(\cdot)}(\Omega)$ and $g \in L^{p^{\prime}(\cdot)}(\Omega)$, then $f g$ is integrable on Ω and

$$
\int_{\Omega}|f(x) g(x)| d x \leq r_{p}\|f\|_{L^{p(\cdot)}(\Omega)}\|g\|_{L^{p^{\prime}(\cdot)}(\Omega)}
$$

where

$$
r_{p}=1+1 / p^{-}-1 / p^{+}
$$

The last inequality is called the generalized Hölder inequality with respect to the variable L^{p} spaces.

Lemma $2([4])$. Let $p(\cdot) \in \mathcal{B}\left(\mathbb{R}^{n}\right)$. Then there exists a positive constant C such that for all balls B in \mathbb{R}^{n} and all measurable subsets $S \subset B$,

$$
\frac{\left\|\chi_{B}\right\|_{L^{p(\cdot)}\left(\mathbb{R}^{n}\right)}}{\left\|\chi_{S}\right\|_{L^{p(\cdot)}\left(\mathbb{R}^{n}\right)} \leq C \frac{|B|}{|S|}, \quad \frac{\left\|\chi_{S}\right\|_{L^{p(\cdot)}\left(\mathbb{R}^{n}\right)}}{\left\|\chi_{B}\right\|_{L^{p(\cdot)}\left(\mathbb{R}^{n}\right)}} \leq C\left(\frac{|S|}{|B|}\right)^{\delta_{1}} \quad \text { and } \frac{\left\|\chi_{S}\right\|_{L^{p^{\prime}(\cdot)}\left(\mathbb{R}^{n}\right)}}{\left\|\chi_{B}\right\|_{L^{p^{\prime}(\cdot)}\left(\mathbb{R}^{n}\right)}} \leq C\left(\frac{|S|}{|B|}\right)^{\delta_{2}}, \text {, }, ~}
$$ where δ_{1}, δ_{2} are constants with $0<\delta_{1}, \delta_{2}<1$ and χ_{S}, χ_{B} are the characteristic functions of S, B, respectively.

Throughout this paper δ_{2} is the same as in Lemma 2.
Lemma $3([4])$. Suppose $p(\cdot) \in \mathcal{B}\left(\mathbb{R}^{n}\right)$. Then there exists a constant $C>0$ such that for all balls B in \mathbb{R}^{n},

$$
\frac{1}{|B|}\left\|\chi_{B}\right\|_{L^{p(\cdot)}\left(\mathbb{R}^{n}\right)}\left\|\chi_{B}\right\|_{L^{p^{\prime}(\cdot)}\left(\mathbb{R}^{n}\right)} \leq C
$$

Next we recall the definition of the homogeneous Herz-type spaces with variable exponent. Let $B_{k}=\left\{x \in \mathbb{R}^{n}:|x| \leq 2^{k}\right\}$ and $A_{k}=B_{k} \backslash B_{k-1}$ for $k \in \mathbb{Z}$. Denote by \mathbb{Z}_{+}and \mathbb{N} the sets of all positive and non-negative integers, respectively. Also denote $\chi_{k}=\chi_{A_{k}}$ for $k \in \mathbb{Z}, \tilde{\chi}_{k}=\chi_{k}$ if $k \in \mathbb{Z}_{+}$and $\tilde{\chi}_{0}=\chi_{B_{0}}$.

Definition $1([4])$. Let $\alpha \in \mathbb{R}, 0<p \leq \infty$ and $q(\cdot) \in \mathcal{P}\left(\mathbb{R}^{n}\right)$. The homogeneous Herz space with variable exponent $\dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)=\left\{f \in L_{\mathrm{loc}}^{q(\cdot)}\left(\mathbb{R}^{n} \backslash\{0\}\right):\|f\|_{\dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)}<\infty\right\}
$$

where

$$
\|f\|_{\dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)}=\left\{\sum_{k=-\infty}^{\infty} 2^{k \alpha p}\left\|f \chi_{k}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p}\right\}^{1 / p}
$$

