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Boundedness of Pseudo-differential Operators on Homo-
geneous Herz-type Hardy Space with Variable Exponent
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Abstract. In this paper, we obtain some boundedness of the pseudo-differential operator T on
homogeneous Herz-type Hardy space with variable exponent.
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1. Introduction

The theory of function spaces with variable exponent has been extensively studied
by researchers since the work of Kováčik and Rákosńık [5] appeared in 1991. In [1] and
[7], the boundedness of some integral operators on variable Lp spaces was studied. In
[8], the Herz-type Hardy spaces with variable exponent were defined and their atomic
characterizations were given.

The boundedness of pseudo-differential operators on Herz-type Hardy spaces was stud-
ied by many authors (see [2, 6]). Inspired by [3, 8], we will prove the boundedness of
pseudo-differential operators of order zero on the space HK̇α,p

q(·)(R
n), which generalizes

some known results.
We first briefly recall some standard notations. Given an open set Ω ⊂ Rn, and a

measurable function p(·) : Ω −→ [1,∞), Lp(·)(Ω) denotes the set of measurable functions
f on Ω such that for some λ > 0,∫

Ω

(
|f(x)|
λ

)p(x)

dx <∞.

This set becomes a Banach function space when equipped with the Luxemburg-Nakano
norm

‖f‖Lp(·)(Ω) = inf

{
λ > 0 :

∫
Ω

(
|f(x)|
λ

)p(x)

dx ≤ 1

}
.
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These spaces are referred to as variable Lp spaces, since they generalized the standard Lp

spaces: if p(x) = p is constant, then Lp(·)(Ω) is isometrically isomorphic to Lp(Ω).

The space L
p(·)
loc (Ω) is defined by

L
p(·)
loc (Ω) := {f : f ∈ Lp(·)(E) for all compact subsets E ⊂ Ω}.

Define P(Ω) to be the set of p(·) : Ω −→ [1,∞) such that

p− = ess inf{p(x) : x ∈ Ω} > 1, p+ = ess sup{p(x) : x ∈ Ω} <∞.

Denote p′(x) = p(x)/(p(x)− 1). Let B(Ω) be the set of p(·) ∈ P(Ω) such that the Hardy-
Littlewood maximal operator M is bounded on Lp(·)(Ω).

In variable Lp spaces there are some important lemmas.

Lemma 1 ([5]). Let p(·) ∈ P(Ω). If f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω), then fg is integrable
on Ω and ∫

Ω
|f(x)g(x)|dx ≤ rp‖f‖Lp(·)(Ω)‖g‖Lp′(·)(Ω),

where
rp = 1 + 1/p− − 1/p+.

The last inequality is called the generalized Hölder inequality with respect to the
variable Lp spaces.

Lemma 2 ([4]). Let p(·) ∈ B(Rn). Then there exists a positive constant C such that for
all balls B in Rn and all measurable subsets S ⊂ B,
‖χB‖Lp(·)(Rn)

‖χS‖Lp(·)(Rn)

≤ C |B|
|S|

,
‖χS‖Lp(·)(Rn)

‖χB‖Lp(·)(Rn)

≤ C
(
|S|
|B|

)δ1
and

‖χS‖Lp′(·)(Rn)

‖χB‖Lp′(·)(Rn)

≤ C
(
|S|
|B|

)δ2
,

where δ1, δ2 are constants with 0 < δ1, δ2 < 1 and χS , χB are the characteristic functions
of S,B, respectively.

Throughout this paper δ2 is the same as in Lemma 2.

Lemma 3 ([4]). Suppose p(·) ∈ B(Rn). Then there exists a constant C > 0 such that for
all balls B in Rn,

1

|B|
‖χB‖Lp(·)(Rn)‖χB‖Lp′(·)(Rn) ≤ C.

Next we recall the definition of the homogeneous Herz-type spaces with variable expo-
nent. Let Bk = {x ∈ Rn : |x| ≤ 2k} and Ak = Bk \ Bk−1 for k ∈ Z. Denote by Z+ and N
the sets of all positive and non-negative integers, respectively. Also denote χk = χAk for
k ∈ Z, χ̃k = χk if k ∈ Z+ and χ̃0 = χB0 .

