Azerbaijan Journal of Mathematics V. 7, No 2, 2017, July ISSN 2218-6816

On Bessel Property and Unconditional Basicity of the Systems of Root Vector-functions of a Dirac type Operator

V.M. Kurbanov, E.J. Ibadov^{*}, G.R. Hajiyeva

Abstract. In this paper, we consider Dirac type one-dimensional operator $Dy = B\frac{dy}{dx} + P(x)y$, $y(x) = (y_1(x), y_2(x))^T$, where $B = \begin{pmatrix} 0 & b_1 \\ b_2 & 0 \end{pmatrix}$; $b_1 > 0$, $b_2 < 0$, $P(x) = \begin{pmatrix} p_1(x) & 0 \\ 0 & p_2(x) \end{pmatrix}$, $p_1(x)$ and $p_2(x)$ are complex-valued functions defined on arbitrary finite interval G(a, b) of a real straightline, and establish the criterion of Bessel property and unconditional basicity of the system of root vector-functions of this operator.

Key Words and Phrases: Bessel inequality, unconditional basicity, root vector-functions.2010 Mathematics Subject Classifications: 34L10, 42A20

1. Introduction

In [1, 2], necessary and sufficient conditions of Bessel property and unconditional basicity in $L_2(G)$ of the system of root functions of second order ordinary differential equations are established. Later, these and other issues for higher order ordinary differential operators and one-dimensional Dirac operator were studied in the papers [3, 4, 5, 6, 7, 8].

In the present paper, we establish the validity of the Bessel inequality and unconditional basicity in $L_2^2(G)$ of the system of root functions of a Dirac type one-dimensional operator. Let $L_p^2(G)$, $p \ge 1$ be a space of two-component vector-functions

$$f(x) = (f_1(x), f_2(x))^T$$

with the norm

$$\|f\|_{p,2} = \left[\int_{G} \left(|f_{1}(x)|^{2} + |f_{2}(x)|^{2}\right)^{p_{2}} dx\right]^{1/p}.$$

http://www.azjm.org

20

© 2010 AZJM All rights reserved.

^{*}Corresponding author.

In the case $p = \infty$ the norm is determined by the equality

$$\left\|f\right\|_{\infty,2} = \sup_{x \in G} vrai \left|f\left(x\right)\right|$$

It is clear that for arbitrary functions $f(x) \in L^2_p(G)$, $g(x) \in L^2_q(G)$, where $\frac{1}{p} + \frac{1}{q} = 1$, $1 \le p \le \infty$, the "scalar" derivative $(f,g) = \int_G \sum_{j=1}^2 f_j(x) \ \overline{g_j(x)} \ dx$ is defined.

Consider the Dirac type one-dimensional operator

$$Dy = B \frac{dy}{dx} + P(x) y, \ y(x) = (y_1(x), y_2(x))^T,$$

where $B = \begin{pmatrix} 0 & b_1 \\ b_2 & 0 \end{pmatrix}$; $b_1 > 0$, $b_2 < 0$; $P(x) = \begin{pmatrix} p_1(x) & 0 \\ 0 & p_2(x) \end{pmatrix}$, $p_1(x)$ and $p_2(x)$ are complex-valued functions defined on an arbitrary interval G = (a, b) of a real straight line.

Following the paper [1], by the eigen function of the operator D, corresponding to the complex eigenvalue λ , we will mean any identically nonzero complex-valued function $\overset{0}{u}(x)$ that is continuous on any closed subinterval of the interval G and satisfies the equation $D\overset{0}{u} = \lambda \overset{0}{u}$ almost everywhere in G.

In the similar way, by the associated function of order $l, l \geq 1$, corresponding to the same λ and the eigen function $\overset{0}{u}(x)$ we will mean any complex-valued vector-function $\overset{l}{u}(x)$ that is absolutely continuous on any closed subinterval of G and satisfies the equation $D\overset{l}{u} = \lambda \overset{l}{u} + \overset{l-1}{u}$ almost everywhere in G.

Let $\{u_k(x)\}_{k=1}^{\infty}$ be an arbitrary system composed of eigen and associated functions of the operator D, $\{\lambda_k\}_{k=1}^{\infty}$ be the corresponding system of eigen values. Also, let the function $u_k(x)$ be included in the system $\{u_k(x)\}_{k=1}^{\infty}$ together with appropriate associated functions of less order.

