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Determination of the Type and Parameters of a Beam
End Fastening

A.A. Aitbaeva, A.M. Akhtyamov∗

Abstract. A homogeneous Euler-Bernoulli beam is considered. Left end of the beam is rigid
clamped. Right end of the beam can be fastened by following types: (i) rigid clamping, (ii) free
support, (iii) free end, (iv) floating fixing, (v) five types of elastic fixing, (vi) a concentrated inertial
element at the end, (vii) elastic fixing with a concentrated inertial element at the end. The aim of
this paper is to determine the type of these seven forms of the end fastening and their parameters
(relative stiffness coefficients of springs, mass and moment of inertia) by natural frequencies of the
beam flexural vibrations. It is proved that the types (i)–(vii) and corresponding parameters of the
boundary conditions on the right end of the beam is uniquely determined by five natural frequencies
of flexural vibrations. It is shown that the four natural frequencies for the unique identification
of the types of boundary conditions (i)–(vii) and corresponding parameters are not enough. The
special cases of the boundary conditions identification are considered. It is shown that the types
of boundary conditions (i)–(vi) with two unknown parameters are uniquely determined by three
eigenvalues. Two eigenvalues are not enough for the unique determination. The types of boundary
conditions (i)–(vii) with three unknown parameters are uniquely determined by four eigenvalues.
Three eigenvalues are not enough for this. Corresponding examples are given.
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1. Introduction

Beams are important elements of the mechanical systems of cars, tractors, ships,
planes, etc. Their vibrations often cause drumming, leading to discomfort for crew mem-
bers and passengers. This is due to the fact that the frequency spectra of beam vibrations
are sometimes in a range hazardous to human health. To change the beam vibration
frequencies, it is not always reasonable to change the beam length or attach concen-
trated masses. Therefore, to produce comfort conditions for passengers, it is required to
determine the types of beam fastening that provide the necessary (safe) range of beam
vibration frequencies. This refers not only to the fundamental vibration mode but also
overtones. This problem is related to issues of noise suppression [19, 26, 40], acoustic
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diagnostics [1, 13, 30, 37], the theory of inverse problems of mathematical physics [33],
the direct and inverse spectral problems [10, 14, 24, 28, 29, 34], boundary-value prob-
lems for differential equations of fourth order [2, 3, 21], identification of cracks and point
masses [9, 17, 20, 22, 23, 25, 27, 31, 32, 35], and problems of the theory of oscillations
[15, 16, 18, 36, 38, 39].

The aim of the present work is to determine the fastening parameters of a beam from
the eigenfrequencies of its flexural vibrations.

Similarly formulated problems also arise in the spectral theory of differential operators,
where it is required to establish the coefficients of a differential equation and the boundary
conditions using a set of eigenvalues (for more details, see [10, 14, 24, 28, 29, 34]). However,
as data for finding the boundary conditions, it was not one spectrum (as in this paper)
but several spectra or also other additional spectral data (for example, the spectral func-
tion, the Weyl function or so-called weighting numbers) that were used in those papers.
Moreover, the main aim there was to determine the coefficients in the equation and not
in the boundary conditions. The aim of this paper is, in the case of a known differential
equation, to establish some of the boundary conditions of the eigenvalue problem from its
spectrum.

The problems of diagnosing the fastening of strings, membranes, rods, beams, pipes
and plates have been studied previously in [5, 4, 6, 7, 8, 11].

2. Formulation of the inverse problem

The small free vibrations of an incompressible beam is described by the following
equation [39, p. 152]:

EI
∂4u(x, t)

∂x4
+ ρF

∂2u(x, t)

∂t2
= 0,

where α = EI is the flexural rigidity, ρ is the density and F is the cross-section area of the
beam. The problem of the small free vibrations of a beam with a rigidly clamped left-hand
end reduces, after making the substitution u(x, t) = y(x) cos(ω t) (see, for example, [18]
or [36]), to the following eigenvalue problem:

y(4) = λ4 y, U1(y, λ) = y(0) = 0, U2(y, λ) = y′(0) = 0, U3(y, λ) = 0, U4(y, λ) = 0.
(1)

Here α, ρ and F are constants, λ4 = ρF ω2/α :

U3(y) = a11 y
′′′(1) +

(
a15 + a16 λ

4
)
y(1) = 0,

U4(y) = a22 y
′′(1) +

(
a23 + a24 λ

4
)
y′(1) = 0,

(aij ∈ R) (2)

are linear forms which characterize the fixing at the point x = 1 (rigid clamping, free
support, free end, floating fixing, elastic fixing, concentrated inertial element at the end,
elastic fixing with concentrated inertial element at the end).

