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Factorization in the Space of Henstock-Kurzweil Inte-

grable Functions

M.G. Morales, J.H. Arredondo∗

Abstract. In this work, we extend the factorization theorem of Rudin and Cohen to HK(R),
the space of Henstock-Kurzweil integrable functions. This implies a factorization for the isometric
spaces AC and BC . We also study in this context the Banach algebra of functions HK(R)∩BV (R),
which is also a dense subspace of L2(R). In some sense this subspace is analogous to L1(R)∩L2(R).
However, while L1(R)∩L2(R) factorizes as L1(R)∩L2(R)∗L1(R), via the convolution operation *,
it is shown in the paper that HK(R)∩BV (R)∗L1(R) is a Banach subalgebra of HK(R)∩BV (R).
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1. Introduction

For appropriate functions f, g : R → R, the convolution is defined as

f ∗ g(t) = g ∗ f(t) :=

∫

R

f(t− y)g(y)dy. (1)

Thus, f ∗ g is a superposition of translates of f taken with the weights g(y)dy, and we
can expect that f ∗ g inherits properties of f as well as of g, [9]. For example, the space
of Lebesgue integrable functions L1(R), is a Banach algebra with the convolution (1). In
fact, W. Rudin [18] proved that

L1(G) ∗ L1(G) = L1(G),

for G = Rn and any locally compact abelian group [19]. In [5] and [8], the results of
Rudin were generalized to Banach algebras with a bounded approximate unit. Moreover,
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the result of Cohen [5] states that if A is a Banach algebra with product ◦ and bounded
approximate unit, then A ◦ A = A. This type of results are important because they give
different representations of the algebra. The subject was later developed in a more general
setting in [8].

On the other hand, integration theory has been developed. For example, we can con-

sider the Banach space of Henstock-Kurzweil integrable functions on R, ĤK(R), which
strictly contains L1(R). Recently this integral has been used in order to generalize the
classical Fourier transform [12].

The convolution operator has been studied on several spaces, for example, this op-
erator is well defined for ultradistributions. This subject has been developed in recent
years, where surjectivity characterizations and existence of right inverses for convolution
operations are given, among others. See [6] and the references therein.

In this paper, the convolution of functions is extended to obtain a factorization theorem
for HK(R) and therefore for the related spaces AC and BC defined in [16]. Also, we define
and analyse some Banach algebras contained in HK(R) and embedded continuously in
L2(R). In particular, we show that the subspace HK(R) ∩ BV (R) ∗ L1(R) is a Banach
subalgebra of HK(R) ∩ BV (R), which is also a dense subspace of L2(R). We recall that
this subspace of L2(R) is, in some sense, the analogue of the space L1(R) ∩ L2(R) for the
classical Fourier transform, in the context of the HK-Fourier Transform. See [10], [11] and
Definition 2.10 in [12].

2. Preliminaries

We follow the notation from [15] in order to introduce basic definitions of the Henstock-
Kurzweil integral theory. The Henstock-Kurzweil integrable real valued functions on I will
be denoted as HK(I), where I := [a, b] is any interval in R = [−∞,∞]. The Alexiewicz
seminorm on HK(I) is defined in [15] by

||f ||A := sup
x∈I

∣∣∣∣
∫ x

a

f

∣∣∣∣ .

It is equivalent to

||f ||′A := sup
s,t∈I,−∞<s<t<∞

∣∣∣∣
∫ t

s

f

∣∣∣∣ .

Furthermore

||f ||A ≤ ||f ||′A ≤ 2||f ||A. (2)
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We remark that HK(I) is not a Banach space, see [17].