Definition 1 ([4]). Let α ∈ R, 0 < p ≤ ∞ and q(·) ∈ P(Rn). The homogeneous Herz
space with variable exponent K̇α,p

q(·)(R
n) is defined by

K̇α,p
q(·)(R

n) = {f ∈ Lq(·)loc (Rn \ {0}) : ‖f‖K̇α,p
q(·)(R

n) <∞},
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where

‖f‖K̇α,p
q(·)(R

n) =

{ ∞∑
k=−∞

2kαp‖fχk‖pLq(·)(Rn)

}1/p

.

In [8], the authors gave the definition of homogeneous Herz-type Hardy space with
variable exponent HK̇α,p

q(·)(R
n) and the atomic decomposition characterization. S(Rn)

denotes the space of Schwartz functions, and S ′(Rn) denotes the dual space of S(Rn). Let
GN (f)(x) be the grand maximal function of f(x) defined by

GN (f)(x) = sup
φ∈AN

|φ∗∇(f)(x)|,

where AN = {φ ∈ S(Rn) : sup
|α|,|β|≤N

|xαDβφ(x)| ≤ 1} and N > n+ 1, φ∗∇ is the nontangen-

tial maximal operator defined by

φ∗∇(f)(x) = sup
|y−x|<t

|φt ∗ f(y)|

with φt(x) = t−nφ(x/t).

Definition 2 ([8]). Let α ∈ R, 0 < p <∞, q(·) ∈ P(Rn) and N > n+1. The homogeneous
Herz-type Hardy space with variable exponent HK̇α,p

q(·)(R
n) is defined by

HK̇α,p
q(·)(R

n) =
{
f ∈ S ′(Rn) : GN (f)(x) ∈ K̇α,p

q(·)(R
n)
}

and ‖f‖HK̇α,p
q(·)(R

n) = ‖GN (f)‖K̇α,p
q(·)(R

n).

For x ∈ R we denote by [x] the largest integer less than or equal to x.

Definition 3 ([8]). Let nδ2 ≤ α <∞, q(·) ∈ P(Rn), and non-negative integer s ≥ [α−nδ2].
A function a(x) on Rn is said to be a central (α, q(·))-atom, if it satisfies

(i) supp a ⊂ B(0, r) = {x ∈ Rn : |x| < r}.
(ii) ‖a‖Lq(·)(Rn) ≤ |B(0, r)|−α/n.

(iii)
∫
Rn a(x)xβdx = 0, |β| ≤ s.

If r = 2k for some k ∈ Z in Definition 3, then the corresponding central (α, q(·))-atom
is called a dyadic central (α, q(·))-atom.

Lemma 4 ([8]). Let nδ2 ≤ α < ∞, 0 < p <∞ and q(·) ∈ B(Rn). Then f ∈ HK̇α,p
q(·)(R

n)
if and only if

f =
∞∑

k=−∞
λkak , in the sense of S ′(Rn),
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where each ak is a central (α, q(·))-atom with support contained in Bk and

∞∑
k=−∞

|λk|p <∞.

Moreover

‖f‖HK̇α,p
q(·)(R

n) ≈ inf

( ∞∑
k=−∞

|λk|p
)1/p

,

where the infimum is taken over all above decompositions of f .

In [9], we gave some real-variable characterizations for HK̇α,p
q(·)(R

n). Let φ ∈ S(Rn)

with integral 1. For t > 0, set φt(x) = t−nφ(x/t). For f ∈ S ′(Rn), define the maximal
operator φ∗+, φ

∗
∇,N (with N > 1) and φ∗∗M (with M ∈ N) by

φ∗+(f)(x) = sup
t>0
|(f ∗ φt)(x)|, φ∗∇,N (f)(x) = sup

t>0
sup

|x−y|<Nt
|(f ∗ φt)(y)|

and

φ∗∗M (f)(x) = sup
(y,t)∈Rn+1

+

|(f ∗ φt)(y)|
(

t

|x− y|+ t

)M
.

Lemma 5 ([9]). Let 0 < α < ∞, 0 < p < ∞ and q(·) ∈ B(Rn). For f ∈ S ′(Rn), the
following statements are equivalent:

(i) f ∈ HK̇α,p
q(·)(R

n).

(ii) For some N > 1, φ∗∇,N (f) ∈ K̇α,p
q(·)(R

n).

(iii) φ∗∇(f) ∈ K̇α,p
q(·)(R

n).

(iv) φ∗+(f) ∈ K̇α,p
q(·)(R

n).