We say that for the given system of functions $\varphi_k(x) \in L_2^2(G)$ the Bessel inequality is fulfilled if there exists a constant M such that for an arbitrary vector-function $f(x) \in L_2^2(G)$, the following inequality is valid:

$$\sum_{k=1}^{\infty} |(\varphi_k, f)|^2 \le M \, \|f\|_{2,2}^2 \,, \tag{1}$$

where the constant M is independent of f(x).

2. Main value formula

Lemma 1. (The mean value formula). If $p_1(x)$ and $p_2(x)$ belong to the class $L_1^{loc}(G)$ and the points x - t, x, x + t lie in the domain G, then the following formulas are valid:

$$+B^{-1} \int_{x-t}^{x+t} \left(\sin \frac{\lambda}{\sqrt{|b_1 b_2|}} \left(t - |x - \xi| \right) \frac{B}{\sqrt{|b_1 b_2|}} + sgn\left(\xi - x \right) \cos \frac{\lambda}{\sqrt{|b_1 b_2|}} \left(t - |x - \xi| \right) I \right) \times \\ \times \left[P\left(\xi \right) \frac{l}{u} \left(\xi \right) - \frac{l-1}{u} \left(\xi \right) \right] d\xi, \tag{4}$$

where I is a unit operator in E^2 .

Proof. To derive formulas (2) and (3), it suffices to apply the operator

$$\cos\frac{\lambda}{\sqrt{|b_1b_2|}} (t - |\xi - x|) \ I + sgn(\xi - x) \sin\frac{\lambda}{\sqrt{|b_1b_2|}} (t - |x - \xi|) \ \frac{B}{\sqrt{|b_1b_2|}}$$

to the equation $L^{l}_{u}(\xi) = \lambda^{l}_{u}(\xi) + {}^{l-1}_{u}(\xi)$ and integrate with respect to the parameter ξ from x to x + t (from x - t to x), and then integrate by parts in the expression of the form

$$\int_{x}^{x+t} \left(\cos \frac{\lambda}{\sqrt{|b_1 b_2|}} \left(t - \xi + x \right) I - \sin \frac{\lambda}{\sqrt{|b_1 b_2|}} \left(t - \xi + x \right) \frac{B}{\sqrt{|b_1 b_2|}} \right) B d \overset{l}{u} (\xi)$$

On Bessel Property and Unconditional Basicity of the Systems

$$\left(\int_{x-t}^{x} \left(\cos\frac{\lambda}{\sqrt{|b_1b_2|}} \left(t+\xi-x\right) I + \sin\frac{\lambda}{\sqrt{|b_1b_2|}} \left(t+\xi-x\right) \frac{B}{\sqrt{|b_1b_2|}}\right) Bd^{l}u(\xi)\right)$$

having grouped the similar terms. Formula (4) follows from formulas (2) and (3). The lemma is proved. \blacktriangleleft

In the present paper we prove the following criterion of Bessel property and unconditional basicity of the system $\{\varphi_k(x)\}_{k=1}^{\infty}$, where $\varphi_k(x) = u_k(x) ||u_k||_{2,2}^{-1}$.

3. Criterion of Bessel property and unconditional basicity

Theorem 1. Let G be a finite interval, the functions $p_1(x)$ and $p_2(x)$ belong to the class $L_2(G)$, the lengths of the chains of root functions be uniformly bounded and there exist a constant C_0 such that

$$|Jm\,\lambda_k| \le C_0, \ k = 1, 2, \dots$$
 (5)

Then, for the system of functions $\{\varphi_k(x)\}$, where $\varphi_k(x) = u_k(x) ||u_k||_{2,2}^{-1}$, to satisfy the Bessel inequality, it is necessary and sufficient that there exist a constant K such that

$$\sum_{Re \lambda_k - \nu \le 1} 1 \le K,\tag{6}$$

where ν is an arbitrary real number.

Proof. Necessity. Denote by R the number $\left(\frac{n_0}{\sqrt{|b_1b_2|}} (1+C_0)\right)^{-1}$, where $\frac{n_0}{\sqrt{|b_1b_2|}} \ge 1$ is chosen in such a way that $R \le mesG/4$ and for any set $E \in \overline{G}$, $mesE \le 2R$, the inequality $\max\left\{\|p_1\|_{2,E}, \|p_2\|_{2,E}\right\} \le \frac{1}{L}$ is fulfilled, where L is a positive integer to be defined below. This is possible because of summability of the functions $p_1(x)$ and $p_2(x)$.