The quotient spaceHK(I)/W(I) will be denoted byHK(I). HereW(I) is the subspace
of HK(I) for which the Alexiewicz seminorm vanishes. The completion of the Henstock-

Kurzweil space in the Alexiewicz norm is denoted by ĤK(R), [11], [17].
Let g be a real valued function over R. It is said that g is a bounded variation function

over [a, b] ⊂ R if and only if

Var(g, [a, b]) := sup
P

n∑

i=1

|g(ti)− g(tt−i)| < ∞,

where the supreme is taken over all possible partitions on [a, b]. It is said that g is a
bounded variation function over R if and only if

Var(g,R) := lim
t→∞,s→−∞

Var(g, [s, t])

exists in R. We will denote the set of bounded variation functions over an interval I as
BV (I).

Note that if g ∈ BV (R), then limx→±∞ g(x) ∈ R. Thus, we can extend g on R :=
[−∞,∞] as

g(±∞) := lim
x→±∞

g(x).

Moreover, Var(g,R) = Var(g,R). Thereby, we can use the same symbol BV (R) for the
bounded variation functions over R.

BV0(R) will denote the bounded variation functions over R having limits equal to zero
at ±∞. It is easy to prove that HK(R) ∩ BV (R) ⊂ BV0(R), see [14]. We consider the
real vector space

B := HK(R) ∩BV (R) = HK(R) ∩BV0(R),

with the norm ||f ||B := ||f ||A + ||f ||BV , where ||f ||BV := Var(f,R).

For 1 ≤ p < ∞, the Banach space Lp(R) over the field R with norm ‖ · ‖p consists of
equivalence classes of measurable real valued functions over R such that |f(x)|p is Lebesgue
integrable:

‖f‖p :=

(∫

R

|f(x)|pdx

) 1

p

< ∞.

For a measurable function f : R → R the uniform norm is defined to be

‖f‖∞ := sup
x∈R

|f(x)|.

We mention that if a continuous function f on R has limits at ±∞, then f is uniformly
continuous.
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Theorem 1. (B, || · ||B) is a real Banach space. Moreover, B is continuously embedded
in L2(R), HK(R) and BV (R).

Proof. Let (fn) be a Cauchy sequence in B. Then it is also a Cauchy sequence in the
norm || · ||BV . Given x ∈ R, for the partition P = {a, x, b} one gets that

|(fn − fm)(x)− (fn − fm)(a)| + |(fn − fm)(b)− (fn − fm)(x)|

≤ Var(fn − fm, [a, b])

≤ Var(fn − fm,R). (3)

Taking a → −∞ and b → ∞ in the expression (3) we obtain

lim sup
a→−∞,b→∞

|(fn−fm)(x)−(fn−fm)(a)|+|(fn−fm)(b)−(fn−fm)(x))| ≤ Var(fn−fm,R) ≤ ǫ.

Thus, for n and m great enough,

2|(fn − fm)(x)| ≤ ǫ.

This means that (fn(x)) is a Cauchy sequence in R. We define

f(x) := lim
n→∞

fn(x).

To prove that f ∈ BV (R), let P = {[xi−1, xi]}
m
i=1 be a partition of an interval [a, b]. One

obtains

n∑

k=1

|(fn − f)(xk)− (fn − f)(xk−1)| =

n∑

k=1

lim
m→∞

|(fn − fm)(xk)− (fn − fm)(xk−1)|

= lim
m→∞

n∑

k=1

|(fn − fm)(xk)− (fn − fm)(xk−1)|

≤ lim sup
m→∞

Var(fn − fm, [a, b])

≤ lim sup
m→∞

Var(fn − fm,R)

≤ ǫ.

This proves that fn − f ∈ BV (R), yielding f ∈ BV (R). Now we show that f ∈ HK(R).

Since ||fn− fm||A < ǫ, then there exits f̃ in the completion of HK(R), ĤK(R), such that

∫ t

s

fn →

∫ t

s

f̃ ,
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for all s, t ∈ R. Moreover, (fn) converges pointwise to f , so that by the Lebesgue Domi-
nated Convergence Theorem we have

∫ t

s

fn →

∫ t

s

f.