We shall denote the matrix, consisting of the coefficients aij of the forms U1(y) and
U2(y), by A and its minors by Mij :

A =

∥∥∥∥
a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26

∥∥∥∥ , Mij =

∣∣∣∣
a1i a1j
a2i a2j

∣∣∣∣ ,
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where a12 = a13 = a14 = a21 = a25 = a26 = 0.
The search for the forms U1(y, λ), U2(y, λ) is equivalent to finding the linear envelope

〈a1, a2〉 , constructed in the vectors ai = (ai1, ai2, ai3, ai4, ai5, ai6)
T (i = 1, 2).

The different cases for the clamping of one end of a rod [39, p. 153–155], [18] are
presented below:

(i) rigid clamping

A =

∥∥∥∥
0 0 0 0 1 0
0 0 1 0 0 0

∥∥∥∥ ,

(ii) free support

A =

∥∥∥∥
0 0 0 0 1 0
0 1 0 0 0 0

∥∥∥∥ ,

(iii) free end

A =

∥∥∥∥
1 0 0 0 0 0
0 1 0 0 0 0

∥∥∥∥ ,

(iv) floating fixing

A =

∥∥∥∥
1 0 0 0 0 0
0 0 1 0 0 0

∥∥∥∥ ,

(v) five types of elastic fixing

A =

∥∥∥∥
1 0 0 0 c1 0
0 0 1 0 0 0

∥∥∥∥ ,
∥∥∥∥

0 0 0 0 1 0
0 1 c2 0 0 0

∥∥∥∥ ,
∥∥∥∥

1 0 0 0 0 0
0 1 0 0 0 0

∥∥∥∥ ,

∥∥∥∥
1 0 0 0 0 0
0 1 c2 0 0 0

∥∥∥∥ ,
∥∥∥∥

1 0 0 0 c1 0
0 1 c2 0 0 0

∥∥∥∥ .

(vi) a concentrated inertial element at the end

A =

∥∥∥∥
1 0 0 0 0 −mλ4

0 1 0 −I1 λ
4 0 0

∥∥∥∥ ,

(vii) elastic fixing with a concentrated inertial element at the end (see Figure 1)

A =

∥∥∥∥
1 0 0 0 c1 −mλ4

0 1 c2 −I1 λ
4 0 0

∥∥∥∥ ,

Hence, in terms of eigenvalue problem (1), the inverse problem which has been con-
structed above can be formulated as follows: the coefficients aij of the forms U1(y, λ),
U2(y, λ) of problem (1) are unknown, the rank of the matrix A, which is made up of
these coefficients, is equal to two, the eigenvalues λk of problem (1) are known and it is
required to find the linear envelope 〈a1, a2〉 of the vectors ai = (ai1, ai2, ai3, ai4, ai5, ai6)

T

(i = 1, 2).
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Figure 1: Boundary conditions (vii).

3. The uniqueness of the reconstructing boundary conditions (i)–(vii)
from all eigenvalues

Together with problem (1), we consider the following eigenvalue problem

y(4) = λ4 y, U1(y, λ) = y(0) = 0, U2(y, λ) = y′(0) = 0, Ũ3(y, λ) = 0, Ũ4(y, λ) = 0,
(3)

where Ũi(y, λ) =
∑4

j=1 bi−2j y
(j−1)(0) (i = 3, 4) .

We denote the matrix composed of the coefficients bij of the forms Ũ1(y, λ) and Ũ2(y, λ)

by B and its minors by M̃ij :

B =

∥∥∥∥
b11 b12 b13 b14 b15 b16
b21 b22 b23 b24 b25 b26

∥∥∥∥ , M̃ij ≡

∣∣∣∣
b1i b1j
b2i b2j

∣∣∣∣ ,

where b12 = b13 = b14 = b21 = b25 = b26 = 0.

The linear envelope of the vectors bi = (bi1, bi2, bi3, bi4 bi5, bi6)
T (i = 1, 2) is denoted

by 〈b1, b2〉.

