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Projectivity and Unification Problem in the Variety Gen-

erated by Monadic Perfect MV -algebras
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Abstract. A description and characterization of free and projective monadic MV -algebras in the
variety generated by perfect MV -algebras is given. It is proved that the variety generated by
monadic perfect MV -algebras has unitary unification type.
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1. Introduction

The finitely valued propositional calculi, which have been described by  Lukasiewicz
and Tarski in [16], are extended to the corresponding predicate calculi. The predicate
 Lukasiewicz (infinitely valued) logic QL is defined in the following standard way. The
existential (universal) quantifier is interpreted as supremum (infimum) in a complete MV -
algebra. Then the valid formulas of predicate calculus are defined as all formulas having
value 1 for any assignment. The functional description of the predicate calculus is given
by Rutledge in [19]. Scarpellini in [20] has proved that the set of valid formulas is not
recursively enumerable.

Monadic MV -algebras were introduced and studied by Rutledge in [19] as an algebraic
models for the predicate calculus QL of  Lukasiewicz infinite-valued logic, in which only
a single individual variable occurs. Rutledge followed P.R. Halmos’ study of monadic
Boolean algebras. In view of the incompleteness of the predicate calculus, the result of
Rutledge in [19], showing the completeness of the monadic predicate calculus, has been of
great interest.

Let L denote a first-order language based on ·,+,→,¬,∃ and let Lm denote a propo-
sitional language based on ·,+,→,¬,∃. Let Form(L) and Form(Lm) be the sets of all
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formulas of L and Lm, respectively. We fix a variable x in L, associate with each propo-
sitional letter p in Lm a unique monadic predicate p∗(x) in L and define by induction a
translation Ψ : Form(Lm) → Form(L) by putting:

• Ψ(p) = p∗(x) if p is propositional variable,

• Ψ(¬α) = ¬Ψ(α),

• Ψ(α ◦ β) = Ψ(α) ◦ Ψ(β), where ◦ = ·,+,→,

• Ψ(∃α) = ∃xΨ(α).

Through this translation Ψ, we can identify the formulas of Lm with monadic formulas
of L containing the variable x. Moreover, it is routine to check that Ψ(MLPC) ⊆ QL,
where MLPC is the monadic Lukasiewicz propositional calculus [7].

For a detailed consideration of  Lukasiewicz predicate calculus we refer to [1, 3, 12, 15,
16, 21, 22].

2. Preliminaries on monadic MV -algebras

The characterization of monadic MV -algebras as pair of MV -algebras, where one of
them is a special kind of subalgebra (m-relatively complete subalgebra), is given in [7, 5].
MV -algebras were introduced by Chang in [6] as an algebraic model for infinitely valued
 Lukasiewicz logic.

An MV -algebra is an algebra A = (A,⊕,⊙,∗ , 0, 1) where (A,⊕, 0) is an abelian
monoid, and the following identities hold for all x, y ∈ A : x ⊕ 1 = 1, x∗∗ = x, 0∗ = 1,
x⊕ x∗ = 1, (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x, x⊙ y = (x∗ ⊕ y∗)∗.

Every MV -algebra has an underlying ordered structure defined by

x ≤ y iff x∗ ⊕ y = 1.

(A,≤, 0, 1) is a bounded distributive lattice. Moreover, the following property holds in
any MV -algebra:

x⊙ y ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y.

The unit interval of real numbers [0, 1] endowed with the following operations: x⊕y =
min(1, x + y), x ⊙ y = max(0, x + y − 1), x∗ = 1 − x, becomes an MV -algebra. It is
well known that the MV -algebra S = ([0, 1],⊕,⊙,∗ , 0, 1) generates the variety MV of all
MV -algebras, i. e. V(S) = MV.

Let Q denote the set of rational numbers. Then [0, 1] ∩ Q is another MV -algebra,
which also generates the variety MV.

An algebra A = (A,⊕,⊙,∗ ,∃, 0, 1) is said to be a monadic MV -algebra (MMV -algebra
for short) [19, 7] if A = (A,⊕,⊙,∗ , 0, 1) is an MV -algebra and in addition ∃ satisfies the
following identities:
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E1. x ≤ ∃x,

E2. ∃(x ∨ y) = ∃x ∨ ∃y,

E3. ∃(∃x)∗ = (∃x)∗,

E4. ∃(∃x⊕ ∃y) = ∃x⊕ ∃y,

E5. ∃(x⊙ x) = ∃x⊙ ∃x,

E6. ∃(x⊕ x) = ∃x⊕ ∃x.

Sometimes we shall denote a monadic MV -algebra A = (A,⊕,⊙,∗ ,∃, 0, 1) by (A,∃),
for brevity. We can define a unary operation ∀x = (∃x∗)∗ corresponding to the universal
quantifier.

Let A1 and A2 be any MMV -algebras. A mapping h : A1 → A2 is an MMV -
homomorphism if h is an MV -homomorphism and for every x ∈ A1 h(∃x) = ∃h(x). Denote
by MMV the variety and the category of MMV -algebras and MMV -homomorphisms.

From the variety of monadic MV -algebras MMV [7] select the subvariety MMV(C)
which is defined by the following equation [9]:

(Perf) 2(x2) = (2x)2,

that is MMV(C) = MMV + (Perf). The main object of our interest are the varieties
MMV(C).

An ideal I (a filter F ) of an algebra (A,∃) ∈ MMV is called monadic ideal (filter)
(see [19, 7]), if I (F ) is an ideal (a filter) of MV -algebra A (i.e. A ⊃ I 6= ∅ (A ⊃ F 6= ∅)
and for every x, y ∈ I (x, y ∈ F ) (a) x⊕ y ∈ I (x⊙ y ∈ F ); (b) x ≥ y, x ∈ I ⇒ y ∈ I (x ≤
y, x ∈ F ⇒ y ∈ F )) and for every a ∈ A we have a ∈ I ⇒ ∃a ∈ I (a ∈ F ⇒ ∀a ∈ F ). Note
that if I (F ) is a monadic ideal (filter) of (A,∃), then the set {¬x : x ∈ I} ({¬x : x ∈ F})
is a monadic filter (ideal).

For every monadic MV -algebra (A,∃), there exists a lattice isomorphism between the
lattice of all monadic ideals (filters) and the lattice of all congruence relations of (A,∃)
[7].

There are MV -algebras which are not semisimple, i.e. the intersection of their maximal
ideals (the radical of A, notation Rad(A)) is different from {0}. Non-zero elements from
the radical of A are called infinitesimals. It is worth to stress that due to the existence of
infinitesimals in some MV -algebras there is a remarkable difference of behaviour between
Boolean algebras and MV -algebras.

Perfect MV -algebras are those MV -algebras generated by their infinitesimal elements
or, equivalently, generated by their radical [4]. They generate the smallest non locally
finite subvariety of the variety MV of all MV -algebras.
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The class of perfect MV -algebras does not form a variety and contains non-simple
subdirectly irreducible MV -algebras. It is worth stressing that the variety generated by
all perfect MV -algebras, denoted by MV(C), is also generated by a single MV -chain,
actually the MV -algebra C, defined by Chang in [6]. We name MV (C)-algebras all
the algebras from the variety generated by C. Let LP be the logic corresponding to
the variety generated by perfect algebras which coincides with the set of all  Lukasiewicz
formulas that are valid in all perfect MV -chains, or equivalently that are valid in the
MV -algebra C. Actually, LP is the logic obtained by adding to the axioms of  Lukasiewicz
sentential calculus the following axiom: (x ⊻ x)&(x ⊻ x) ↔ (x&x) ⊻ (x&x) (where ⊻ is
strong disjunction, & strong conjunction in  Lukasiewicz sentential calculus), see [4]. Note
that the Lindenbaum algebra of LP is an MV (C)-algebra. The perfect algebra C has
relevant properties. Indeed, C generates the smallest variety of MV -algebras containing
non-Boolean non-semisimple algebras. It is also subalgebra of any non-Boolean perfect
MV -algebra.