Thus, ∫ t

s

f̃ := lim
n→∞

∫ t

s

fn =

∫ t

s

f,

for all s, t ∈ R , see [17]. Therefore, f ∈ HK(R). So, B is a Banach space.

We prove now that B is continuously embedded in L2(R). For f ∈ B and by [2,
Multiplier Theorem] we have

||f ||22 =

∫ ∞

−∞
(f(x))2dx

≤ |Ff(x)||∞−∞ +

∣∣∣∣
∫ ∞

−∞
Fdf

∣∣∣∣
≤ ||f ||A||f ||BV

≤
1

2
(||f ||2A + ||f ||2BV )

≤
1

2
(||f ||A + ||f ||BV )

2,

where F (x) =
∫ x

−∞ f(t)dt. The other two embeddings follow directly.◭

Remark 1. B is not compactly embedded in (L2(R), || · ||2), neither in (HK(R), || · ||A),
nor in (BV (R), || · ||BV ). It is easy to see that the sequence fn(x) := χ[n,n+1](x) for n ∈ N

is in B, but does not have Cauchy subsequences in those spaces.

3. B as a Banach L
1(R)-module

Definition 1. A topological algebra over the field K of real or complex numbers is a
topological vector space A over K provided with an associative multiplication continuous
with respect to both variables (i.e. jointly continuous).

Definition 2. A Banach algebra is a topological algebra which, regarded as a topological
vector space, is a Banach space.

These definitions can be seen in [20]. Now we will show that B is a Banach algebra
according to these definitions.
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Theorem 2. B is a commutative Banach algebra with respect to the usual product of
functions.

Proof. Since B is a Banach space, it is a topological vector space. We will prove that
the usual product of functions of B is a function in B, and that the map

B ×B ∋ (f, g) → fg ∈ B

is continuous.
When f, g ∈ B, by [2, Multiplier Theorem] we obtain ||fg||A ≤ ||f ||B ||g||B . Let us

prove that fg ∈ BV (R). As f, g ∈ B ⊂ BV (R), then f and g are bounded functions.
Moreover, ||f ||∞ ≤ ||f ||BV , implying

Var(fg, [a, b]) ≤ ||f ||∞||g||BV + ||g||∞||f ||BV

≤ 2||f ||B ||g||B .

This results in
||fg||B ≤ C||f ||B||g||B ,

for some positive constant C. However, by Corollary 2.5 in [20], (B, ·, || · ||B) can be con-
sidered a Banach algebra in the usual sense [3].◭

We recall that L1(R) is a real Banach algebra with respect to the convolution operation
(1), see [4].

Note that f ∗ g(x) given by (1) is well defined as a Lebesgue integral for f ∈ B and
g ∈ L1(R).

The concept of Banach A−module is defined in [8, Definition 32.14].

Theorem 3. The space B is a Banach L1(R)−module.

Proof. Let (f, g) ∈ B×L1(R). For a partition P = {[xi−1, xi]}
n
i=1 of a bounded interval

[a, b], we calculate

n∑

i=1

∣∣∣∣
∫

R

(
f(xi − y)− f(xi−1 − y)

)
g(y)dy

∣∣∣∣ ≤

n∑

i=1

∫

R

|f(xi − y)− f(xi−1 − y)||g(y)|dy

≤

∫ ∞

−∞
Var(f,R)|g(y)|dy

= ||f ||BV ||g||1.

Therefore
‖f ∗ g‖BV := Var(f ∗ g,R) ≤ ||f ||BV ||g||1. (4)
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Let us prove that f ∗ g ∈ HK(R). For s < t arbitrary real numbers

∫ t

s

dx

∫ ∞

−∞
f(x− y)g(y)dy = lim

n→∞

∫ t

s

∫ n

−n

f(x− y)g(y)dydx, (5)

where we apply the Lebesgue Dominated Convergence Theorem, due to

∣∣∣∣
∫ n

−n

f(x− y)g(y)dydx

∣∣∣∣ ≤ ‖f‖∞||g||1 ≤ ‖f‖BV ‖g‖1.