In [8], the authors gave the definition of homogeneous Herz-type Hardy space with variable exponent $H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)$ and the atomic decomposition characterization. $\mathcal{S}\left(\mathbb{R}^{n}\right)$ denotes the space of Schwartz functions, and $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ denotes the dual space of $\mathcal{S}\left(\mathbb{R}^{n}\right)$. Let $G_{N}(f)(x)$ be the grand maximal function of $f(x)$ defined by

$$
G_{N}(f)(x)=\sup _{\phi \in \mathcal{A}_{N}}\left|\phi_{\nabla}^{*}(f)(x)\right|,
$$

where $\mathcal{A}_{N}=\left\{\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right): \sup _{|\alpha|,|\beta| \leq N}\left|x^{\alpha} D^{\beta} \phi(x)\right| \leq 1\right\}$ and $N>n+1, \phi_{\nabla}^{*}$ is the nontangential maximal operator defined by

$$
\phi_{\nabla}^{*}(f)(x)=\sup _{|y-x|<t}\left|\phi_{t} * f(y)\right|
$$

with $\phi_{t}(x)=t^{-n} \phi(x / t)$.
Definition 2 ([8]). Let $\alpha \in \mathbb{R}, 0<p<\infty, q(\cdot) \in \mathcal{P}\left(\mathbb{R}^{n}\right)$ and $N>n+1$. The homogeneous Herz-type Hardy space with variable exponent $H \dot{K}_{q \cdot()}^{\alpha, p}\left(\mathbb{R}^{n}\right)$ is defined by

$$
H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)=\left\{f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right): G_{N}(f)(x) \in \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)\right\}
$$

and $\|f\|_{H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)}=\left\|G_{N}(f)\right\|_{\dot{K}_{q \cdot()}^{\alpha, p}\left(\mathbb{R}^{n}\right)}$.
For $x \in \mathbb{R}$ we denote by $[x]$ the largest integer less than or equal to x.
Definition 3 ([8]). Let $n \delta_{2} \leq \alpha<\infty, q(\cdot) \in \mathcal{P}\left(\mathbb{R}^{n}\right)$, and non-negative integer $s \geq\left[\alpha-n \delta_{2}\right]$. A function $a(x)$ on \mathbb{R}^{n} is said to be a central $(\alpha, q(\cdot))$-atom, if it satisfies
(i) supp $a \subset B(0, r)=\left\{x \in \mathbb{R}^{n}:|x|<r\right\}$.
(ii) $\|a\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)} \leq|B(0, r)|^{-\alpha / n}$.
(iii) $\int_{\mathbb{R}^{n}} a(x) x^{\beta} d x=0,|\beta| \leq s$.

If $r=2^{k}$ for some $k \in \mathbb{Z}$ in Definition 3, then the corresponding central $(\alpha, q(\cdot))$-atom is called a dyadic central $(\alpha, q(\cdot))$-atom.

Lemma $4([8])$. Let $n \delta_{2} \leq \alpha<\infty, 0<p<\infty$ and $q(\cdot) \in \mathcal{B}\left(\mathbb{R}^{n}\right)$. Then $f \in H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)$ if and only if

$$
f=\sum_{k=-\infty}^{\infty} \lambda_{k} a_{k}, \quad \text { in the sense of } \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)
$$

where each a_{k} is a central $(\alpha, q(\cdot))$-atom with support contained in B_{k} and $\sum_{k=-\infty}^{\infty}\left|\lambda_{k}\right|^{p}<\infty$. Moreover

$$
\|f\|_{H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)} \approx \inf \left(\sum_{k=-\infty}^{\infty}\left|\lambda_{k}\right|^{p}\right)^{1 / p}
$$

where the infimum is taken over all above decompositions of f.
In [9], we gave some real-variable characterizations for $H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)$. Let $\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with integral 1. For $t>0$, set $\phi_{t}(x)=t^{-n} \phi(x / t)$. For $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, define the maximal operator $\phi_{+}^{*}, \phi_{\nabla, N}^{*}($ with $N>1)$ and $\phi_{M}^{* *}($ with $M \in \mathbb{N})$ by

$$
\phi_{+}^{*}(f)(x)=\sup _{t>0}\left|\left(f * \phi_{t}\right)(x)\right|, \phi_{\nabla, N}^{*}(f)(x)=\sup _{t>0} \sup _{|x-y|<N t}\left|\left(f * \phi_{t}\right)(y)\right|
$$

and

$$
\phi_{M}^{* *}(f)(x)=\sup _{(y, t) \in \mathbb{R}_{+}^{n+1}}\left|\left(f * \phi_{t}\right)(y)\right|\left(\frac{t}{|x-y|+t}\right)^{M}
$$

Lemma 5 ([9]). Let $0<\alpha<\infty, 0<p<\infty$ and $q(\cdot) \in \mathcal{B}\left(\mathbb{R}^{n}\right)$. For $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, the following statements are equivalent:
(i) $f \in H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)$.
(ii) For some $N>1, \phi_{\nabla, N}^{*}(f) \in \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)$.
(iii) $\phi_{\nabla}^{*}(f) \in \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)$.
(iv) $\phi_{+}^{*}(f) \in \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)$.