The importance of the class of MV (C) algebras and the logic LP can be perceived by
looking further at the role that infinitesimals play in MV -algebras and  Lukasiewicz logic.
Indeed, the pure first order  Lukasiewicz predicate logic is not complete with respect to the
canonical set of truth values [0, 1], see [20], [3]. The Lindenbaum algebra of the first order
 Lukasiewicz logic is not semisimple and the valid but unprovable formulas are precisely
the formulas whose negations determine the radical of the Lindenbaum algebra, that is
the co-infinitesimals of such algebra. Hence, the valid but unprovable formulas generate
the perfect skeleton of the Lindenbaum algebra. So, perfect MV -algebras, the variety
generated by them and their logic are intimately related with a crucial phenomenon of the
first order  Lukasiewicz logic.

Let us introduce some notations: let C0 = Γ(Z, 1), C1 = C ∼= Γ(Z ×lex Z, (1, 0))
with generator (0, 1) = c1(= c), Cm = Γ(Z ×lex · · · ×lex Z, (1, 0, ..., 0)) with generators
c1(= (0, 0, ..., 1)), ..., cm (= (0, 1, ..., 0)), where the number of factors Z is equal to m+1 and
×lex is the lexicographic product and Γ is a well-known Mundici’s functor translating a
lattice ordered group with strong unit into MV -algebra. Let us denote Rad(A)∪¬Rad(A)
through R∗(A), where ¬Rad(A) = {x∗ : x ∈ Rad(A)}.

Let (A,⊕,⊙,∗ ,∃, 0, 1) be a monadic MV -algebra. Let ∃A = {x ∈ A : x = ∃x}. By [7],
(∃A,⊕,⊙,∗ , 0, 1) is an MV -subalgebra of the MV -algebra (A,⊕,⊙,∗ , 0, 1).

A subalgebra A0 of an MV -algebra A is said to be relatively complete if for every
a ∈ A the set {b ∈ A0 : a ≤ b} has a least element.

Let (A,⊕,⊙,∗ ,∃, 0, 1) be a monadic MV -algebra. By [19], the MV -algebra ∃A is a
relatively complete subalgebra of the MV -algebra (A,⊕,⊙,∗ , 0, 1), and ∃a = inf{b ∈ ∃A :
a ≤ b}.

A subalgebra A0 of an MV -algebra A is said to be m-relatively complete [7], if A0 is
relatively complete and two additional conditions hold:
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(#) (∀a ∈ A)(∀x ∈ A0)(∃v ∈ A0)(x ≥ a⊙ a ⇒ v ≥ a&v ⊙ v ≤ x),

(##) (∀a ∈ A)(∀x ∈ A0)(∃v ∈ A0)(x ≥ a⊕ a ⇒ v ≥ a&v ⊕ v ≤ x).

By [7], there exists a one-to-one correspondence between

1) the monadic MV -algebras (A,∃);

2) the pairs (A,A0), where A0 is m-relatively complete subalgebra of A.

3. One-generated free monadic MMV (C)-algebras

According to the definition of monadic MV -algebras, m-relatively complete subalgebra
of C coincides with C but not its two-element Boolean subalgebra. In other words, (C,∃)
is monadic MMV (C)-algebra if ∃x = x. Let Cn be some non-negative integer. Then
(Cn,∃) will be MMV (C)-algebra, where ∃(a1, ..., an) = max{a1, ..., an} and ∀(a1, ..., an) =
min{a1, ..., an}. In this case ∃(Cn) = {(x, ..., x) ∈ Cn : x ∈ C}. Note that (Cn,∃)
is subdirectly irreducible [7]. For perfect MV -algebra Rad∗(C2) we also have ∃(Cn) =
{(x, ..., x) ∈ Cn : x ∈ C} ⊂ Rad∗(C2).

Now we shall give examples of one-generated MMV (C)-algebras and show that there
are infinitely many one-generated subdirectly irreducible MMV (C)-algebras unlike the
one-generated subdirectly irreducible MV (C)-algebras. There is only one (up to isomor-
phism) subdirectly irreducible MV (C)-algebra C.

Lemma 1. The following algebras are one-generated subdirectly irreducible MMV (C)-
algebras:

1) (2,∃) with generator either 1 or 0, where 2 is two-element Boolean algebra,

2) (22,∃) with generator either (0, 1) or (1, 0), where 22 is four-element Boolean alge-
bra,

3) (C,∃) with generator either c or ¬c,
4) (C2,∃) with generator either (1, c), (¬c, 0) or (c,¬c),

5) (Rad∗(C2),∃) with generator either (c, 0) or (¬c, 1),

6) (C2
2 ,∃) with generator either (c1,¬c2) or (¬c1, c2),

7) (Rad∗(C2
2 ),∃) generated by (c1, c2) or (¬c1,¬c2).

Proof. 1), 2) and 3) are trivial.

4) (a) ∀(1, c) = (c, c), g2 = (1, 0), (c, c) ∨ (0, 1) = (c, 1). So, (C2,∃) is generated by
(1, c); (b) 2(¬c, 0) = (1, 0), ¬(¬c, 0) = (c, 1), (c, 1)2 = (0, 1). So, (C2,∃) is generated by
(¬c, 0); (c) 2((c,¬c)2) = (0, 1), ¬(0, 1) = (1, 0), ∀(c,¬c) = (c, c). So, (C2,∃) is generated
by (c,¬c);

5) ∃(c, 0) = (c, c), ¬(c, 0) = (¬c, 1), (c, c) → (c, 0) = (1,¬c), ¬(1,¬c) = (0, c). So,
(Rad∗(C2),∃) is generated by either (c, 0) or (¬c, 1).
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6) Let g = (c1,¬c2). 2g2 = (0, 1), ¬(2g2) = (1, 0). ∀g = (c1.c1, ¬∃g = (c2, c2);
∀g ∧ 2g2 = (0, c1); ∀g ∧ ¬(2g2) = (c1, 0); ¬∃g ∧ 2g2 = (0, c2); ¬∃g ∧ ¬(2g2) = (c2, 0). In a
similar way it is shown that (C2

2 ,∃) is generated by (¬c1, c2) (= ¬g).
7) Let g = (c1, c2). From this element we obtain the following sequences of elements:

∀g = (c1, c1), ∃g = (c2, c2), ¬∀g = (¬c1,¬c1), ¬∃g = (¬c2,¬c2); ¬∃g ⊕ g = (¬c2,¬c2) ⊕
(c1, c2) = (¬c2 ⊕ c1, 1), ¬g ⊕ ∀g = (¬c1,¬c2) ⊕ (c1, c1) = (1,¬c2 ⊕ c1); (¬∃g ⊕ g) ⊙ ∀g =
(¬c2 ⊕ c1, 1) ⊙ (c1, c1) = (0, c1), (¬g ⊕ ∀g) ⊙ ∀g = (c1, 0); (¬∃g ⊕ g) ⊙ ¬∀g) = (c2, c1),
¬(¬(c2, c1) ⊕ (0, c1)) = (c2, 0), ¬(¬(c1, c2) ⊕ (c1, 0)) = (0, c2). From these elements we can
obtain all elements of radical of (C2

2 ,∃) and thereby the elements of perfect MV -algebra.
◭

Note that (Cn,∃) is not 1-generated for n ≥ 2, since ∃x = x for every x ∈ Cn and
Cn is not one-generated. It is clear that (2n,∃) is a homomorphic image of (Cn,∃). But
(2n,∃) is not generated by one generator for n ≥ 3. Indeed, for any element x ∈ 2n

the operation ∃ is defined as follows: ∃x = (1, ...1, 1) ∈ 2n if x 6= (0, 0, ..., 0) ∈ 2n and
∃x = (0, ...0, 0) ∈ 2n in other case. So, (2n,∃) is one-generated if it is one-generated using
only Boolean operations. But 2n is not generated by one generator if n ≥ 3.

Fig. 1. Spectral spaces of one-generated subdirectly irreducible MV (C)-algebras
Fig. 1 presents the depicted ordered sets corresponding to the prime filter spaces for

(C,∃) (∼= T1
∼= T2), (C2,∃) (∼= T3

∼= T4
∼= T5), (Rad∗(C2),∃) (∼= T6

∼= T7), (C2
2 ,∃) (∼=

T8
∼= T9), (Rad∗(C2

2 ),∃) (∼= T10
∼= T11) with their generators. Note that the algebras
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T1, T2, ..., T7 have height 2 and the algebras T8, T9, T10, T11 have height 3 ( see the definition
of height below).