From equation (5) and Fubini’s Theorem we obtain

∣∣∣∣
∫ t

s

f ∗ g(x)dx

∣∣∣∣ =

∣∣∣∣ limn→∞

∫ n

−n

∫ t

s

f(x− y)g(y)dxdy

∣∣∣∣

=

∣∣∣∣ limn→∞

∫ n

−n

[F (t− y)− F (s − y)]g(y)dy

∣∣∣∣

≤ lim
n→∞

∫ n

−n

|g(y)|dy2||F ||∞

= 2||g||1||f ||A,

where F (x) =
∫ x

−∞ f. Thus,

‖f ∗ g‖′A := sup
[s,t]⊂R

∣∣∣∣
∫ t

s

f ∗ g(x)dx

∣∣∣∣ ≤ 2||g||1||f ||A. (6)

The inequalities (4) and (6) and the equivalence of the norms (2) imply that

||f ∗ g||B = ||f ∗ g||BV + ||f ∗ g||A ≤ ||f ||BV ||g||1 + ||f ∗ g||′A ≤ 2||f ||B ||g||1. (7)

The properties i) f ∗ (g + h) = f ∗ g + f ∗ h, ii) (f + f̃) ∗ g = f ∗ g + f̃ ∗ g, iii) f ∗ (αg) =
α(f ∗ g) = (αf) ∗ g and iv) f ∗ (g ∗ h) = f ∗ (h ∗ g), for g, h ∈ L1(R), f, f̃ ∈ B are easy to
prove. On the other hand, since B is a Banach space, B is a Banach L1(R)−module.◭

4. Factorization

Definition 3. A bounded approximate unit in a Banach algebra (A, ‖ · ‖) is a sequence or
net {eα} such that ‖eα‖ < C for some positive constant C and

lim
α

‖a− a eα‖ = lim
α

‖a− eα a‖ = 0,

for each a ∈ A.
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W. Rudin, [18] used properties of the Fourier transform in order to show that

L1(R) ∗ L1(R) = L1(R).

The Fourier transforms of functions in B share some properties of functions in L1(R) ∩
L2(R) see [10], [11], [12]. On the other hand, the space L1(R) ∩ L2(R) can be factored as
L1(R) ∩L2(R) ∗L1(R), see [9, Theorem 1.3.2], whereas B ∗ L1(R) is a proper subset of B
as we show below.

We denote the space of real valued continuous functions over R vanishing at infinity
by C0(R).

Let A be a set of real valued functions on R for which the convolution operation with
elements of L1(R) is defined. Then A ∗ L1(R) denotes the set

{f ∗ g : f ∈ A, g ∈ L1(R)}.

Note that B is a dense subset in HK(R) with the Alexiewicz norm, because B contains
the linear combinations of characteristic functions of intervals which are dense in HK(R),
see [11, Lemma 2.1], [15, Theorem 7].

Definition 4. The convolution in ĤK(R)× L1(R) is defined by

ĤK(R)× L1(R) ∋ (f, g) 7→ f ∗ g := lim
n→∞

fn ∗ g,

where (fn) ⊂ B converges to f in ĤK(R).

Note that if (fn) ⊂ B is a Cauchy sequence, then F (x) = limn→∞

∫ x

−∞ fn exists and
in particular it is a uniformly continuous function on R, see [11], [17].

Proposition 4. ĤK(R) is a Banach L1(R)−module.

Proof. We show that the map

ĤK(R)× L1(R) ∋ (f, g) 7→ f ∗ g

has range in ĤK(R) and is continuous. Let us see first that (fn ∗ g) is a Cauchy sequence

in ĤK(R) for (fn) a Cauchy sequence converging to f . Relation (6) yields

||fn ∗ g − fm ∗ g||A ≤ ||(fn − fm) ∗ g||′A ≤ 2||g||1||fn − fm||A.