Theorem 1. Suppose the following conditions are satisfied

rankA = rankB = 2. (4)

If the eigenvalues {λk} of problem (1) and the eigenvalues {λ̃k} of problem (3) are identical,
with their multiplicities taken into account, then the linear envelopes 〈a1, a2〉 and 〈b1, b2〉
are also identical.

This theorem can be proved by methods of [4].

4. The uniqueness of the reconstructing boundary conditions (i)–(vii)
from five eigenvalues

Theorem 1 uses all natural frequencies to determine the boundary conditions (i)–(vii).

Let us show that five natural frequencies are sufficient to identify the boundary con-
ditions (i)–(vii).
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First, we show this for the following boundary conditions (case (vii)):

U3(y, λ) = y′′′(1) + (a1 − a2λ
4)y(1) = 0, U4(y, λ) = y′′(1) + (a3 − a4λ

4)y′(1) = 0. (5)

We note that the functions

y1(x, λ) = (cos λx+ cosh λx)/2, y2(x, λ) = (sinλx+ sinhλx)/(2λ),
y3(x, λ) = (− cos λx+ coshλx)/(2λ2), y4(x, λ) = (− sinλx+ sinhλx)/(2λ3),

(6)

are linearly independent solutions of the equation y(4) = λ4 y which satisfy the conditions

y
(r−1)
j (0, λ) =

{
0 j 6= r,
1 j = r,

j, r = 1, 2, 3, 4 (7)

(in other words, the solutions y1(x, λ) (j = 1, 2, 3, 4) form a fundamental Cauchy system
and are expressed in terms of Krylov functions [39, p. 194]).

The function

∆(λ) ≡ det(‖Ui(yj)‖i,j=1,2,3,4) ≡

∣∣∣∣
U3(y3, λ) U3(y4, λ)
U4(y3, λ) U4(y4, λ)

∣∣∣∣ ,

(conditions (7) have been taken into account here) is the characteristic determinant of the
boundary-value problem (1).

Applying Laplace’s theorem for evaluating determinants and using trigonometric for-
mulae and equalities (6), we obtain

∆(λ) ≡ −f0(λ) + a1 f1(λ) + a2 f2(λ) + a3 f3(λ) + a4 f4(λ) + (a1 a4 + a2 a3) f5(λ)+
+a1 a3 f6(λ) + a2 a4 f7(λ),

(8)

where

f0(λ) = (1 + cos λ coshλ)/2; f1(λ) = (− cos λ sinhλ+ sinλ cosh λ)/(2λ3);
f2(λ) = −λ4 f1(λ); f3(λ) = −(sinλ cosh λ+ cos λ sinhλ)/(2λ);
f4(λ) = −λ4 f3(λ); f5(λ) = (cos λ coshλ− 1)/2;
f6(λ) = −f5(λ)/λ

4; f7(λ) = −λ4f5(λ).

Then, the inverse problem, i.e., the problem of identifying the boundary conditions
(5) from the natural frequencies, can be formulated in terms of function (8) as follows:
the roots λk of characteristic determinant (8) are known. It is necessary to identify the
coefficients ai (i = 1, 2, 3, 4).

We substitute the values λk, (j = 1, 2, 3, 4, 5) which are the first five eigenvalues of
problem (1), into (8). We obtain a system of five algebraic equations in four unknowns

a3 f3(λk) + a4 f4(λk) + (a1 a4 + a2 a3)f5(λk) + a1 a3 f6(λk) + a2 a4 f7(λk) =
= f0(λk)− a1 f1(λk)− a2 f2(λk), k = 1, 2, ..., 5.

(9)

If the determinant

∆0 = det(‖ f3(λj) f4(λj) f5(λj) f6(λj) f7(λj) ‖j=1,2,3,4,5), (10)



84 A.A. Aitbaeva, A.M. Akhtyamov

of system (9) w.r.t. unknowns a3, a4, (a1 a4+a2 a3), a1 a3, a2 a4 is not equal to zero, then
system of equations (9) has the unique solution determined, for example, by Cramer’s
formulae:

a3 =
∆1

∆0
, a4 =

∆2

∆0
, (11)

a1 a4 + a2 a3 =
∆3

∆0
, a1 a3 =

∆4

∆0
, a2 a4 =

∆5

∆0
. (12)

Here the determinants ∆i (i = 1, 2, 3, 4, 5) are obtained from the determinant ∆0 by
replacing its ith column by the column of the right hand sides in the system of equations
(9).