Let $0 \leq t \leq R$, $x \in [a, \frac{a+b}{2}]$. Write the mean value formula (4) for the points $x, x+t, x+2t \in \overline{G}$:

$$u_{k}(x) = 2u_{k}(x+t)\cos\left(\frac{\lambda_{k}}{\sqrt{|b_{1}b_{2}|}}t\right) - u_{k}(x+2t) + \\ +B^{-1}\int_{x}^{x+2t}\left\{\sin\left(\frac{\lambda_{k}}{\sqrt{|b_{1}b_{2}|}}(t-|x+t-\xi|)\right)\frac{B}{\sqrt{|b_{1}b_{2}|}} + \\ +sgn\left(\xi - x - t\right)\cos\left(\frac{\lambda_{k}}{\sqrt{|b_{1}b_{2}|}}(t-|x+t-\xi|)\right)I\right\} \times \\ \times \left[P\left(\xi\right) u_{k}\left(\xi\right) - \theta_{k}u_{k-1}\left(\xi\right)\right]d\xi$$
(7)

where $\theta_k = 0$, if $u_k(x)$ is an eigen vector-function; $\theta_k = 1$ if $u_k(x)$ is an associated vector-function, and in the last case we assume $\lambda_k = \lambda_{k-1}$.

Adding and subtracting $2u_k(x+t)\cos\left(\frac{\nu}{\sqrt{|b_1b_2|}}t\right)$ to the right side of inequality (7), we represent this formula in the form

$$\begin{split} u_k\left(x\right) &= 2u_k\left(x+t\right)\,\cos\left(\frac{\nu}{\sqrt{|b_1b_2|}}t\right) - u_k\left(x+2t\right) + \\ &+ 4u_k\left(x+t\right)\,\sin\left(\frac{\lambda_k+\nu}{2\sqrt{|b_1b_2|}}t\right)\,\sin\left(\frac{\nu-\lambda_k}{2\sqrt{|b_1b_2|}}t\right) + \\ &+ B^{-1}\int_x^{x+2t}\left\{\sin\left(\frac{\lambda_k}{\sqrt{|b_1b_2|}}\left(t-|x+t-\xi|\right)\right)\,\frac{B}{\sqrt{|b_1b_2|}} + \\ &+ sgn\left(\xi-x-t\right)\,\cos\left(\frac{\lambda_k}{\sqrt{|b_1b_2|}}\left(t-|x+t-\xi|\right)\right)\,I\right\} \times \\ &\times \left[P\left(\xi\right)\,u_k\left(\xi\right) - \theta_k u_{k-1}\left(\xi\right)\right]\,d\xi. \end{split}$$

Integrate the last relation with respect to t from 0 to R to obtain:

$$u_{k}^{i}(x) = \frac{1}{R} \int_{G} u_{k}^{i}(t) v(t) dt + \frac{4}{R} \int_{0}^{R} u_{k}^{i}(x+t) \sin\left(\frac{\lambda_{k}+\nu}{2\sqrt{|b_{1}b_{2}|}}\right) \sin\left(\frac{\nu-\lambda_{k}}{2\sqrt{|b_{1}b_{2}|}}t\right) dt + \frac{1}{R} B^{-1} \int_{0}^{R} \int_{x}^{x+2t} \left\{ \sin\left(\frac{\lambda_{k}}{\sqrt{|b_{1}b_{2}|}}(t-|x+t-\xi|)\right) \frac{B}{\sqrt{|b_{1}b_{2}|}} + sgn\left(\xi-x-t\right) \cos\left(\frac{\lambda_{k}}{\sqrt{|b_{1}b_{2}|}}(t-|x+t-\xi|)\right) I \right\} \times \left[\left(P\left(\xi\right) u_{k}\left(\xi\right) - \theta_{k} u_{k-1}\left(\xi\right)\right)\right]_{i} d\xi dt, \quad i = 1, 2, \dots$$
(8)

where $u_k^i(x)$ is the *i*-th component of the vector $u_k(x)$, $[]_i$ is the *i*-th component of the corresponding vector

$$\upsilon(t) = 2\cos\left(\frac{\nu}{\sqrt{|b_1b_2|}}(x-t)\right) - \frac{1}{2} \text{ for } x \le t \le x+R,$$