Let us give some comments about the diagrams in Fig. 1. The posets I, II, VI, VII, X
and XI have one maximal filter, i. e. they correspond to a perfect MV -algebra. As to III,
IV, V, VII and IX, the elements inside ovals can be considered as equivalent elements and
this equivalence relation corresponds to the ∃ operation on a corresponding MV -algebra
which corresponds to the diagonal subalgebra of C2 and C2

2 , respectively.

We say that MV -algebra A has height n if a maximal chain of the poset of prime filters
(ordered by inclusion) contains n elements. Similarly, we say that MMV (C)-algebra A has
height n if its MV -algebra reduct has height n. According to this definition, MV -algebra
Cn has height n + 1 (n ≥ 1).

Lemma 2. If subdirectly irreducible MMV (C)-algebra, with non-trivial operation ∃, has
height n > 3, then it is not one-generated.

Proof. Let us suppose we have MMV (C)-algebra (C2
3 ,∃). The optimal version to

be a generator of (C2
3 ,∃) is either (c1, c2), (c2, c3), (c1, c3), (c1,¬c2), (c1,¬c3), (¬c1, c2),

(¬c1, c3), (¬c2, c3), (c2,¬c3), (c2,¬c1), (c3,¬c2). It is obvious that none of them generates
the algebra (C2

3 ,∃). Even more so (Ck
n,∃) is not generated by one generator for k, n > 2.

◭

The next lemma shows that there are infinitely many non-isomorphic one-generated
subdirectly irreducible MMV (C)-algebras.

Lemma 3. The MMV (C)-algebra (Rad∗(Cn),∃) is generated by the element (c, 2c, ..., nc)
for any positive integer n.

Proof. Let g = (c, 2c, ..., nc). Then ∀g = (c, c, ..., c), ¬∀g = (¬c,¬c, ...,¬c), g ⊙ ¬∀g =
(0, c, 2c, ..., (n−1)c), g⊙(¬∀g)2 = (0, 0, c, 2c, ..., (n−2)c), ... , g⊙(¬∀g)n−1 = (0, 0, ..., 0, c).

(g ⊙ ¬∀g) ∧ ∀g = (0, c, ..., c), ¬(g ⊙ (¬∀g)2) ⊙ ((g ⊙ ¬∀g) ∧ ∀g) = (1, 1,¬c, ...,
(¬c)n−2) ⊙ (0, c, ..., c) = (0, c, 0, ..., 0).

(g ⊙ (¬∀g)2) ∧ ∀g = (0, 0, c, ..., c). ¬(g ⊙ (¬∀g)3) = (1, 1, 1,¬c, (¬c)2 , ..., (¬c)n−3).
(1, 1, 1,¬c, (¬c)2 , ..., (¬c)n−3) ⊙ (0, 0, c, ..., c) = (0, 0, c, 0, ..., 0), and so on. Moreover, ¬g ⊙
2∀g = (c, 0, ..., 0). This finishes the proof of the theorem. ◭

Lemma 4. MMV (C)-algebra

U1 = Rad∗((Rad∗(C2,∃) × (C,∃)))(= Rad∗(T7 × T1))

is generated by ((c, 0), c) (((¬c, 1),¬c)), which is a perfect MV -algebra. Moreover, the
subalgebra of Rad∗(C2,∃)× (C,∃)) generated by ((c, 0), c) (((¬c, 1),¬c)) is isomorphic to
Rad∗((Rad∗(C2,∃) × (C,∃))).
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Proof. It is clear that by means of elements ((0, 0), c), ((0, c), 0), ((c, 0), 0) and the
operations ⊕, ∨ we can obtain all elements of Rad((Rad∗(C2,∃) × (C,∃)), and thereby
all elements of Rad∗((Rad∗(C2,∃) × (C,∃))). Let g = ((c, 0), c). Then ∀g = ((0, 0), c);
∃g = ((c, c), c); ¬∀g = ((1, 1),¬c); ¬g = ((¬c, 1),¬c); ¬∀g ⊙ ∃g = ((c, c), 0); (¬∀g ⊙
∃g) → g = ((1,¬c), 1); ¬∀g ⊙ ∃g = ((c, c), 0); ¬((¬∀g ⊙ ∃g) → g) = ((0, c), 0); ((c, 0)c) ∧
((c, c), 0) = ((c, 0), 0). So we have obtained the elements ((0, 0), c), ((0, c), 0), ((c, 0), 0).
Hence, Rad∗((Rad∗(C2,∃) × (C,∃))) is generated by ((c, 0), c), and thereby by element
(¬c, 1),¬c).

Observe that the element ((c, 0), c) ((¬c, 1),¬c)) belongs to radical (co-radical). So, the
subalgebra generated by this element is perfect and isomorphic to Rad∗((Rad∗(C2,∃) ×
(C,∃))). ◭

Lemma 5. MMV (C)-algebra

U2
1 = Rad∗((Rad∗(C2,∃) × (C,∃))) ×Rad∗((Rad∗(C2,∃) × (C,∃)))

is generated by ((c, 0), c), (¬c, 1),¬c)).

Proof. Indeed, from the generator ((c, 0), c), (¬c, 1),¬c)) we can obtain the elements
((0, 0), 0), (1, 1), 1)) = 2(((c, 0), c), (¬c, 1),¬c))2) and

((1, 1), 1), (0, 0), 0)) = ¬((0, 0), 0), (1, 1), 1)).

So, Rad∗((Rad∗(C2,∃) × (C,∃))) ×Rad∗((Rad∗(C2,∃) × (C,∃))) is generated by

((c, 0), c), (¬c, 1),¬c))

◭

Lemma 6. The subalgebra U2 of MMV (C)-algebra (C2,∃)3 generated by

t = ((c,¬c), (1, c), (¬c, 0))

is a proper subalgebra with one maximal monadic filter.

Proof. Let us note that one-generated non-trivial monadic Boolean algebra is isomor-
phic to (22,∃) with generator (0, 1). Note also that (22,∃) ∼= (C2,∃)/((c, c)], where ((c, c)]
is the monadic ideal generated by (c, c) which is maximal at the same time. So, since (22,∃)
should be homomorphic image of the subalgebra of MMV (C)-algebra (C2,∃)3 generated
by ((c,¬c), ((c, 0), c), ((¬c, 1),¬c)), the subalgebra must have one maximal monadic ideal.
Moreover, U2 is a subdirect product of subdirectly irreducible copies of algebra (C2,∃),
since (C2,∃) is generated separately by (c,¬c), (1, c), (¬c, 0). ◭
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Lemma 7. U2/Ji ∼= (C2,∃) (i = 1, 2, 3), where J1 = (((c, c), (0, 0), (0, 0))], J2 = (((0, 0),
(c, c), (0, 0))], J3 = (((0, 0), (0, 0), (c, c))], are monadic ideals generated by ((c, c), (0, 0), (0, 0)),
((0, 0), (c, c), (0, 0)), ((0, 0), (0, 0), (c, c)), respectively.

Proof. Now we show that the elements can be obtained by the generator t. Indeed,
¬∃t∧∀t = ((c, c), (0, 0), (0, 0)); (¬∃t∨∀t)∧∃¬t = ((0, 0), (0, 0), (c, c)); (¬∃t⊕ (¬∃t∨∀t))⊙
(¬(∃¬t⊙ (¬∃t ∧ ∀t) ∧ (¬∃t ∧ ∀t)2 = ((0, 0), (c, c), (0, 0)). ◭

The ordered set corresponding to the prime filter space of algebras T8×T9×T3×T4×T5

generated by (c1,¬c2), (¬c1, c2), (c,¬c), (1, c), (¬c, 0) is depicted in Fig. 2 and the ordered
set corresponding to the prime filter space of algebras generated by (c1, c2), c,¬c, (¬c1,¬c2)
is depicted in Fig. 3.
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Theorem 1. Let A =
∏

i∈I Ai be a direct product of the family of all subdirectly irreducible
one-generated MMV (C)-algebras Ai with generators gi ∈ Ai (i ∈ I). Let FMMV(C)(1) be
the subalgebra of A generated by the generator g = (gi)i∈I ∈ A. Then

1) the algebra FMMV(C)(1) is a subdirect product of the family {Ai : i ∈ I};

2) any subdirectly irreducible one-generated MMV (C)-algebra is a homomorphic image
of FMMV(C)(1);

3) the algebra FMMV(C)(1) generated by the generator g = (gi)i∈I ∈ A is one-generated
free MMV (C)-algebra with free generator g = (gi)i∈I ;

4) the algebra FMMV(C)(1) has height 3;

5) the poset of prime filters of the algebra FMMV(C)(1) contains only four maximal
elements and this four elements form the poset of MMV (C)-algebra (22,∃) × (2,∃)2,
where 2 is two-element Boolean algebra.