Substituting (11) into (12), we obtain the following system of algebraic equations w.r.t.
unknown coefficients ai (i = 1, 2, 3, 4):

∆1
1 (a1)

2 −
(
∆1

0 +∆4
1

)
a1 −∆4

2 a2 +∆1
2 a1 a2 +∆4

0 = 0,
∆2

2 (a2)
2 −

(
∆2

0 +∆5
2

)
a2 −∆5

1 a1 +∆2
1 a1 a2 +∆5

0 = 0,
∆2

1 (a1)
2 +∆1

2 (a2)
2 −

(
∆2

0 +∆3
1

)
a1−

−
(
∆1

0 +∆3
2

)
a2 +

(
∆1

1 +∆2
2

)
a1 a2 +∆3

0 = 0,

(13)

where

∆1
i = det

(
‖ fi(λj) f4(λj) f5(λj) f6(λj) f7(λj) ‖j=1,2,3,4,5

)
, i = 0, 1, 2,

∆2
i = det

(
‖ f3(λj) fi(λj) f5(λj) f6(λj) f7(λj) ‖j=1,2,3,4,5

)
, i = 0, 1, 2,

∆3
i = det

(
‖ f3(λj) f4(λj) fi(λj) f6(λj) f7(λj) ‖j=1,2,3,4,5

)
, i = 0, 1, 2,

∆4
i = det

(
‖ f3(λj) f4(λj) f5(λj) fi(λj) f7(λj) ‖j=1,2,3,4,5

)
, i = 0, 1, 2,

∆5
i = det

(
‖ f3(λj) f4(λj) f5(λj) f6(λj) fi(λj) ‖j=1,2,3,4,5

)
, i = 0, 1, 2.

(14)

(∆j = ∆j
0 − a1∆

j
1 − a2∆

j
2, j = 1, 2, 3, 4, 5).

This proves

Theorem 2. Let λ1, λ2, λ3, λ4, λ5 be eigenvalues of boundary problem (1), where U3(y, λ)
and U4(y, λ) have the form (5). If the determinant (10) is not equal to zero and the system
(13) has the unique solution, then the coefficients ai, i = 1, 2, 3, 4 are uniquely determined
by the eigenvalues λ1, λ2, λ3, λ4, λ5.

The proven theorem justify the possibility of applying numerical experiment to the
problem of determining the boundary conditions. Below, we present this experiment.

Example 1. Let λ1 = 3, 046515, λ2 = 4.782842, λ3 = 7.815980, λ4 = 10.95883, λ5 =
14.10555 be the first five eigenvalues of Problem (1), where U3(y, λ) and U4(y, λ) have the
form (5). The determinant (10) is not equal to zero (∆0 = 3, 605140 · 1015). From (14) it
follows that

∆1
0 = −1.389961 · 1013,∆2

0 = −3.074774 · 1011,∆3
0 = 5.380211 · 1015,
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∆4
0 = 2.115762 · 1017,∆5

0 = −6.655016 · 1011,

∆1
1 = −1.213977 · 1014,∆2

1 = −1.255696 · 109,∆3
1 = −2.330674 · 1014,

∆4
1 = −6.299423 · 1015,∆5

1 = −2.689428 · 109,

∆1
2 = −5.411625 · 1015,∆2

2 = −1.263336 · 1014,∆3
2 = −8.125798 · 1015,

∆4
2 = 1.056752 · 1017,∆5

2 = −2.526925 · 1014.

Substituting these values into (13), we obtain a system of algebraic equations which
has the following unique solution: a1 = 0.050, a2 = 2.000, a3 = 3.000, a4 = 0.070.

Theorem 3. Let λ1, λ2, λ3, λ4, λ5 be the first five eigenvalues of the boundary problem
(1), where U3(y) and U4(y) have the general form (2). If rankA = 2, then the boundary
conditions (2) are uniquely determined by the eigenvalues λ1, λ2, λ3, λ4, λ5.

Proof. Cases (iii), (v), and (vi) of boundary conditions (2) are the special cases of
(vii). So for these cases Theorem 3 is proved. Cases (i) clamping, (ii) free support, and
(iv) floating fixing are not special cases of (vii). So we need to exclude the existance of
the eigenvalue problem with boundary conditions (vii), which is different from cases (i),
(ii), and (iv), but has the same first five eigenvalues as in (i), (ii), and (iv).