Therefore, f ∗ g := limn→∞ fn ∗ g ∈ ĤK(R). Furthermore,

||f ∗ g||A := lim
n→∞

||fn ∗ g||A ≤ lim sup
n→∞

2||g||1||fn||A = 2||g||1||f ||A.
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The other properties in order that ĤK(R) is a Banach L1(R)−module are easy to prove
[8, Definition 32.14].◭

The support of a function f is defined as supp(f) := {x, f(x) 6= 0}, the closure of the
set of points in R where f is non-zero. The space of real valued smooth functions with
compact support in R is denoted by C∞

c (R).
The Banach Module Factorization Theorem in [8, Theorem 32.22] says: “Let A be a

Banach algebra with a bounded approximate identity. If X is a Banach A−module (with
respect to the operation ◦), then A ◦X is a closed linear subspace of X”. In particular, if
A ◦X is dense in X, then A ◦X = X. So, we get the following result.

Corollary 1. ĤK(R) = ĤK(R) ∗ L1(R) = L1(R) ∗ ĤK(R).

Proof. It is easy to show that ĤK(R) ∗ L1(R) is dense in ĤK(R), because

L1(R) = L1(R) ∗ L1(R) ⊂ ĤK(R) ∗ L1(R) ⊂ ĤK(R).

In fact, for an arbitrary element f ∈ ĤK(R), and ε > 0, we take h ∈ HK(R) ∩ BV (R)
such that

‖h− f‖′A < ε/2.

Let j ∈ C∞
c (R) be a positive function with supp(j) ⊂ (−1, 1) and

∫ 1
−1 j(t)dt = 1. We

define for each positive number δ, the approximate of the unit in L1(R)

jδ(x) :=
1

δ
j(x/δ). (8)

Application of Fubini’s Theorem gives

‖h− h ∗ jδ‖
′
A = sup

s,t

∣∣∣∣
∫ 1

−1

(
H(t)−H(s)−H(t− δy) +H(s− δy)

)
j(y)dy

∣∣∣∣

≤ 2ε. (9)

Here

H(t) :=

∫ t

−∞
h(y)dy.

The inequality (9) follows by the uniform continuity of H on R. So, given ε > 0, there

exists δ > 0 small enough such that ||h − h ∗ jδ||
′
A ≤ 2ε. ĤK(R) ∗ L1(R) being closed,

previous relation means that it contains the dense subspace HK(R) ∩BV (R) of ĤK(R),
yielding the result.◭

Talvila showed some properties for the convolution in the context of the distributional
Denjoy integral, for example: AC ∗ L1(R) ⊂ AC , [Theorem 8a, [16]] where AC = {f ∈
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D′|f = F ′, F ∈ BC}, D
′ denotes the continuous linear functionals on the space of test

functions D = C∞
c (R), and

BC = {F : R → R|F is continuous on R, lim
x→−∞

F (x) = 0, lim
x→∞

F (x) ∈ R}

is a Banach space under the supremum norm. It was proved in [17] that AC (with Alex-

iewicz norm) is isomorphic to BC and in [13] it was shown that BC is isomorphic to ĤK(R).
When f ∈ L1(R), it follows that F (x) :=

∫ x

−∞ f(t)dt ∈ BC and f ∈ AC . Therefore, we
have the following result.

Corollary 2. BC ∗ L1(R) = BC and AC ∗ L1(R) = AC .

Proof. We give the proof for AC ∗ L1(R) = AC . The other equality is quite similar.
We consider Definition 5 from [16] about the convolution mapping ∗ : AC ×L1 → AC .