Moreover

‖f‖HK̇α,p
q(·)(R

n) ≈ ‖φ
∗
∇,N (f)‖K̇α,p

q(·)(R
n) ≈ ‖φ

∗
∇(f)‖K̇α,p

q(·)(R
n) ≈ ‖φ

∗
+(f)‖K̇α,p

q(·)(R
n).

2. Main result and its proof

In this section, we will prove the boundedness of pseudo-differential operators on ho-
mogeneous Herz-type Hardy space with variable exponent.

Theorem 1. Let nδ2 ≤ α <∞, 0 < p <∞ and q(·) ∈ B(Rn). If Tf(x) =
∫
Rn f̂(x)σ(x, ξ)

e2πix·ξdξ with σ ∈ S0, that is, σ ∈ C∞(Rn × Rn) and |Dα
xD

β
ξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|)−|β|,

then ‖Tf‖HK̇α,p
q(·)(R

n) ≤ C‖f‖HK̇α,p
q(·)(R

n).

Proof. Let f ∈ HK̇α,p
q(·)(R

n). By Lemma 4, we have f(x) =

∞∑
k=−∞

λkak(x) in distribu-

tional sense. Then we consider two cases with 0 < p ≤ 1 and 1 < p <∞.
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The case 0 < p ≤ 1. In this case, we only need to show that ‖Tak‖HK̇α,p
q(·)(R

n) ≤ C and

C is independent of ak. If k ≤ 0, then

‖Tak‖pHK̇α,p
q(·)(R

n)
=

∞∑
j=−∞

2jαp‖GN (Tak)χj‖pLq(·)(Rn)

=
k+2∑
j=−∞

2jαp‖GN (Tak)χj‖pLq(·)(Rn)
+

∞∑
j=k+3

2jαp‖GN (Tak)χj‖pLq(·)(Rn)

= I1 + I2.

For I1, using the Lq(·)(Rn)-boundedness of M, we have

I1 =
k+2∑
j=−∞

2jαp‖GN (Tak)χj‖pLq(·)(Rn)

≤ C
k+2∑
j=−∞

2jαp‖M(Tak)‖pLq(·)(Rn)

≤ C
k+2∑
j=−∞

2jαp‖ak‖pLq(·)(Rn)

≤ C
k+2∑
j=−∞

2(j−k)αp ≤ C.

To estimate I2, by Theorem 4 in [3], we can write

φt ∗ (Tak)(x) =

∫
Rn
Kt(x, x− z)ak(z)dz.

Then we expand Kt(x, x − z) in a Taylor series about z = 0. By the vanishing moments
of ak, we get that

φt ∗ (Tak)(x) =
∑

|α|=N+1

∫
Rn
Dα
zKt(x, x− θz)zαak(z)dz,

where θ ∈ (0, 1) and N ∈ Z+ satisfying α − nδ2 < N + 1. Noting that x ∈ Aj with
j ≥ k + 3, by Theorem 4 in [3], we can obtain that

|φt ∗ (Tak)(x)| ≤ C

|x|n+N+1

∫
Rn
|z|N+1ak(z)dz

≤ C2k(N+1)

|x|n+N+1

∫
Rn
ak(z)dz

≤ C2k(N+1)

|x|n+N+1
‖ak‖Lq(·)(Rn)‖χBk‖Lq′(·)(Rn)
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≤ C2k(N+1)

2j(n+N+1)
|Bk|−α/n‖χBk‖Lq′(·)(Rn).

So by Lemma 2 and Lemma 3 we have

I2 ≤ C

∞∑
j=k+3

2p[k(N+1)−j(n+N+1)]

(
|Bj |
|Bk|

)pα/n
‖χBk‖

p

Lq
′(·)(Rn)

‖χBj‖
p

Lq(·)(Rn)

≤ C
∞∑

j=k+3

2p[(k−j)(N+1)−jn]

(
|Bj |
|Bk|

)pα/n
‖χBk‖

p

Lq
′(·)(Rn)

(
|Bj |‖χBj‖

−1

Lq
′(·)(Rn)

)p
= C

∞∑
j=k+3

2p(k−j)(N+1−α)

(
‖χBk‖Lq′(·)(Rn)

‖χBj‖Lq′(·)(Rn)

)p

≤ C

∞∑
j=k+3

2p(k−j)(N+1−α+nδ2) ≤ C.