 $v(t) = -\frac{1}{2} \text{ for } x + R < t < x + 2R \text{ and } v(t) = 0 \text{ in the remaining cases.}$ Introduce the set of indices $J_{\nu} = \{k : |Re\lambda_k - \nu| \le 1, |Jm\lambda_k| \le C_0\}.$ Let $k \in J_{\nu}$. Using the inequalities $|\sin z|$, $|\cos z| \le 2$ and $|\sin z| \le 2 |z|$ for $|Jm z| \le 1$, from relation (8) we find

$$\begin{split} |u_k^i(x)| &\leq \frac{1}{R} \left| \int_G u_k^i(t) \ v(t) \ dt \right| + \frac{8}{R \sqrt{|b_1b_2|}} |\lambda_k - \nu| \int_0^R |u_k^i(x+t)| \ t \ dt + \\ &+ \frac{2}{R \sqrt{|b_1b_2|}} \int_0^R \int_x^{x+2t} \left\{ |p_1(\xi)| \ |u_k^1(\xi)| + |p_2(\xi)| \ |u_k^2(\xi)| \right\} \ d\xi \ dt + \\ &+ \frac{2}{R \left| b_1b_2 \right|} \int_0^R \int_x^{x+2t} \left\{ |p_1(\xi)| \ |b_2 u_k^1(\xi)| + |p_2(\xi)| \ |b_1 u_k^2(\xi)| \right\} \ d\xi \ dt + \\ &+ \frac{2}{R \sqrt{|b_1b_2|}} \int_0^R \int_x^{x+2t} \left\{ |p_1(\xi)| \ |b_2 u_k^1(\xi)| + |p_2(\xi)| \ |b_1 u_k^2(\xi)| \right\} \ d\xi \ dt + \\ &+ \frac{2}{R \sqrt{|b_1b_2|}} \int_0^R \int_x^{x+2t} \left\{ |b_2 u_{k-1}^1(\xi)| + |u_{k-1}^2(\xi)| \right\} \ d\xi \ dt + \\ &+ \frac{2}{R \left| b_1b_2 \right|} \int_0^R \int_x^{x+2t} \left\{ |b_2 u_{k-1}^1(\xi)| + |b_1 u_{k-1}^2(\xi)| \right\} \ d\xi \ dt + \\ &+ \frac{2}{R \left| b_1b_2 \right|} \int_0^R \int_x^{x+2t} \left\{ |b_2 u_{k-1}^1(\xi)| + |b_1 u_{k-2}^2(\xi)| \right\} \ d\xi \ dt \\ &\leq \frac{1}{R} \left| \int_G u_k^i(t) \ v(t) \ dt \right| + \frac{8\sqrt{R}}{\sqrt{3}} \frac{1}{\sqrt{|b_1b_2|}} (1 + C_0) \ ||u_k^i||_{2,G} + \\ &+ \frac{2}{\sqrt{|b_1b_2|}} \left(||p_1||_{2,E} \ ||b_2 u_k^1||_{2,G} + ||p_2||_{2,E} \ ||b_1 u_k^2||_{2,G} \right) + \\ &+ \frac{4R}{\sqrt{|b_1b_2|}} \left(||u_{k-1}||_{\infty,G} + ||u_{k-2}^2||_{\infty,G} \right) + \frac{4R}{|b_1b_2|} \left(||b_2 u_{k-1}^1||_{\infty,G} + ||b_1 u_{k-2}^2||_{\infty,G} \right) \\ &\leq \frac{1}{R} \left| \int_G u_k^i(t) \ v(t) \ dt \right| + \frac{8\sqrt{R}}{\sqrt{3} \ |b_1b_2|} (1 + C_0) \ ||u_k^i||_{2,G} + 4 \frac{||u_k||_{2,G}}{L \sqrt{|b_1b_2|}} + 4 \frac{(|b_1| + |b_2|)}{L \ |b_1b_2|} \right) ||u_k||_{2,G} + \\ &+ \frac{4R}{\sqrt{|b_1b_2|}} (1 + C_0) \ ||u_k^i||_{2,G} + \left(\frac{4}{L \sqrt{|b_1b_2|}} + \frac{4(|b_1| + |b_2|)}{L \ |b_1b_2|} \right) \ ||u_k||_{2,G} + \\ &+ \left(\frac{4R}{\sqrt{3} \ |b_1b_2|} (1 + C_0) \ ||u_k^i||_{2,G} + \left(\frac{4}{L \sqrt{|b_1b_2|}} + \frac{4(|b_1| + |b_2|)}{L \ |b_1b_2|} \right) \ ||u_k||_{2,G} + \\ &+ \left(\frac{4R}{\sqrt{|b_1b_2|}} (1 + C_0) \ ||u_k^i||_{2,G} + \left(\frac{4}{L \sqrt{|b_1b_2|}} + \frac{4(|b_1| + |b_2|)}{L \ |b_1b_2|} \right) \ ||u_k||_{2,G} + \\ &+ \left(\frac{4R}{\sqrt{|b_1b_2|}} + \frac{4R \ (|b_1| + |b_2|)}{|b_1b_2|} \right) \ ||u_{k-1}||_{\infty,G} . \end{aligned}$$