Moreover

$$
\|f\|_{H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)} \approx\left\|\phi_{\nabla, N}^{*}(f)\right\|_{\dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)} \approx\left\|\phi_{\nabla}^{*}(f)\right\|_{\dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)} \approx\left\|\phi_{+}^{*}(f)\right\|_{\dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)}
$$

2. Main result and its proof

In this section, we will prove the boundedness of pseudo-differential operators on homogeneous Herz-type Hardy space with variable exponent.

Theorem 1. Let $n \delta_{2} \leq \alpha<\infty, 0<p<\infty$ and $q(\cdot) \in \mathcal{B}\left(\mathbb{R}^{n}\right)$. If $T f(x)=\int_{\mathbb{R}^{n}} \hat{f}(x) \sigma(x, \xi)$ $e^{2 \pi i x \cdot \xi} d \xi$ with $\sigma \in \mathbb{S}^{0}$, that is, $\sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ and $\left|D_{x}^{\alpha} D_{\xi}^{\beta} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}(1+|\xi|)^{-|\beta|}$, then $\|T f\|_{H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)}$.

Proof. Let $f \in H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)$. By Lemma 4, we have $f(x)=\sum_{k=-\infty}^{\infty} \lambda_{k} a_{k}(x)$ in distributional sense. Then we consider two cases with $0<p \leq 1$ and $1<p<\infty$.

The case $0<p \leq 1$. In this case, we only need to show that $\left\|T a_{k}\right\|_{H \dot{K}_{q \cdot()}^{\alpha, p}\left(\mathbb{R}^{n}\right)} \leq C$ and C is independent of a_{k}. If $k \leq 0$, then

$$
\begin{aligned}
\left\|T a_{k}\right\|_{H \dot{K}_{q(\cdot)}^{\alpha,()}\left(\mathbb{R}^{n}\right)}^{p} & =\sum_{j=-\infty}^{\infty} 2^{j \alpha p}\left\|G_{N}\left(T a_{k}\right) \chi_{j}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p} \\
& =\sum_{j=-\infty}^{k+2} 2^{j \alpha p}\left\|G_{N}\left(T a_{k}\right) \chi_{j}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p}+\sum_{j=k+3}^{\infty} 2^{j \alpha p}\left\|G_{N}\left(T a_{k}\right) \chi_{j}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p} \\
& =I_{1}+I_{2}
\end{aligned}
$$

For I_{1}, using the $L^{q(\cdot)}\left(\mathbb{R}^{n}\right)$-boundedness of \mathcal{M}, we have

$$
\begin{aligned}
I_{1} & =\sum_{j=-\infty}^{k+2} 2^{j \alpha p}\left\|G_{N}\left(T a_{k}\right) \chi_{j}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p} \\
& \leq C \sum_{j=-\infty}^{k+2} 2^{j \alpha p}\left\|\mathcal{M}\left(T a_{k}\right)\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p} \\
& \leq C \sum_{j=-\infty}^{k+2} 2^{j \alpha p}\left\|a_{k}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p} \\
& \leq C \sum_{j=-\infty}^{k+2} 2^{(j-k) \alpha p} \leq C .
\end{aligned}
$$

To estimate I_{2}, by Theorem 4 in [3], we can write

$$
\phi_{t} *\left(T a_{k}\right)(x)=\int_{\mathbb{R}^{n}} K_{t}(x, x-z) a_{k}(z) d z .
$$