If k > 0, we choose a radial smooth function η such that supp η ⊂ B(0, 1) and η equals 1
near the origin. We split T = T1 + T2 by decomposing K(x, z) = K1(x, z) + K2(x, z) =
η(z)K(x, z)+(1−η(z))K(x, z). Then T1 and T2 are of order zero. Noting supp φ̃∗+(T1ak) ⊂
Bk+1 and Lq(·)(Rn)-boundedness of M, we get

‖T1ak‖pHK̇α,p
q(·)(R

n)
=

k+1∑
j=−∞

2jαp‖φ∗+(T1ak)χj‖pLq(·)(Rn)

≤ C
k+1∑
j=−∞

2jαp‖M(T1ak)‖pLq(·)(Rn)

≤ C
k+1∑
j=−∞

2jαp‖T1ak‖pLq(·)(Rn)

≤ C
k+1∑
j=−∞

2jαp‖ak‖pLq(·)(Rn)

≤ C
k+1∑
j=−∞

2(j−k)αp ≤ C.

Now let’s estimate T2ak(x). We have

|(K2)t(x, z)| ≤ CM (1 + |z|)−M (1)

for any M ≥ n (see [3, Theorem 4]). Then we write

‖T2ak‖pHK̇α,p
q(·)(R

n)
=

∞∑
j=−∞

2jαp‖φ∗+(T2ak)χj‖pLq(·)(Rn)
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=

k+2∑
j=−∞

2jαp‖φ∗+(T2ak)χj‖pLq(·)(Rn)
+

∞∑
j=k+3

2jαp‖φ∗+(T2ak)χj‖pLq(·)(Rn)

= J1 + J2.

For J1, we can obtain the desirable estimate by a similar method used for I1. For J2,
noting that x ∈ Aj and l ≥ k + 3, by (1) we can obtain that

|φt ∗ (T2ak)(x)| = |
∫
Rn

(K2)t(x, x− z)ak(z)dz|

≤ CM

∫
Rn

1

(1 + |x− z|)M
|ak(z)|dz

≤ C

|x|n+N+1

∫
Rn
|ak(z)|dz

≤ C2k(N+1)

|x|n+N+1
|Bk|−α/n‖χBk‖Lq′(·)(Rn),

where we take N ∈ Z+ satisfying α− nδ2 < N + 1. So it easily follows that J2 ≤ C.
The case 1 < p <∞. In this case, we write

‖Tf‖HK̇α,p
q(·)(R

n) =

{ ∞∑
k=−∞

2kαp‖φ∗+(Tf)χk‖pLq(·)(Rn)

}1/p

≤


∞∑

k=−∞
2kαp

 ∞∑
j=−∞

|λj |‖φ∗+(Taj)χk‖Lq(·)(Rn)

p
1/p

≤


∞∑

k=−∞
2kαp

 k−1∑
j=−∞

|λj |‖φ∗+(Taj)χk‖Lq(·)(Rn)

p
1/p

+


∞∑

k=−∞
2kαp

 ∞∑
j=k

|λj |‖φ∗+(Taj)χk‖Lq(·)(Rn)

p
1/p

= U1 + U2.

Similar to I1, we can get the estimates of U2. For U1, we continue to decompose it as
follows

U1 =


∞∑

k=−∞
2kαp

 k−1∑
j=−∞

|λj |‖φ∗+(Taj)χk‖Lq(·)(Rn)

p
1/p

≤


0∑

k=−∞
2kαp

 k−1∑
j=−∞

|λj |‖φ∗+(Taj)χk‖Lq(·)(Rn)

p
1/p
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+


∞∑
k=1

2kαp

 k−1∑
j=−∞

|λj |‖φ∗+(T1aj)χk‖Lq(·)(Rn)

p
1/p

+


∞∑
k=1

2kαp

 k−1∑
j=−∞

|λj |‖φ∗+(T2aj)χk‖Lq(·)(Rn)

p
1/p

= V1 + V2 + V3.

For V2, it is easy to get the estimate by a similar method used for I1. Using the vanishing
moments for V1 and (1) for V3, we easily obtain that if x ∈ Ak and k ≥ j + 1, then

|φ∗+(Taj)(x)|, |φ∗+(T2aj)(x)| ≤ C2j(N+1)

|x|n+N+1
|Bj |−α/n‖χBj‖Lq′(·)(Rn),

where we choose N ∈ Z+ such that α − nδ2 < N + 1. From this, it easily follows that
V1 + V3 ≤ C.

This completes the proof of Theorem 1. J
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