Consequently

$$\left|u_{k}^{i}\left(x\right)\right| \leq \frac{1}{R}\left|\int_{G}u_{k}^{i}\left(t\right) \ \upsilon\left(t\right) \ dt\right| +$$

V.M. Kurbanov, E.J. Ibadov, G.R. Hajiyeva

$$+ \left(\frac{8\sqrt{R}}{\sqrt{3}|b_1b_2|}\left(1+C_0\right) + \frac{4}{L\sqrt{|b_1b_2|}} + \frac{4\left(|b_1|+|b_2|\right)}{L|b_1b_2|}\right) \|u_k\|_{2,G} + \left(\frac{4R}{\sqrt{|b_1b_2|}} + \frac{4R\left(|b_1|+|b_2|\right)}{|b_1b_2|}\right) \|u_{k-1}\|_{\infty,2}; \ i = 1, 2.$$

In [7], the estimations

$$||u||_{\infty,2} \le C^1 (l, G, b_1, b_2) (1 + |Jm\lambda|) ||u||_{\infty,2},$$
(9)

$$\| \overset{l}{u} \|_{\infty,2} \leq C^{2} \left(l, G, b_{1}, b_{2} \right) \left(1 + |Jm\lambda| \right)^{\frac{1}{r}} \| \overset{l}{u} \|_{r,2}, \quad 1 \leq r < \infty,$$
(10)

were obtained under the conditions $b_1 = 1$ and $b_2 = -1$. For arbitrary $b_1 > 0$ and $b_2 < 0$, the estimations (9) and (10) are proved similarly.

Applying estimations (9) and (10), for r = 2 we get the inequality

$$\begin{aligned} \left| u_k^i \left(x \right) \right| &\leq \frac{1}{R} \left| \int_G u_k^i \left(t \right) v\left(t \right) \, dt \right| + \left\{ 8 \left(1 + C_0 \right) \frac{\sqrt{R}}{\sqrt{3 |b_1 b_2|}} + \frac{4}{L} \left(\frac{1}{\sqrt{|b_1 b_2|}} + \frac{|b_1| + |b_2|}{|b_1 b_2|} \right) + \left(\frac{4R}{\sqrt{|b_1 b_2|}} + \frac{4R \left(|b_1| + |b_2| \right)}{|b_1 b_2|} \right) C^1 \left(n_k, G, b_1, b_2 \right) \times \\ &\times C^2 \left(n_k, G, b_1, b_2 \right) \left(1 + C_0 \right)^{3/2} \right\} \left\| u_k \right\|_{2,2}. \end{aligned}$$
(11)

Because of uniform boundedness of the lengths of the chains of associated functions, the inequality $C^1(n_k, G, b_1, b_2) C^2(n_k, G, b_1, b_2) \leq j = const$ is true. From (11), by virtue of the inequality $|\sum_{i=1}^m a_i|^q \leq m^{q-1} \sum_{i=1}^m |a_i|^q$, for q = 2 we have

$$\frac{\left|u_{k}\left(x\right)\right|^{2}}{\left\|u_{k}\right\|_{2,2}^{2}} \leq \frac{3}{R^{2}} \left\{ \left|\int_{G} \frac{u_{k}^{1}\left(t\right)}{\left\|u_{k}\right\|_{2,2}} \upsilon\left(t\right) \, dt \right|^{2} + \left|\int_{G} \frac{u_{k}^{2}\left(t\right)}{\left\|u_{k}\right\|_{2,2}} \upsilon\left(t\right) \, dt \right|^{2} \right\} + \frac{3 \cdot 2^{2}}{\sqrt{3}} \left\{ 8\left(1+C_{0}\right) \frac{\sqrt{R}}{\sqrt{3}\left|b_{1}b_{2}\right|} + \frac{4}{L} \left(\frac{1}{\sqrt{\left|b_{1}b_{2}\right|}} + \frac{\left|b_{1}\right| + \left|b_{2}\right|}{\left|b_{1}b_{2}\right|}\right) + \left(\frac{4R}{\sqrt{\left|b_{1}b_{2}\right|}} + \frac{4R\left(\left|b_{1}\right| + \left|b_{2}\right|\right)}{\left|b_{1}b_{2}\right|}\right) C^{1}\left(n_{k}, G, b_{1}, b_{2}\right) C^{2}\left(n_{k}, G, b_{1}, b_{2}\right) \left(1+C_{0}\right)^{3} \right\}^{2}.$$
 (12)