Case (i): rigid clamping. For the rigid clamping case, the first five eigenvalues of
problem (1) are

λ1 = 4.730041, λ2 = 7.853205, λ3 = 10.99561,
λ4 = 14.137167, λ5 = 17.27876.

(15)

They are the roots of the function f5(λ). Hence determinant (10) is equal to zero and we
can not use the methods of the proof of Theorem 2.

We use other method of finding ai (i = 1, 2, 3, 4). The eigenvalues (15) are roots of the
functions f5(λ), f6(λ), and f7(λ). So substituting the known eigenvalues (15) into (9), we
obtain a system of linear algebraic equations for unknown coefficients ai (i = 1, 2, 3, 4):

a1 f1(λk) + a2 f2(λk) + a3 f3(λk) + a4 f4(λk) = f0(λk), k = 1, 2, ..., 5. (16)

The determinant of first four equations of (16) w.r.t. unknowns a1, a2, a3, a4 is −2.332 ·
1014 6= 0. Hence, the system of first four equations of (16) has the following unique
solution:

a1 = −8.73, a2 = 0.274 · 10−2, a3 = −0.294, a4 = 0.744 · 10−5. (17)

The determinant of four equations of (16) as k = 1, 2, 3, 5 w.r.t. unknowns a1, a2, a3, a4
is 1.76 · 1016 6= 0. Hence, the system of four equations for k = 1, 2, 3, 5 of (16) has the
following unique solution:

a1 = −8.31, a2 = 0.217 · 10−2, a3 = −0.263, a4 = 0.464 · 10−5. (18)
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Solutions (17) and (18) do not coincide. So system (16) has no solution. Consequently,
type (i) is the only one of (i)–(vii) which provides that the values (15) are the first five
eigenvalues of problem (1).

Case (iv): floating fixing. For the floating fixing case, the first five eigenvalues of
problem (1) are

λ1 = 2.365020, λ2 = 5.497804, λ3 = 8.639380,
λ4 = 11.78097, λ5 = 18.06416.

(19)

They are the roots of the function f3(λ). Therefore, determinant (10) is equal to zero and
as above we can not use the methods of the proof of Theorem 2.

Solving the system of nonlinear equations

a1 f1(λk) + a2 f2(λk) + a3 f3(λk) + a4 f4(λk) + (a1 a4 + a2 a3) f5(λk)+
+a1 a3 f6(λk) + a2 a4 f7(λk) = f0(λk),

(20)

we obtain that the solutions set of the system of equations (20) is empty.
Consequently, type (iv) is the only one of (i)–(vii) which provides that the values (15)

are the first five eigenvalues of problem (1).
Case (ii): free support. For the free support case, the first five eigenvalues of problem

(1) are
λ1 = 3.926602, λ2 = 7.068583, λ3 = 10.21018,

λ4 = 13.35177, λ5 = 16.49336.
(21)

They are the roots of the function f1(λ). Determinant (10) is equal to D0 = 2.829 ·1018 6=
0 and we can use the methods of the proof of Theorem 2. The result is a system of
three equations (13) w.r.t. unknown a2. The set of solutiuons of this system is empty.
Consequently, type (ii) is the only one of (i)–(vii) which provides that the values (21) are
the first five eigenvalues of problem (1).

Cases (iii), (v), (vi), and (vii) are boundary conditions of problem (1), where U3(y)
and U4(y) have the form (5). From Theorem 2 it follows that if the determinant (10) is
not equal to zero and the system (13) has the unique solution, then the coefficients ai,
i = 1, 2, 3, 4 are uniquely determined by the eigenvalues λ1, λ2, λ3, λ4, λ5. This completes
the proof of Theorem 3. ◭

The following question arises: taking into account that, from five eigenvalues, we obtain
a unique solution, is it possible to obtain a unique solution to the problem of determining
boundary conditions (2) by using four of eigenvalues of problem (5)? The answer is no.

Example 2. Let λ1 = 3.046515, λ2 = 4.782842, λ3 = 7.815980, λ4 = 10.95883 be the first
four eigenvalues of Problem (5) from Example 1. Two natural problems (1),(5) have these
eigenvalues. For the first one, the coefficients ai (i = 1, 2, 3, 4) of the form (5) are

a1 = 147.3199, a2 = 1.984184, a3 = 4.449441, a4 = 0.066191.