Proof. 1). It is obvious that for any projection πi (i ∈ I) πi(g) = gi that generates Ai.
So, FMMV(C)(1) is a subdirect product of the family {Ai : i ∈ I}.

2) Since FMMV(C)(1) is a subdirect product of all subdirectly irreducible one-generated
MMV (C)-algebras Ai, any subdirectly irreducible one-generated MMV (C)-algebra is a
homomorphic image of FMMV(C)(1)

3) Let us suppose that an identity P (x) = Q(x) does not hold in the variety MMV(C).
Then it does not hold in some subdirectly irreducible one-generated MMV (C)-algebras Ai

on the generator gi. So, it does not hold in FMMV(C)(1) on the generator g. From here we
conclude that FMMV(C)(1) generated by the generator g = (gi)i∈I ∈ A is one-generated
free MMV (C)-algebra with free generator g = (gi)i∈I .

4) The assertion follows from Lemma 2.

5) This item follows from the fact that the algebra (22,∃) × (2,∃)2 is a free one-
generated monadic Boolean algebra and the variety of monadic Boolean algebras is a
subvariety of the variety MMV(C). ◭

4. m-generated free monadic MMV (C)-algebras

We can easily generalize the results of one-generated MMV (C)-algebras on m-generated
ones. Since the prime filter space of 1-generated free MMV (C)-algebra and, also, m-
generated free MV (C)-algebra (m > 1) is infinite [8], the prime filter space of m-generated
free MMV (C)-algebra is also infinite. But the number of the prime filter spaces of m-
generated subdirectly irreducible MMV (C)-algebra is finite.

Note that the smallest subvariety of the variety MMV(C), different from the variety
of Boolean algebras with trivial monadic operator, is the variety of monadic Boolean
algebras. So, any m-generated free monadic Boolean algebra is a homomorphic image of
m-generated free MMV (C)-algebra. The following proposition is true.
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Proposition 1. [2, 13, 14]. m-generated free monadic Boolean algebra (B(m),∃) is iso-
morphic to

2m
∏

k=1

(2k,∃)(
k

2m
).

Corollary 1. There exists exactly
∑2m

k=1

(

k
2m

)

(= 22
m

− 1) number of maximal monadic
filters of (B(m),∃). These maximal monadic filters are generated by (01, ..., 0k−1, 1k,
0k+1, ..., 02

m

), where 1k is the top element of (2k,∃) (1 ≤ k ≤ 2m), 0i is the bottom
element of (2i,∃) (1 ≤ i ≤ 2m).

Note that monadic Boolean algebras are also monadic MV (C)-algebras, but of height
1.

As for one-generated case, as an obvious fact we have the following

Lemma 8. The height of an m-generated subdirectly irreducible MMV (C)-algebra is lim-
ited by some natural number k > 0. In other words, a maximal chain of the poset of prime
filters of a subdirectly irreducible MMV (C)-algebra is limited by some natural number
k > 0.

Since we have infinitely many subdirectly irreducible one-generated MMV (C)-algebras,
it holds

Lemma 9. There are infinitely many subdirectly irreducible m-generated MMV (C)-algebras
for m > 1.

Theorem 2. The m-generated subdirectly irreducible MMV (C)-algebras for m ≥ 2 are:

1) (22
m

,∃),

2) (Cm,∃),

3) (C2m ,∃),

4) (Rad∗(Cm),∃),

5) (Cm
m ,∃).

Proof. 1) and 2) are trivial. 3). It is obvious that (C2m,∃) has as a subalgebra the
monadic Boolean algebra (22

m

,∃) the generators of which are the generators of the free
m-generated Boolean algebra 22

m

. If we change in every free generator of 22
m

the element
0 by c and 1 by ¬c, then we will get m generators of (C2m ,∃). 4). It is obvious that
(c, 0, ..., 0), (0, c, , ..., 0), ..., (0, ..., c) generate (Rad∗(Cm),∃). 5). The generators of (Cm

m ,∃)
are g1 = (¬c1, c2, ..., cm, g2 = (c1,¬c2, ..., cm, ... , gm = (c1, c2, ...,¬cm. Indeed, ¬∃g1 =
(c1, c1, ..., c1), ¬∃g2 = (c2, c2, ..., c2), ... , ¬∃gm = (cm, cm, ..., cm); 2g21 = (1, 0, ..., 0),
2g22 = (0, 1, ..., 0), ... , 2g2m = (0, 0, ..., 1). And these elements generate (Cm

m ,∃). ◭
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Theorem 3. Let A =
∏

i∈I Ai be a direct product of the family of all subdirectly irreducible

m-generated MMV (C)-algebras Ai with generators g
(1)
i , g

(2)
i , ..., g

(m)
i ∈ Ai (i ∈ I), where

{g
(1)
i , g

(2)
i , ..., g

(m)
i } 6= {g

(1)
j , g

(2)
j , ..., g

(m)
j } for i 6= j. Let FMMV(C)(m) be the subalgebra of

A generated by the generators g1 = (g
(1)
i )i∈I ∈ A, ... gm = (g

(m)
i )i∈I ∈ A. Then

1) the algebra FMMV(C)(m) is a subdirect product of the family {Ai : i ∈ I};
2) any subdirectly irreducible m-generated MMV (C)-algebra is a homomorphic image

of FMMV(C)(m);

3) the algebra FMMV(C)(m) generated by the generator g1 = (g
(1)
i )i∈I ∈ A, ... gm =

(g
(m)
i )i∈I ∈ A is m-generated free MMV (C)-algebra with free generator g1 = (g

(1)
i )i∈I ∈ A,

... gm = (g
(m)
i )i∈I ∈ A.

Proof. The theorem is proved as in one-generated case. ◭

Theorem 4. Free algebra FMMV(C)(m) is isomorphic to the finite product of monadic

MV (C)-algebras Dk (1 ≤ k ≤ 22
m

−1) the homomorphic image by maximal monadic filter
of which is isomorphic to the subdirectly irreducible monadic Boolean algebra (2m(k),∃),
where m(k) ≤ 2m. The number of subdirectly irreducible MMVC)-algebras having the
algebra 2m(k) as a maximal homomorphic image is equal to

(

m(k)
2m

)

.

Proof. Note that m-generated monadic Boolean algebra (B(m),∃) is a homomorphic
image of FMMV(C)(m). The algebra (B(m),∃) contains 22

m

− 1 maximal monadic fil-
ters. The intersection of all maximal monadic filters of (B(m),∃) is equal to [1B(m)).
According to Corollary 1, these maximal monadic filters of (B(m),∃) are generated by
(01, ..., 0k−1, 1k, 0k+1, ..., 02

m

) where 1k is the top element of (2k,∃) (1 ≤ k ≤ 2m), 0i is the
bottom element of (2i,∃) (1 ≤ i ≤ 2m). Denote the maximal monadic filters of (B(m),∃)
generated by (01, ..., 0k−1, 1k, 0k+1, ..., 02

m

) by Fk. The factor algebra (B(m)/Fk,∃) is iso-
morphic to (2k,∃) that is subdirectly irreducible the number of which is equal to

(

k
2m

)

.
Let FM

k be the monadic filter of FMMV(C)(m) generated in FMMV(C)(m) by Fk. It is
obvious that the intersection of all such kind of the monadic filters of FMMV(C)(m) is also
equal to the unit element of FMMV(C)(m). So, FMMV(C)(m) is isomorphic to the finite

product of algebras Dk = FMMV(C)(m)/FM
k , where 1 ≤ k ≤ 22

m

− 1. ◭

5. Finitely generated projective MMV (C)-algebras

In this section, we first prove auxiliary assertions.
Let V be a variety. Recall that an algebra A ∈ V is said to be a free algebra over V, if

there exists a set A0 ⊂ A such that A0 generates A and every mapping f from A0 to any
algebra B ∈ V is extended to a homomorphism h from A to B. In this case A0 is said to
be the set of free generators of A. If the set of free generators is finite, then A is said to be
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a free algebra of finitely many generators. We denote a free algebra A with m ∈ (ω + 1)
free generators by FV(m). We shall omit the subscript V if the variety V is known.