The number n_0 is chosen sufficiently large (the numbers R and L respectively as well) to satisfy

$$3 \cdot 2^2 \left\{ 8 \left(1 + C_0\right) \frac{\sqrt{R}}{\sqrt{3|b_1 b_2|}} + \frac{4}{L} \left(\frac{1}{\sqrt{|b_1 b_2|}} + \frac{|b_1| + |b_2|}{|b_1 b_2|}\right) + \right.$$

26

+

On Bessel Property and Unconditional Basicity of the Systems

$$+ \left(\frac{4R}{\sqrt{|b_1b_2|}} + \frac{4R(|b_1| + |b_2|)}{|b_1b_2|}\right) C^1(n_k, G, b_1, b_2) \times C^2(n_k, G, b_1, b_2) (1 + C_0)^{3/2} \right\}^2 \le \frac{1}{2 \operatorname{mes} G}.$$

Then, for any finite set of indices $J \subset J_{\nu}$ and for $x \in \left[a, \frac{a+b}{2}\right]$ from (12) we get the inequality

$$\sum_{k \in J} |u_k(x)|^2 ||u_k||_{2,2}^{-2} \le \frac{3}{R^2} \sum_{k \in J} \left\{ \left| \int_G \frac{u_k^1(t)}{||u_k||_{2,2}} v(t) dt \right|^2 + \left| \int_G \frac{u_k^2(t)}{||u_k||_{2,2}} v(t) dt \right|^2 \right\} + \frac{1}{2 \operatorname{mes} G} \sum_{k \in J} 1.$$
(13)

We establish this inequality for $x \in \left[\frac{a+b}{2}, b\right]$ in the same way. Applying the Bessel inequality, from (13) we have

$$\sum_{k \in J} |u_k(x)| \|u_k\|_{2,2}^{-2} \le 2M \, 3R^{-2} \|v\|_{2,G}^2 + \frac{1}{2 \, mes \, G} \sum_{k \in J} 1$$

Taking into account the estimate $||v||_{2,G} = O\left(R^{\frac{1}{2}}\right)$, and then integrating with respect to $x \in G$, from the last inequality we get the validity of the following estimation for any finite set $J \subset J_{\nu}$:

$$\sum_{k \in J} 1 \le const \ R^{2\left(\frac{1}{2}-1\right)} + \frac{1}{2} \sum_{k \in J} 1.$$

Consequently

$$\sum_{k \in J} 1 \le const \ R^{-1}.$$

Hence, by virtue of arbitrariness of the finite set $J \subset J_{\nu}$, we get it follows the necessity of the inequality (6).

Sufficiency. For simplicity we take $G = (0, 2\pi)$. Writing out the formula (2) for $u_k (x + t)$ with x = 0 and then multiplying it scalarly by the vector-function $f(t) = (f_1(t), f_2(t))^T \in L_2^2(G)$ we arrive at the conclusion that to prove the validity of the Bessel inequality for the system $\varphi_k (x) = u_k (x) ||u_k||_{2,2}^{-1}$, it suffices to establish the validity of the following inequalities:

$$\sum_{k=1}^{\infty} \left| \int_{0}^{2\pi} \overline{f_i(t)} \cos\left(\frac{\lambda_k}{\sqrt{|b_1 b_2|}} t\right) dt \right|^2 \left| \varphi_k^i(0) \right|^2 \le C \|f\|_{2,2}^2, \quad i = 1, 2, \tag{14}$$

$$\sum_{k=1}^{\infty} \left| \int_{0}^{2\pi} \overline{f_i(t)} \sin\left(\frac{\lambda_k}{\sqrt{|b_1 b_2|}} t\right) dt \right|^2 \left| \varphi_k^{3-i}(0) \right|^2 \le C \|f\|_{2,2}^2, \quad i = 1, 2, \tag{15}$$