For the second problem, the coefficients ai (i = 1, 2, 3, 4) of the form (5) are:

a1 = 0.05000, a2 = 2.00000, a3 = 3.00000, a4 = 0.07000.

Note that the second problem is the problem of Example 1.
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5. The special cases of the reconstructing boundary conditions from
eigenvalues

1. Cases (i)-(vi). How many eigenvalues do we need to uniquelly reconstruct bound-
ary conditions (i)-(vi) (without (vii))? The answer is three.

Let λ1, λ2, λ3 be the first five eigenvalues of boundary problem (1), where U3(y) and
U4(y) have the general form (2). By definition, put

F1 =

∥∥∥∥∥∥

f0(λ1) f1(λ1) f3(λ1) f6(λ1)
f0(λ2) f1(λ2) f3(λ2) f6(λ2)
f0(λ3) f1(λ3) f3(λ3) f6(λ3)

∥∥∥∥∥∥
, F1 =

∥∥∥∥∥∥

f0(λ1) f2(λ1) f4(λ1) f7(λ1)
f0(λ2) f2(λ2) f4(λ2) f7(λ2)
f0(λ3) f2(λ3) f4(λ3) f7(λ3)

∥∥∥∥∥∥
.

Theorem 4. If rankA = 2, rankF1 = rankF2 = 3, then boundary conditions (i)-(vi) are
uniquely determined by three eigenvalues λ1, λ2, λ3.

Proof of Theorem 4 and a method of solving the problem are given in [12].

In the next two examples, we consider the cases in which the use of the third eigenvalue
is essential for the unique reconstruction of boundary conditions (i)-(vi).

Example 3. Suppose a2 = a4 = 0; and λ1 = 4.639942, λ2 = 7.855696 are the first two
eigenvalues of Problem (5). Then there are two natural problems (1),(5) which have these
eigenvalues. For the first problem a1 = 10.000, a3 = 0.170, and for the second problem
a1 = 1677.848, a2 = 27.527.

Example 4. Suppose a1 = a3 = 0; and λ1 = 1.671009, λ2 = 2.764306 are the first two
eigenvalues of Problem (5). Then there are two natural problems (1),(5) which have these
eigenvalues. For the first problem a2 = 0.0200, a4 = 0.7000, and for the second problem
a2 = 0.1531, a4 = 0.1137.

2. Cases (i)–(vii) when one of the parameters ai, i = 1, 2, 3, 4 is equal to
zero. In case (vii), similar to the proof of Theorem 2, we can prove that four eigenvalues
are sufficient to recover boundary conditions (vii) uniquely. So it follows from the proof
of Theorem 3 that to recover boundary conditions (i)–(vii) uniquely we need the first four
eigenvalues of problem (1),(5).

In the next two examples, we consider the cases in which the use of the fourth eigenvalue
is essential for the unique reconstruction of boundary conditions (i)–(vii) when one of the
parameters ai, i = 1, 2, 3, 4 is equal to zero.

Example 5. Suppose a4 = 0; and λ1 = 2.289615, λ2 = 4.415309, λ3 = 7.648880 are the
first three eigenvalues of Problem (5). Then there are two natural problems (1),(5) which
have these eigenvalues. For the first problem a1 = 0.020, a2 = 0.700, a3 = 0.100, and for
the second problem a1 = 4.260, a2 = 0.695, a3 = 0.090.

Example 6. Suppose a1 = 0; and λ1 = 2.422582, λ2 = 6.438223, λ3 = 10.11708 are the
first three eigenvalues of Problem (5). Then there are two natural problems (1),(5) which
have these eigenvalues. For the first problem a2 = 0.164, a3 = 0.3, a4 = 0.004, and for
the second problem a2 = 0.180, a3 = 0.3, a4 = 0.084.
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6. Conclusions

Three eigenvalues are sufficient for unique recovery of boundary conditions (i)–(vi) with
two unknown coefficients. Four eigenvalues are sufficient for unique recovery of bound-
ary conditions (i)-(vii) with three unknown coefficients. Five eigenvalues are sufficient for
unique recovery of boundary conditions (i)-(vii) with four unknown coefficients. A smaller
set of the eigenvalues of problem (1) is not enough for unique recovery of boundary con-
ditions (i)-(vii) in these cases.
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