Then we expand $K_{t}(x, x-z)$ in a Taylor series about $z=0$. By the vanishing moments of a_{k}, we get that

$$
\phi_{t} *\left(T a_{k}\right)(x)=\sum_{|\alpha|=N+1} \int_{\mathbb{R}^{n}} D_{z}^{\alpha} K_{t}(x, x-\theta z) z^{\alpha} a_{k}(z) d z,
$$

where $\theta \in(0,1)$ and $N \in \mathbb{Z}_{+}$satisfying $\alpha-n \delta_{2}<N+1$. Noting that $x \in A_{j}$ with $j \geq k+3$, by Theorem 4 in [3], we can obtain that

$$
\begin{aligned}
\left|\phi_{t} *\left(T a_{k}\right)(x)\right| & \leq \frac{C}{\mid x x^{n+N+1}} \int_{\mathbb{R}^{n}}|z|^{N+1} a_{k}(z) d z \\
& \leq \frac{C 2^{k(N+1)}}{|x|^{n+N+1}} \int_{\mathbb{R}^{n}} a_{k}(z) d z \\
& \leq \frac{C 2^{k(N+1)}}{|x|^{n+N+1}}\left\|a_{k}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}\left\|\chi_{B_{k}}\right\|_{L^{q^{\prime}(\cdot)\left(\mathbb{R}^{n}\right)}}
\end{aligned}
$$

$$
\leq \frac{C 2^{k(N+1)}}{2^{j(n+N+1)}}\left|B_{k}\right|^{-\alpha / n}\left\|\chi_{B_{k}}\right\|_{L^{q^{\prime}(\cdot)}\left(\mathbb{R}^{n}\right)}
$$

So by Lemma 2 and Lemma 3 we have

$$
\begin{aligned}
I_{2} & \leq C \sum_{j=k+3}^{\infty} 2^{p[k(N+1)-j(n+N+1)]}\left(\frac{\left|B_{j}\right|}{\left|B_{k}\right|}\right)^{p \alpha / n}\left\|\chi_{B_{k}}\right\|_{L^{q^{\prime}(\cdot)}\left(\mathbb{R}^{n}\right)}^{p}\left\|\chi_{B_{j}}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p} \\
& \leq C \sum_{j=k+3}^{\infty} 2^{p[(k-j)(N+1)-j n]}\left(\frac{\left|B_{j}\right|}{\left|B_{k}\right|}\right)^{p \alpha / n}\left\|\chi_{B_{k}}\right\|_{L^{q^{\prime}(\cdot)\left(\mathbb{R}^{n}\right)}}^{p}\left(\left|B_{j}\right|\left\|\chi_{B_{j}}\right\|_{L^{q^{\prime}(\cdot)}\left(\mathbb{R}^{n}\right)}^{-1}\right)^{p} \\
& =C \sum_{j=k+3}^{\infty} 2^{p(k-j)(N+1-\alpha)}\left(\frac{\left\|\chi_{B_{k}}\right\|_{L^{q^{\prime}(\cdot)\left(\mathbb{R}^{n}\right)}}}{\left\|\chi_{B_{j}}\right\|_{L^{q^{\prime}(\cdot)\left(\mathbb{R}^{n}\right)}}^{p}}\right)^{p} \\
& \leq C \sum_{j=k+3}^{\infty} 2^{p(k-j)\left(N+1-\alpha+n \delta_{2}\right)} \leq C .
\end{aligned}
$$

If $k>0$, we choose a radial smooth function η such that $\operatorname{supp} \eta \subset B(0,1)$ and η equals 1 near the origin. We split $T=T_{1}+T_{2}$ by decomposing $K(x, z)=K_{1}(x, z)+K_{2}(x, z)=$ $\eta(z) K(x, z)+(1-\eta(z)) K(x, z)$. Then T_{1} and T_{2} are of order zero. Noting supp $\tilde{\phi}_{+}^{*}\left(T_{1} a_{k}\right) \subset$ B_{k+1} and $L^{q(\cdot)}\left(\mathbb{R}^{n}\right)$-boundedness of \mathcal{M}, we get

$$
\begin{aligned}
\left\|T_{1} a_{k}\right\|_{H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)}^{p} & =\sum_{j=-\infty}^{k+1} 2^{j \alpha p}\left\|\phi_{+}^{*}\left(T_{1} a_{k}\right) \chi_{j}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p} \\
& \leq C \sum_{j=-\infty}^{k+1} 2^{j \alpha p}\left\|\mathcal{M}\left(T_{1} a_{k}\right)\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p} \\
& \leq C \sum_{j=-\infty}^{k+1} 2^{j \alpha p}\left\|T_{1} a_{k}\right\|_{L^{q(\cdot)}}^{p}\left(\mathbb{R}^{n}\right) \\
& \leq C \sum_{j=-\infty}^{k+1} 2^{j \alpha p}\left\|a_{k}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p} \\
& \leq C \sum_{j=-\infty}^{k+1} 2^{(j-k) \alpha p} \leq C .
\end{aligned}
$$