$$\sum_{k=1}^{\infty} \left| \int_{0}^{2\pi} \overline{f_{1}(t)} \int_{0}^{t} p_{1}(\xi) \varphi_{k}^{1}(\xi) \sin \frac{\lambda_{k}}{\sqrt{|b_{1}b_{2}|}} (t-\xi) d\xi dt \right|^{2} \leq C \|f\|_{2,2}^{2}, \quad (16)$$

$$\sum_{k=1}^{\infty} \left| \int_{0}^{2\pi} \overline{f_1(t)} \int_{0}^{t} p_2(\xi) \varphi_k^2(\xi) \cos \frac{\lambda_k}{\sqrt{|b_1 b_2|}} (t-\xi) d\xi dt \right|^2 \le C \|f\|_{2,2}^2, \quad (17)$$

$$\sum_{k=1}^{\infty} \left| \int_{0}^{2\pi} \overline{f_{2}(t)} \int_{0}^{t} p_{1}(\xi) \varphi_{k}^{1}(\xi) \cos \frac{\lambda_{k}}{\sqrt{|b_{1}b_{2}|}} (t-\xi) d\xi dt \right|^{2} \leq C \|f\|_{2,2}^{2}, \quad (18)$$

$$\sum_{k=1}^{\infty} \left| \int_{0}^{2\pi} \overline{f_2(t)} \int_{0}^{t} p_2(\xi) \varphi_k^2(\xi) \sin \frac{\lambda_k}{\sqrt{|b_1 b_2|}} (t-\xi) d\xi dt \right|^2 \le C \|f\|_{2,2}^2,$$
(19)

$$\sum_{k=1}^{\infty} \left| \int_{0}^{2\pi} \overline{f_i(t)} \int_{0}^{t} \frac{u_{k-1}^i(\xi)}{\|u_k\|_{2,2}} \sin \frac{\lambda_k}{\sqrt{|b_1 b_2|}} (t-\xi) \, d\xi \, dt \right|^2 \le C \, \|f\|_{2,2}^2, \quad i=1,2,$$
(20)

$$\sum_{k=1}^{\infty} \left| \int_{0}^{2\pi} \overline{f_i(t)} \int_{0}^{t} \frac{u_{k-1}^{3-i}(\xi)}{\|u_k\|_{2,2}} \cos \frac{\lambda_k}{\sqrt{|b_1 b_2|}} (t-\xi) \, d\xi \, dt \right|^2 \le C \, \|f\|_{2,2}^2, \quad i=1,2, \qquad (21)$$

The proof of inequalities (14), (15), (20) and (21) is similar to the one of corresponding inequalities in [2]. Here, the validity of estimations (9) and (10) should be taken into account.

Prove the inequality (16) by the method of [7]. Denote by J_k the expressions standing under the summation sign. Then

$$J_{k} = \left| \int_{0}^{2\pi} p_{1}(\xi) \varphi_{k}^{1}(\xi) \left(\int_{\xi}^{2\pi} \overline{f_{1}(t)} \sin \frac{\lambda_{k}}{\sqrt{|b_{1}b_{2}|}} (t-\xi) dt \right) d\xi \right|^{2} \leq \\ \leq 2\pi \int_{0}^{2\pi} |p_{1}(\xi)|^{2} |\varphi_{k}^{1}(\xi)| \left| \int_{\xi}^{2\pi} \overline{f_{1}(t)} \sin \frac{\lambda_{k}}{\sqrt{|b_{1}b_{2}|}} (t-\xi) dt \right|^{2} d\xi,$$

whence, taking into account the estimation (10), we have

$$J_k \le C \int_0^{2\pi} |p_1(\xi)|^2 \left| \int_0^{2\pi} \overline{g(t,\xi)} \sin \frac{\lambda_k}{\sqrt{|b_1b_2|}} t \, dt \right|^2 d\xi = C J_k, \tag{22}$$

where $g(t,\xi) = f_1(\xi+t)$ for $\xi \le t+\xi \le 2\pi$ and $g(t,\xi) = 0$ for $2\pi < t+\xi \le 2\pi+\xi$. It is clear that for any fixed $\xi \in [0,2\pi]$ we have $\int_0^{2\pi} |g(t,\xi)|^2 dt \le ||f_1||^2_{L_2(0,2\pi)}$. Furthermore, under the conditions (5) and (6), for any $\varphi(t) \in L_2(0, 2\pi)$ the validity of the inequality