An algebra A is called projective if for any algebra epimorfism (=homomorphism
onto) f : D → B and homomorphism h : A → B there is a homomorphism g : A → D
such that fg = h. An algebra H is a retract of an algebra A if there are homomorphisms
f : A → H and g : H → A such that fg = IdH , where IdH is an identity mapping of the
set H. It is well-known that in varieties the projective algebras are just the retracts of the
free algebras. So, a MMV (C)-algebra is projective if and only if it is a retract of a free
MMV (C)-algebra. We say that the subalgebra A of FV(m) is projective if there exists
endomorphism h : FV(m) → FV(m) such that h(x) = x for every x ∈ A.

An algebra in a variety V is said to be finitely presented if for some m ∈ ω it is
isomorphic to FV(m)/θ, where θ is a principal congruence relation.

Proposition 2. [17, 7]. An m-generated algebra A in a variety V is projective if and only
if there exist polynomials P1, . . . , Pm such that, denoting by g1, ..., gm the free generators
of FV(m),

Pi(P1(g1, . . . , gm), . . . , Pm(g1, . . . , gm)) = Pi(g1, . . . , gm), for each 1 ≤ i ≤ m

and

P1(g1, . . . , gm), . . . , Pm(g1, . . . , gm) generate an algebra isomorphic to A.

Theorem 5. If A is n-generated projective MMV (C)-algebra, then A is finitely presented.

Proof. Since A is n-generated projective MMV (C)-algebra, A is retract of FMMV(C)(n),
i. e. there exist homomorphisms h : FMMV(C)(n) → A and ε : A → FMMV(C)(n) such
that hε = IdA, and moreover, there exist n polynomials P1(x1, . . . , xn), . . . , Pn(x1, . . . , xn)
such that

Pi(g1, . . . , gn) = ε(ai) = εh(gi)

and
Pi(P1(x1, . . . , xn), . . . , Pn(x1, . . . , xn)) = Pi(x1, . . . , xn), i = 1, . . . , n,

where g1, . . . , gn are free generators of FMMV(C)(n). Observe that h(g1), . . . , h(gn) are
generators of A which we denote by a1, . . . , an, respectively. Let e be the endomorphism
εh : FMMV(C)(n) → FMMV(C)(n). This endomorphism has properties : ee = e and
e(x) = x for every x ∈ ε(A).

Let us consider the set of equations Ω = {Pi(x1, . . . , xn) ↔ xi = 1 : i = 1, . . . , n} and
let u =

∧n
i=1((Pi(g1, . . . , gn) ↔ gi) ∈ F (n), where x ↔ y is abbreviation of (x → y)∧ (y →

x). Observe that the equations from Ω are true in A on the elements ε(ai) = e(gi), i =
1, . . . , n. Indeed, since e is an endomorphism

e(u) =

n
∧

i=1

e(gi) ↔ Pi(e(g1), . . . , e(gn)).
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But Pi(e(g1), . . . , e(gn)) = Pi(P1(g1, . . . , gn), . . . , Pn(g1, . . . , gn)) = Pi(g1,
. . . , gn) = εh(gi) = e(gi), i = 1, . . . , n. Hence e(u) = 1 and u ∈ e−1(1), i. e. [u) ⊆ e−1(1).
Therefore there exists homomorphism f : F (n)/[u) → ε(A) such that the diagram

commutes, i. e. rf = e, where r is a natural homomorphism sending x to x/[u). Now
consider the restrictions e′ and r′ on ε(A) ⊆ F (n) of e and r, respectively Then fr′ = e′.
But e′ = Idε(A). Therefore fr′ = Idε(A). From here we conclude that r′ is an injection.
Moreover, r′ is a surjection, since r(ε(ai)) = r(gi). Indeed, e(gi) = Pi(g1, . . . , gn) and gi ↔
Pi(g1, . . . , gn) = gi ↔ e(gi), where e(gi) = εh(gi). So gi ↔ Pi(g1, . . . , gn) ≥

∧n
i=1 gi ↔

Pi(g1, . . . , gn), i. e. gi ↔ Pi(g1, . . . , gn) ∈ [u). Hence r′ is an isomorphism between ε(A)
and F (n)/[u). Consequently, A(∼= ε(A)) is finitely presented. ◭

It is easy to prove the following

Lemma 10. Any m-generated non-Boolean subdirectly irreducible MMV (C)-algebra A
contains (C,∃) as a subalgebra.

Lemma 11. Any subdirectly irreducible m-generated MMV (C)-algebra (A,∃) is a subal-
gebra of (Ck

n,∃) for some n, k ∈ ω and n ≤ m.

Proof. Let (A,∃) be subdirectly irreducible m-generated MMV (C)-algebra. Since
(A,∃) is subdirectly irreducible, it follows that ∃A is totally ordered which is isomorphic
to (Cn,∃) for some n ≤ m. Then A as MV (C)-algebra is subdirect product of copies of
Cn, i .e. A is a subalgebra of Ck

n for some n, k ∈ ω and n ≤ m. Therefore, (A,∃) is a
subalgebra of (Ck

n,∃), where the operation ∃ in (A,∃) is defined in the same way as in
(Ck

n,∃). ◭

Lemma 12. The algebra (Ck
m,∃) is a retract of (Ck

n,∃) for any positive integer k, 1 ≤
m ≤ n.

Proof. Note that (Cm,∃) is a subalgebra of (Cn,∃). So, we can define the embedding
ε : Ck

m → Ck
n in the following way: ε(a1, ..., ak) = (ε(a1), ..., ε(ak)), where ε(ci) = cn−m+i

for i = 1, ...,m.
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Let h : Ck
n → Ck

m be the homomorphism corresponding to the principal ideal generated
by (cn−m, ..., cn−m). By this homomorphism we have h(0) = h(ci) = 0 for i = 1, ..., n −m
and h(cn−m+1) = c1, h(cn−m+2) = c2, ..., h(cn) = cm. Then it is easy to check that
hε = IdCk

m
, i. e. (Ck

m,∃) is a retract of (Ck
n,∃). ◭

Lemma 13. Let (A,∃) be m-generated subdirectly irreducible MMV (C)-algebra and (u] ⊂
A be principal monadic ideal generated by u ∈ A. Then (A,∃)/(u] is a retract of (A,∃).

Proof. The algebra (A,∃) is a subalgebra of (Ck
n,∃) for some n, k ∈ ω and n ≤ m

(Lemma 11) and as an MV -algebra A is a subdirect product of copies of Cn, n ≤ m.
Then for some m ≤ n, we have u = (cm−n, ..., cm−n) ∈ Ck

n, since (cm−n, ..., cm−n) ∈ ∃A.
Let h be the homomorphism corresponding to the principal ideal (u]. So, we have a
homomorphism h : Ck

n → Ck
m such that h(0) = h(ci) = 0 for i = 1, ...,m − n and

h(cm−n+1) = c1, h(cm−n+2) = c2, ..., h(cm) = cn.
Define the embedding ε : Ck

n → Ck
m in the following way: ε(a1, ..., ak) = (ε(a1), ..., ε(ak)),

where ε(ci) = cm−n+i for i = 1, ...,m. Then it is easy to check that hε = IdA/9(u], i. e.
(A,∃)/(u] is a retract of (A,∃). ◭

Lemma 14. Let A ⊂
∏

i∈I Ai be m-generated MMV (C)-algebra which is subdirect product
of the family {Ai}∈I of the subdirectly irreducible algebras Ai (i ∈ I) and A′

i ⊂ A, which
is a retract of Ai for i ∈ I. Then subalgebra A′ = A ∩

∏

i∈I A
′

i is a retract of A.