Now let's estimate $T_{2} a_{k}(x)$. We have

$$
\begin{equation*}
\left|\left(K_{2}\right)_{t}(x, z)\right| \leq C_{M}(1+|z|)^{-M} \tag{1}
\end{equation*}
$$

for any $M \geq n($ see $[3$, Theorem 4]). Then we write

$$
\left\|T_{2} a_{k}\right\|_{H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)}^{p}=\sum_{j=-\infty}^{\infty} 2^{j \alpha p}\left\|\phi_{+}^{*}\left(T_{2} a_{k}\right) \chi_{j}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p}
$$

$$
\begin{aligned}
& =\sum_{j=-\infty}^{k+2} 2^{j \alpha p}\left\|\phi_{+}^{*}\left(T_{2} a_{k}\right) \chi_{j}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p}+\sum_{j=k+3}^{\infty} 2^{j \alpha p}\left\|\phi_{+}^{*}\left(T_{2} a_{k}\right) \chi_{j}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p} \\
& =J_{1}+J_{2}
\end{aligned}
$$

For J_{1}, we can obtain the desirable estimate by a similar method used for I_{1}. For J_{2}, noting that $x \in A_{j}$ and $l \geq k+3$, by (1) we can obtain that

$$
\begin{aligned}
\left|\phi_{t} *\left(T_{2} a_{k}\right)(x)\right| & =\left|\int_{\mathbb{R}^{n}}\left(K_{2}\right)_{t}(x, x-z) a_{k}(z) d z\right| \\
& \leq C_{M} \int_{\mathbb{R}^{n}} \frac{1}{(1+|x-z|)^{M}}\left|a_{k}(z)\right| d z \\
& \leq \frac{C}{|x|^{n+N+1}} \int_{\mathbb{R}^{n}}\left|a_{k}(z)\right| d z \\
& \leq \frac{C 2^{k(N+1)}}{|x|^{n+N+1}}\left|B_{k}\right|^{-\alpha / n}\left\|\chi_{B_{k}}\right\|_{L^{q^{\prime}(\cdot)\left(\mathbb{R}^{n}\right)}}
\end{aligned}
$$

where we take $N \in \mathbb{Z}_{+}$satisfying $\alpha-n \delta_{2}<N+1$. So it easily follows that $J_{2} \leq C$.
The case $1<p<\infty$. In this case, we write

$$
\begin{aligned}
\|T f\|_{H \dot{K}_{q(\cdot)}^{\alpha, p}\left(\mathbb{R}^{n}\right)}= & \left\{\sum_{k=-\infty}^{\infty} 2^{k \alpha p}\left\|\phi_{+}^{*}(T f) \chi_{k}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}^{p}\right\}^{1 / p} \\
\leq & \left\{\sum_{k=-\infty}^{\infty} 2^{k \alpha p}\left(\sum_{j=-\infty}^{\infty}\left|\lambda_{j}\right|\left\|\phi_{+}^{*}\left(T a_{j}\right) \chi_{k}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}\right)^{p}\right\}^{1 / p} \\
\leq & \left\{\sum_{k=-\infty}^{\infty} 2^{k \alpha p}\left(\sum_{j=-\infty}^{k-1}\left|\lambda_{j}\right|\left\|\phi_{+}^{*}\left(T a_{j}\right) \chi_{k}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}\right)^{p}\right\}^{1 / p} \\
& +\left\{\sum_{k=-\infty}^{\infty} 2^{k \alpha p}\left(\sum_{j=k}^{\infty}\left|\lambda_{j}\right|\left\|\phi_{+}^{*}\left(T a_{j}\right) \chi_{k}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}\right)^{p}\right\}^{1 / p} \\
= & U_{1}+U_{2}
\end{aligned}
$$