$$\sum_{k=1}^{\infty} \left| \int_{0}^{2\pi} \overline{\varphi(t)} \sin \frac{\lambda_k}{\sqrt{|b_1 b_2|}} t \right|^2 \le C \left\| \varphi \right\|_{L_2(0,2\pi)}^2$$

was established in [2]. Therefore, for any positive integer N we have

$$\sum_{k=1}^{N} J_k = \int_0^{2\pi} |p_1(\xi)|^2 \sum_{k=1}^{N} \left| \int_0^{2\pi} \overline{g(t,\xi)} \sin \frac{\lambda_k}{\sqrt{|b_1b_2|}} dt \right|^2 \le C \|p_1\|_{L_2(0,2\pi)}^2 \|f_1\|_{L_2(0,2\pi)}^2.$$

Because of the arbitrariness of N, we find $\sum_{k=1}^{\infty} J_k \leq C \|f\|_{2,2}^2$. Hence, from (22) it follows that the inequality (16) is true. Inequalities (17)-(19) are proved in the same way. Theorem 1 is proved.

Denote by D^* an operator formally associated to the operator $D : D^*v = B\frac{dv}{dx} + \overline{P(x)}v(x)$, where $\overline{P(x)} = \begin{pmatrix} \overline{p_1(x)} & 0\\ 0 & \overline{p_2(x)} \end{pmatrix}$. Based on Theorem 1, we can also prove the following one using the known method:

Theorem 2. Let G be a finite interval, $\{u_k(x)\}\$ be an arbitrary, closed in $L^2_2(G)$ and minimal system consisting of eigen and associated functions of the operator D, the system $\{v_k\}$ be biorthogonally associated with $\{u_k(x)\}$ in $L^2_2(G)$, consisting of eigen and associated functions of the operator D^* and closed in $L^2_2(G)$, the length of any chain of the root vectors be uniformly bounded and condition (5) be fulfilled.

Then the necessary and sufficient condition for unconditional basicity of the system $\{u_k(x)\}\$ in $L^2_2(G)$ is the existence of constants M and M_1 such that the inequalities (6) and

$$\|u_k\|_{2,2} \|v_k\|_{2,2} \le M_1, \tag{23}$$

are true for any k = 1, 2.

Note that under the conditions of Theorem 2, the validity of inequalities (6) and (23) is a necessary and sufficient condition for Riesz basicity of the system $\left\{u_k(x) \|u_k\|_{2,2}^{-1}\right\}$ in $L_{2}^{2}(G).$

References

[1] V.A. Il'in, I. Io, Bessel and Hausdorff-Young-Riesz type inequalities for functions from the class of radial functions by the system of eigen and associated functions of the Laplace operator, Dokl. AN SSSR, 291(2), 1986, 284-288.

- [2] V.A. Il'in, On unconditional basicity on a closed interval of the differential operator, Dokl. AN SSSR, 273(5), 1983, 1048-1053.
- [3] N.B. Kerimov, On unconditional basicity of the system of eigen and associated functions of fourth order differential operator Dokl. AN SSSR, 286(4), 1986, 803-808.
- [4] V.D. Budaev, Criterion of Bessel property and the Riesz basicity of the system of root functions of differential operators I, Diff. Uravn., 27(12), 1991, 2033-2044.
- [5] I.S. Lomov, Bessel inequality, Riesz theorem and ununconditional basity for root vectors of ordinary differential operators, Vestnik MGU Ser. 1, Mathematics, mechanics, (5), 1992, 42-52.
- [6] V.M. Kurbanov, On Bessel property of the system of root functions of differential operator, Dokl. RAN., 374(6), 2000, 741-743.
- [7] V.M. Kurbanov, On Bessel property and unconditional basicity of the system of root vector-functions of Dirac operator, Diff. Uravn., 1996, 32(12), 1608-1617.
- [8] V.M. Kurbanov, A.I. Ismailova, *Riesz inequality for the system pf root vectorfunctions of Dirac operator*, Diff. Uravn., 2012, **48(3)**, 334-340.

Vali M. Kurbanov Azerbaijan State Pedagogical University, Baku, Azerbaijan E-mail: q.vali@yahoo.com

Elchin J. Ibadov Azerbaijan State Pedagogical University, Baku, Azerbaijan E-mail: e.c_ibadov@yahoo.com

Gunel R. Hajiyeva Azerbaijan State Pedagogical University, Baku, Azerbaijan E-mail: gunel-haciyeva-88@ mail.ru

Received 12 May 2016 Accepted 28 September 2016