Proof. Since A′

i is a retract of Ai, there exist homomorphisms εi : A′

i → Ai and
hi : Ai → A′

i such that hiεi = IdA′

i
. It is obvious that

∏

i∈I A
′

i is a retract of
∏

i∈I Ai.
Indeed, there exist homomorphisms h = (hi)i∈I :

∏

i∈I Ai →
∏

i∈I A
′

i and ε = (εi)i∈I :
∏

i∈I A
′

i →
∏

i∈I Ai such that hε = Id∏
i∈I

A′

i
. Then the restriction of the homomorphism

h on A, denoted by hA, and the restriction of the homomorphism ε on A′, denoted by εA,
give hAεA′ = IdA′ . ◭

Proposition 3. [18]. m-generated monadic Boolean algebra (B,∃) is projective in the
variety of monadic Boolean algebras if and only if (B,∃) ∼= (2,∃) × (B′,∃) for some m-
generated monadic Boolean algebra (B′,∃).

Lemma 15. The Boolean envelope (B(m),∃) of the algebra FMMV(C)(m), where B(m) =
{2x2 : x ∈ FMMV(C)(m)}, is a retract of the algebra FMMV(C)(m). In other words, the
m-generated monadic Boolean algebra (B(m),∃) is a projective algebra in MMV(C).

Proof. Firstly we show that (2k,∃) is a retract of Dk. Recall that (2k,∃) is a homomor-
phic image by maximal monadic filter. Denote this homomorphism by h : DK → (2k,∃).
Note that the maximal monadic filter is generated by the set {x ∈ ∃Dk : 2x = 1}. On
the other hand, the Boolean envelope (B(Dk),∃), where B(Dk) = {2x2 : x ∈ Dk}, is a
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subalgebra of Dk, which is isomorphic to (2k,∃). Denote by ε : (B(Dk),∃) → Dk this
embedding. It is obvious that hε = IdB(Dk). ◭

Corollary 2. (2k1 ,∃) × ...× (2kn ,∃) is a retract of Dk1 × ...×Dkn .

Proof. Let A1, A2 be any algebras and, respectively, B1, B2 be retracts of them, i. e.
we have homomorphisms hi : Ai → Bi and εi : Bi → Ai such that hiεi = IdBi

(i = 1, 2).
Then B1 × B2 is a retract of A1 × A2. Indeed, h = (h1, h2n) : A1 × A2 → B1 × B2 and
ε = (ε1, ε2) are homomorphisms such that hε = IdB1×B2

. From here we get the validity
of Corollary. ◭

Lemma 16. For any k ∈ {1, ..., 22
m

− 1} there exists principal monadic filter [u) of m-

generated free MMV (C)-algebra FMMV(C)(m) (=
∏22

m

−1
k=1 Dk) such that πk(FMMV(C)(m))

∼= FMMV(C)(m)/[u), where πk : FMMV(C)(m) → Dk is a projection on k-th component
Dk and u ∈ FMMV(C)(m).

Proof. Let u = (01, ..., 0k−1, 1k, 0k+1, ..., 02
2
m

−1) ∈ FMMV(C)(m), where 1k is the top

element of Dk, 0i is the bottom element of Di. Note that (01, ..., 0k−1, 1k, 0k+1, ..., 02
2
m

−1)
is Boolean element that belongs to FMMV(C)(m). Then [u) will be a monadic filter such
that FMMV(C)(m)/[u) ∼= Dk. So lemma is proved. ◭

Lemma 17. The algebra D1 × Dk1 × ... ×Dkn is a projective MMV (C)-algebra, where
1 < ki ≤ 22

m

− 1, 1 ≤ i ≤ n and D1 is m-generated subdirectly irreducible perfect
MMV (C)-algebra.

Proof. Let π1k1...kn : FMMV(C)(m) → D1 × Dk1 × ... × Dkn be a projection onto

D1×Dk1× ...×Dkn . Let {r1, ..., rp} = {1, ..., 22
m

−1}−{1, k1, ..., kn}. So, FMMV(C)(m) =
D1×

∏n
i=1Dki×

∏p
i=1Dri . Then D1×

∏n
i=1Dki×(2,∃) is a subalgebra of D1×

∏n
i=1Dki ×

∏p
i=1Dri . Observe that (D,∃), where D = {(x, 1) : x ∈ ¬RadD1} ∪ {(x, 0) : x ∈ RadD1},

is a subalgebra of D1×(2,∃), which is isomorphic to D1. So, D1×
∏n

i=1 Dki is a subalgebra
of D1 ×

∏n
i=1Dki × (2,∃). Then there exists the embedding ε : D1 ×Dk1 × ... ×Dkn →

D1×
∏n

i=1Dki ×
∏p

i=1 Dri . Now, it is easy to check that π1k1...knε = IdD1×Dk1
×...×Dkn

. So
lemma is proved. ◭

As in the variety MV(C) of MV (C)-algebras we have

Theorem 6. m-generated subalgebra (A,∃) of FMMV(C)(m) is projective if and only if
(A,∃) is finitely presented and A ∼= A0 ×A1, where A0 is a perfect MV -algebra.

Proof. First of all note that if A is not represented as A0 ×A1, where A0 is a perfect
MV -algebra, then A can not be a subalgebra of FMMV(C)(m) and thereby it will not be
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a retract of FMMV(C)(m). Indeed, let A0 be a retract of FMMV(C)(m), i.e. let there exist
homomorphisms h1 : FMMV(C)(m) → A0 and ε1 : A0 → FMMV(C)(m) such that h1ε1 =
IdA0

. Since the variety MB of monadic Boolean algebras is a subvariety of MMV(C),
there exists a homomorphism f : FMMV(C)(m) → FMB(m). Let B(A0) = fε1(A0).
Denote the composition fε1 by k. So, for homomorphisms f : FMMV(C)(m) → FMB(m)
and kh1 : FMMV(C)(m) → B(A0) there exists homomorphism h2 : FMB(m) → B(A0)
such that h2f = kh1. For fε1 : A0 → FMMV(C)(m) and k : A0 → B(A) there exists a
homomorphism ε2 : B(A0) → FMB(m) such that fε1 = ε2k. From h2f = kh1 we have
h2fε1 = kh1ε1, and hence h2fε1 = k, since h1ε1 = IdA0

. Then h2ε2k = k, because
fε1 = ε2k. Since k is a surjective homomorphism, we have h2ε2 = IdB(A0). So, B(A0) is a
retract of FMB(m) and, hence, it is projective. According to Proposition 3, m-generated
monadic Boolean algebra (B,∃) is projective in the variety of monadic Boolean algebras
if and only if (B,∃) ∼= (2,∃) × (B′,∃) for some m-generated monadic Boolean algebra
(B′,∃). But (2,∃) is a homomorphic image of perfect monadic MV (C)-algebra. Note also
that any m-generated projective MMV (C)-algebra is finitely presented.

Now suppose that (A,∃) is finitely presented and A ∼= A0 ×A1, where A0 is a perfect
MV -algebra. Then (A,∃) is a homomorphic image of FMMV(C)(m) by some principal
monadic filter [u) for some u ∈ FMMV(C)(m).

According to Theorem 4, free algebra FMMV(C)(m) is isomorphic to the finite product

of monadic MV (C)-algebras Dk (1 ≤ k ≤ 22
m

− 1) the homomorphic image by maximal
monadic filter of which is isomorphic to the subdirectly irreducible monadic Boolean alge-
bra (2k,∃). Then (A,∃) is a homomorphic image of D1×Dk1×...×Dkn which is projective
(Lemma 17), where D1 is a perfect MMV (C)-algebra. So, there exists principal monadic
filter [u′) of FMMV(C)(m) such that FMMV(C)(m)/[u′) ∼= D1×Dk1× ...×Dkn . Then there
exists principal monadic filter [uA) = [π1k1...kn(u′)) of the algebra D1 × Dk1 × ... × Dkn

such that D1 × Dk1 × ... × Dkn/[π1k1...kn(u′)) ∼= A, where π1k1...kn : FMMV(C)(m) →
D1 × Dk1 × ... × Dkn is a projection of FMMV(C)(m) onto D1 × Dk1 × ... × Dkn . Let
u1 = π1(uA), uki = πki(uA) be projections of the element uA on corresponding com-
ponents D1,Dk1 , ...,Dkn , respectively. Then D1/[u1), Dki/[uki) are retracts of D1, Dki

(i = 1, ..., n), respectively (Lemma 13). Then D1/[u1) ×
∏n

i=1Dki/[uki) is a retract of
D1 ×

∏n
i=1Dki . Therefore A is projective (Lemmas 13, 16, 17). ◭

6. Projective formulas

Let us denote by Pm a fixed set x1, ..., xm of propositional variables and by Φm the
set of all propositional formulas in LP with variables in Pm. Note that the m-generated
free MV (C)-algebra FMV(C)(m) is isomorphic to Φm/ ≡, where α ≡ β if and only if
⊢ (α ↔ β) and α ↔ β = (α → β)∧ (β → α). Subsequently we do not distinguish between
the formulas and their equivalence classes. Hence we simply write Φm for FMV(C)(m),
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and Pm plays the role of the set of free generators. Since Φm is a lattice, we have an order
≤ on Φm . It follows from the definition of → that for all α, β ∈ Φm , α ≤ β iff ⊢ (α → β).