Similar to I_{1}, we can get the estimates of U_{2}. For U_{1}, we continue to decompose it as follows

$$
\begin{aligned}
U_{1} & =\left\{\sum_{k=-\infty}^{\infty} 2^{k \alpha p}\left(\sum_{j=-\infty}^{k-1}\left|\lambda_{j}\right|\left\|\phi_{+}^{*}\left(T a_{j}\right) \chi_{k}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}\right)^{p}\right\}^{1 / p} \\
& \leq\left\{\sum_{k=-\infty}^{0} 2^{k \alpha p}\left(\sum_{j=-\infty}^{k-1}\left|\lambda_{j}\right|\left\|\phi_{+}^{*}\left(T a_{j}\right) \chi_{k}\right\|_{L^{q(\cdot)}\left(\mathbb{R}^{n}\right)}\right)^{p}\right\}^{1 / p}
\end{aligned}
$$

$$
\begin{aligned}
& +\left\{\sum_{k=1}^{\infty} 2^{k \alpha p}\left(\sum_{j=-\infty}^{k-1}\left|\lambda_{j}\right|\left\|\phi_{+}^{*}\left(T_{1} a_{j}\right) \chi_{k}\right\|_{L^{q \cdot()}\left(\mathbb{R}^{n}\right)}\right)^{p}\right\}^{1 / p} \\
& +\left\{\sum_{k=1}^{\infty} 2^{k \alpha p}\left(\sum_{j=-\infty}^{k-1}\left|\lambda_{j}\right|\left\|\phi_{+}^{*}\left(T_{2} a_{j}\right) \chi_{k}\right\|_{L^{q \cdot(\cdot)}\left(\mathbb{R}^{n}\right)}\right)^{p}\right\}^{1 / p} \\
= & V_{1}+V_{2}+V_{3} .
\end{aligned}
$$

For V_{2}, it is easy to get the estimate by a similar method used for I_{1}. Using the vanishing moments for V_{1} and (1) for V_{3}, we easily obtain that if $x \in A_{k}$ and $k \geq j+1$, then

$$
\left|\phi_{+}^{*}\left(T a_{j}\right)(x)\right|,\left|\phi_{+}^{*}\left(T_{2} a_{j}\right)(x)\right| \leq \frac{C 2^{j(N+1)}}{|x|^{n+N+1}}\left|B_{j}\right|^{-\alpha / n}\left\|\chi_{B_{j}}\right\|_{L^{q^{\prime}(\cdot)}\left(\mathbb{R}^{n}\right)},
$$

where we choose $N \in \mathbb{Z}_{+}$such that $\alpha-n \delta_{2}<N+1$. From this, it easily follows that $V_{1}+V_{3} \leq C$.

This completes the proof of Theorem 1.

Acknowledgements

The authors are very grateful to the referees for their valuable comments. This work was supported by National Natural Science Foundation of China (Grant No. 11171345).

References

[1] D.V. Cruz-Uribe, A. Fiorenza, J.M. Martell, C. Pérez, The boundedness of classical operators on variable L^{p} spaces, Ann. Acad. Sci. Fen. Math., 31, 2006, 239-264.
[2] D. Fan, D. Yang, The weighted Herz-type Hardy spaces $h \dot{K}_{q}^{\alpha, p}\left(\omega_{1}, \omega_{2}\right)$, Approx. Theory \& its Appl., 13, 1997, 19-41.
[3] D. Goldberg, A Local Version of Real Hardy Spaces, Duke Math. J., 46, 1979, 27-42.
[4] M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36, 2010, 33-50.
[5] O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41, 1991, 592-618.
[6] Y. Tsutsui, Pseudo-differential operators of class $S_{0,0}^{m}$ on the Herz-type spaces, Hokkaido Math. J., 38, 2009, 283-302.
[7] H. Wang, Z. Fu, Z. Liu, Higher-order commutators of Marcinkiewicz integrals and fractional integrals on variable Lebesgue spaces, Acta Math. Sci. Ser. A, 32, 2012, 1092-1101.
[8] H. Wang, Z. Liu, The Herz-type Hardy spaces with variable exponent and its applications, Taiwanese J. Math., 16, 2012, 1363-1389.
[9] H. Wang, Z. Liu, Some characterizations of Herz-type Hardy spaces with variable exponent, Ann. Funct. Anal., 6, 2015, 224-243.

Hongbin Wang
School of Science, Shandong University of Technology, Zibo 255049, China
E-mail: hbwang_2006@163.com
Yihong Wu
Department of Recruitment and Employment, Zibo Normal College, Zibo 255130, China
E-mail: wfapple123456@163.com

Received 28 October 2015
Accepted 04 April 2016

[^0]: *Corresponding author.