Let α be a formula of the logic LP and consider a substitution σ : Pm → Φm and
extend it to all of Φm by σ(α(x1, ..., xm)) = α(σ(x1), ..., σ(xm)). We can consider this
substitution as an endomorphism σ : Φm → Φm of the free algebra Φm.

Definition 1. A formula α ∈ Φm is called projective if there exists a substitution σ :
Pm → Φm such that ⊢ σ(α) and α ⊢ β ↔ σ(β), for all β ∈ Φm.

Note that the notion of projective formula was introduced for intuitionistic logic in
[10].

Observe that we can rewrite any equation P (x1, ..., xm) = Q(x1, ..., xm) in the variety
MV(C) into an equivalent one P (x1, ..., xm) ↔ Q(x1, ..., xm) = 1. So, for MV(C) we
can replace n equations by one:

n
∧

i=1

Pi(x1, ..., xm) ↔ Qi(x1, ..., xm) = 1.

Now we are ready to show a close connection between projective formulas and projec-
tive subalgebras of the free algebra Φm.

Theorem 7. Let A be an m-generated projective subalgebra of the free algebra Φm. Then
there exists a projective formula α of m variables, such that A is isomorphic to Φm/[α),
where [α) is the principal filter generated by α ∈ Φm.

Proof. Suppose A is an m-generated projective subalgebra of Φm with generators
a1, ..., am. Then A is a retract of Φm, and there exist homomorphisms ε : A → Φm,
h : Φm → A such that hε = IdA, where ε(x) = x for every x ∈ A ⊂ Φm. Observe that εh
is an endomorphism of Φm. We will show now that α =

∧m
j=1(xj ↔ εh(xj)) is a projective

formula, namely, that ⊢ εh(α) and α ⊢ β ↔ εh(β), for all β ∈ Φm.
Indeed, εh(

∧m
j=1(pj ↔ εh(pj))) =

∧m
j=1(εh(xj) ↔ εhεh(xj)), and since hε = IdA,

we have εh(
∧m

j=1(xj ↔ εh(xj))) =
∧m

j=1(εh(xj) ↔ εh(xj)). Thus ⊢ εh(α). Further,
for any β ∈ Φm, εh(β(x1, ..., xm)) = β(εh(x1), ..., εh(xm)), and since α ⊢ xj ↔ εh(xj),
j = 1, ...,m, we have α ⊢ β ↔ εh(β).

Since A is an m-generated projective MV (C)-algebra, according to the Proposition 2,
there exist m polynomials P1(x1, ..., xm), ..., Pm(x1, ..., xm) such that

Pi(x1, ..., xm) = ε(ai) = εh(xi)

and
Pi(P1(x1, ..., xm), ..., Pm(x1, ..., xm)) = Pi(x1, ..., xm), i = 1, ...,m.

Observe that h(xi) = ai. Since the m-generated projective MV -algebra A is finitely
presented by the equation

∧m
j=1(xj ↔ εh(xj)) = 1, we have A ∼= Φm/[α). ◭
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Theorem 8. If α is a projective formula of m variables, then Φm/[α) is a projective
algebra which is isomorphic to a projective subalgebra of Φm.

Proof. Suppose that α is a projective formula of m variables. Then there exists a
substitution σ : Pm → Φm such that ⊢ σ(α) and α ⊢ β ↔ σ(β), for all β ∈ Φm. Since σ
is an endomorphism of Φm, σ(Φm) is a subalgebra of Φm. Now we will show that σ(Φm)
is a retract of Φm, i.e. σ2 = σ. Indeed, since α is a projective formula, σ(α) = 1Φm

, and
α ≤ β ↔ σ(β) for all β ∈ Φm. But then σ(α) ≤ σ(β) ↔ σ2(β), σ(β) ↔ σ2(β) = 1Φm

,
σ(β) = σ2(β), and σ2 = σ. Hence σ(Φm) is a retract of Φm. So, σ(Φm) is isomorphic to
Φm/[α). ◭

Thus we have the following correspondence between projective formulas and pro-
jective subalgebras of Φm. To each m-generated projective subalgebra of m-generated
free MV (C)-algebra there corresponds an m-variable projective formula and to two non-
isomorphic m-generated projective subalgebra of m-generated free MV (C)-algebra there
correspond non-equivalent m-variable projective formulas. And to two non-equivalent
m-variable projective formulas there correspond two different m-generated projective sub-
algebras of m-generated free MV (C)-algebra (but they can be isomorphic).

Therefore we arrive at the following

Corollary 3. There exists a one-to-one correspondence between projective formulas with
m variables and m-generated projective subalgebras of Φm.

7. Unification problem

Let E be an equational theory. The E-unification problem is: given two terms s, t
(built from function symbols and variables), to find a unifier for them, that is, a uniform
replacement of the variables occurring in s and t by other terms that makes s and t equal
by modulo E. For detailed information on unification problem we refer to [10, 11].

Let us be more precise. Let Φ be a set of functional symbols and V be a set of variables.
Let TV (Φ) be the term algebra built from Φ and V , and TV (Φm) be the term algebra of
m-variable terms. Let E be a set of equations p(x) = q(x), where p(x), q(x) ∈ TV (Φm).

Let V be the variety of algebras over Φ axiomatized by the equations in E.
A unification problem modulo E is a finite set of pairs

E = {(sj , tj) : sj, tj ∈ TV (Φm), j ∈ J}

for some finite set J . A solution to (or a unifier for) E is a substitution (or an endomor-
phism of the term algebra TV (Φm)) σ (which is extension of the map s : Vm → TV (Φ),
where Vm (= {x1, ..., xm}) is the set of m variables) such that the equality σ(sj) = σ(tj)
holds in every algebra of the variety V. The problem E is solvable (or unifiable) if it admits
at least one unifier.
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Let (X,�) be a quasi-ordered set (i.e. a reflexive and transitive relation). A µ-set
[11] for (X,�) is a subset M ⊆ X such that: (1) every x ∈ X is less or equal to some
m ∈ M ; (2) all elements of M are mutually �-incomparable. There might be no µ-set for
(X,�) (in this case we say that (X,�) has type 0) or there might be many of them, due
to the lack of antisymmetry. However, all µ-sets for (X,�), if any, must have the same
cardinality. We say that (X,�) has type 1, ω,∞ if and only if it has a µ-set of cardinality
1, of finite (greater than 1) cardinality or of infinite cardinality, respectively.

Substitutions are compared by instantiation in the following way: we say that σ :
TV (Φm) → TV (Φm) is more general than τ : TV (Φm) → TV (Φm) (written as τ � σ) if and
only if there is a substitution η : TV (Φm) → TV (Φm) such that for all x ∈ Vm we have
E ⊢ η(σ(x)) = τ(x). The relation � is quasi-order.

Let UE(E) be the set of unifiers for the unification problem E . Then (UE(E),�) is a
quasi-ordered set.

We say that an equational theory E has:

1. Unification type 1 if and only if for every solvable unification problem E , UE(E) has
type 1;

2. Unification type ω if and only if for every solvable unification problem E , UE(E) has
type ω;

3. Unification type ∞ if and only if for every solvable unification problem E , UE(E) has
type 1 or ω or ∞ - and there is a solvable unification problem E such that UE(E)
has type ∞;

4. Unification type nullary, if none of the preceding cases applies.

An algebra A is called finitely presented if A is finitely generated, with the gen-
erators a1, ..., am ∈ A, and there exist a finite number of equations P1(x1, ..., xm) =
Q1(x1, ..., xm), ..., Pn(x1, ..., xm) = Qn(x1, ..., xm) holding in A on the generators a1, ..., am ∈
A such that if there exists an m-generated algebra B, with generators b1, ..., bm ∈ B, such
that the equations P1(x1, ..., xm) = Q1(x1, ..., xm), ..., Pn(x1, ..., xm) = Qn(x1, ..., xm) hold
in B on the generators b1, ..., bm ∈ B, then there exists a homomorphism h : A → B
sending ai to bi.

Now we will give characterization of finitely presented MMV (C)-algebras.
Recall that filter F of an algebra (A,∃) ∈ MMV(C) is called a monadic filter (which

is dual to an ideal, see [19]) if for every a ∈ A we have a ∈ F ⇒ ∀a ∈ F .
For any set X ⊆ A, let [X) denote the monadic filter generated by X. It is easy to

check that [X) = {a ∈ A : a ≥ ∀x1 ⊙ . . .⊙ ∀xn : x1, . . . , xn ∈ X}.

Theorem 9. Let p be an m-ary term. Then there is a principal monadic filter F such
that FMMV(C)(m, p = 1) ∼= FMMV(C)(m)/F .
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Proof. Any MMV(C)-equation p = q is equivalent to an equation of the form r = 1.
Indeed, p = q if and only if (p∗ ⊕ q) ∧ (q∗ ⊕ p) = 1. If we have a finite set of equations
{ri = 1 : i = 1, . . . , n}, then we can represent this set as one equation r1 ∧ . . . ∧ rn = 1.

Now let F = {x : x ∈ FMMV(C)(m) and x ≥ ∀pn(g1, ..., gm), n ∈ ω}, where g1, . . . , gm
are free generators of FMMV(C)(m). Then g1/F, ..., gm/F are generators of FMMV(C)(m)/F .
Let πF : FMMV(C)(m) → FMMV(C)(m)/F be the natural homomorphism. Let also A be
an MMV (C)-algebra generated by {a1, . . . , am}, p(a1, ..., am) = 1 and f : FMMV(C)(m) →
A be a homomorphism such that f(gi) = ai, i = 1, . . . ,m. Then ∀pn(g1, . . . , gm) ∈
f−1(1), n ∈ ω and therefore F ⊆ f−1(1). By the homomorphism theorem, there is a
homomorphism f ′ : FMMV(C)(m)/F → A such that πF f

′ = f . It should be clear that f ′

is the needed homomorphism extending the map gi/F 7→ ai. ◭

From this theorem it follows that if an algebra A is finitely presented, then there
exists a principal monadic filter F of the free algebra FMMV(C)(m) such that A ∼=
FMMV(C)(m)/F .

Theorem 10. Let u ∈ FMMV(C)(m) be such that ∀un 6= 0 for any n ∈ ω. Then F =
{x : x ≥ ∀un, n ∈ ω} is a proper principal monadic filter in FMMV(C)(m) such that
FMMV(C)(m)/F ∼= FMMV(C)(m, p = 1) for some m-ary term p.

Proof. Let F be a monadic filter satisfying the condition of the theorem. Then u =
p(g1, . . . , gm) for some term p, where g1, . . . , gm are free generators of FMMV(C)(m). We
have that FMMV(C)(m)/F is generated by g1/F, . . . , gm/F , and that p(g1/F, . . . , gm/F ) =
p(g1, . . . , gm)/F = 1F (m)/F . The rest can be verified as in the proof of Theorem 9. ◭

Combining the two theorems we arrive at

Theorem 11. An m-generated MMV (C)-algebra A is finitely presented if and only if
there exists a principal monadic filter F of FMMV(C)(m) such that

FMMV(C)(m)/F ∼= A

.

Following Ghilardi [10], who has introduced the relevant definitions for E-unification
from an algebraic point of view, by an algebraic unification problem we mean a finitely
presented algebra A of V. In this context an E-unification problem is simply a finitely
presented algebra A, and a solution for it (also called a unifier for A) is a pair given by a
projective algebra P and a homomorphism u : A → P . The set of unifiers for A is denoted
by UE(A). A is said to be unifiable or solvable if and only if UE(A) is not empty. Given
another algebraic unifier w : A → Q, we say that u is more general than w, written w � u,
if there is a homomorphism g : P → Q such that w = gu.

The set of all algebraic unifiers UE(A) of a finitely presented algebra A forms a quasi-
ordered set with the quasi-ordering �.
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The algebraic unification type of an algebraically unifiable finitely presented algebra A
in the variety V is now defined exactly as in the symbolic case, using the quasi-ordering
set (UE(A),�).

Theorem 12. The unification type of the equational class MMV(C) is 1, i.e. unitary.

Proof. According to Theorem 6, finitely generated projective MMV (C)-algebras are
exactly those of the kind D0 × D, where D0 is perfect MV -algebra. We show that
MMV (C)-algebra A is unifiable if and only if it is projective (thus identity morphisms
act as mgu’s in the algebraic setting). Let A be unifiable. Then there is a homomorphism
from A into an algebra of the kind D0 × D, hence also a homomorphism h : A → D0.
So, A is a retract of A ×D0 (which is projective by the above remark). Indeed, we have
homomorphisms ε : A → D0 and π1 : A×D0 → A, where ε(a) = (a, h(a)), π1 is a projec-
tion on the first component and π1ε = IdA. Since A is a retract of a projective algebra, it
follows that A is also projective. ◭

References

[1] L.P. Belluce, Further results on infinite valued predicate logic, J. Symbolic Logic, 29,
1964, 69–78.

[2] H. Bass, Finite monadic algebras, Proceedings of the American Mathematical Society,
9, 1958, 258–268.

[3] L.P. Belluce, C.C. Chang, A weak completeness theorem for infinite valued 2rst-order
logic, J. Symbolic Logic, 28, 1963, 43–50.

[4] L.P. Belluce, A. Di Nola, B. Gerla, Perfect MV -algebras and their Logic, Applied
Categorical Structures, 15(1-2, 2007, 135–151.

[5] L.P. Belluce, R. Grigolia, A. Lettieri, Representations of monadic MV - algebras,
Studia Logica, 81, 2005, 125–144.

[6] C.C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc., 88,
1958, 467–490.

[7] A. Di Nola, R. Grigolia, On monadic MV -algebras, APAL, 128(1-3), 2004, 125–139.

[8] A. Di Nola, R. Grigolia, Gödel spaces and perfect MV -algebras, Journal of Applied
Logic, 13(3), 2015, 270–284.

[9] A. Di Nola, A. Lettieri, Perfect MV -algebras are categorically equivalent to Abelian
ℓ-Groups, Studia Logica, 53, 1994, 417–432.



60 A. Di Nola, R. Grigolia, R. Liparteliani

[10] S. Ghilardi, Unification through projectivity, J. Logic Comput., 7(6),1997, 733–752.

[11] S. Ghilardi, Unification, finite duality and projectivityin varieties of Heyting algebras,
APAL, 127, 2004, 99–115.

[12] G. Georgescu, A. Iurgulescu, I. Leustean, Monadic and closure MV -algebras, Multi.
Val. Logic, 3, 1998, 235–257.

[13] R. Grigolia, Free algebras of non-classical logics, ”Metsniereba”, Tbilisi,1987, 110
pages. (in Russian)

[14] R. Grigolia, Finitely generated free S4.3-algebras, Studies on non-classical logics and
formal systems, Nauka, Moscow, 1983, 281-286. (in Russian)

[15] L.S. Hay, An axiomatization of the infinitely many-valued calculus, M.S. Thesis, Cor-
nell University, 1958.

[16] J.  Lukasiewicz, A. Tarski, Unntersuchungen Ouber den Aussagenkalkul, Comptes
Rendus des seances de la Societe des Sciences et des Lettres de Varsovie, 23(3),
1930, 30–50.

[17] R. McKenzie, An algebraic version of categorical equivalence for varieties and more
general algebraic categories, Logic and Algebra, edited by P. Aglianò and A. Ursini,
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