We use the same symbol ∗ for the mapping. This mapping satisfies the following properties:
For all f, f̃ ∈ AC , g, g̃ ∈ L1, and α ∈ R :

1. AC ∗ L1 ⊂ AC ,

2. (f ∗ g) ∗ g̃ = f ∗ (g ∗ g̃),

3. f ∗ (α g) = (α f) ∗ g = α(f ∗ g),

4. f ∗ (g + g̃) = f ∗ g + f ∗ g̃,

5. (f + f̃) ∗ g = f ∗ g + f̃ ∗ g,

6. ||f ∗ g||A ≤ ||f ||A||g||1,

Properties (1), (2) and (6) hold by [16, Theorem 8 (a)-(b)]. As the elements in AC

are linear functionals, it is easy to prove (3), (4) and (5). Therefore, AC is a Banach
L1(R)−module, see [8, Definition 32.14]. On the other hand,

L1(R) = L1(R) ∗ L1(R) ⊂ AC ∗ L1 ⊂ AC .

L1(R) is dense in AC , with Alexiewicz norm, [16, Proposition 7]. Then [8, The Banach
Module Factorization Theorem] implies the result.◭

Now we consider the same question about factorization for the Banach algebra B.
Note that L1(R) does not have inclusion relations with B, see for instance [11, corollary
3.3] and [1, example 1, p. 129]. Then the argument in Corollary 1 can not be used for B.
In fact, the answer to our question is negative.

Proposition 5. The L1(R)−module B can not be factored as B ∗ L1(R) .
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Proof. By Theorem 3 and [8, The Banach Module Factorization Theorem], B ∗ L1(R)
is a closed linear subspace of B. We will show that B can not be factored as B ∗ L1(R),
for which it is sufficient to prove that B ∗ L1(R) ⊂ C0(R).

Let f ∈ B and g ∈ L1(R). Since f is continuous except perhaps at countably many
points, we get

f(x+ rn − y)g(y) → f(x− y)g(y),

as rn → 0. If x − y is not a discontinuity point, it means almost everywhere. Since f is
bounded and g is L1-integrable, by the dominated convergence Theorem we get

f ∗ g(x+ rn) → f ∗ g(x), rn → 0.

This implies continuity of f ∗ g, so it belongs to B ∩ C(R) ⊂ C0(R).◭

B∗L1(R) being a subspace strictly contained in B, it naturally brings us to the problem
of characterizing the subspace.

We take C1(R) as the Banach space of real valued functions f with continuous deriva-
tive such that ‖f‖∞ + ‖f ′‖∞ < ∞.

We study the space B′ = B ∩ C1(R), with given norm defined as

||f ||B′ := ||f ||B + ||f ′||∞.

Proposition 6. (B′, || · ||B′) is a Banach algebra strictly contained in B.

Proof. Due to equivalence of the norm ||f ||B′ with the norm ||f ||∞ + ||f ′||∞ + ||f ||B ,
then the result holds by standard arguments.◭

We have the following characterization of B′ ∗ L1(R). It follows in particular that
B′ ∗ L1(R) is a proper subset of B′. The characterization is in terms of C0(R).

Theorem 7.
B′ ∗ L1(R) = {f ∈ C1(R) ∩B : f ′ ∈ C0(R) }.

Proof. Let (0, 0) 6= (f, g) ∈ B′ × L1(R), then by similar arguments as previously one
shows that f ∗ g ∈ C1(R) ∩B. It remains to prove that

d

dx
f ∗ g(x) = f ′ ∗ g(x) ∈ C0(R).

Take a sequence (gn) ∈ C∞
c (R) converging to g in L1-norm. Then,

‖f ′ ∗ (g − gn)‖∞ ≤ ‖f ′‖∞ ‖g − gn‖1
n→∞
−−−→ 0. (10)

Integration by parts gives

f ′ ∗ gn(x) =

∫ ∞

−∞
f ′(x− y)gn(y)dy
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= −f(x− ·)gn(·)
∣∣∞
−∞

+

∫ ∞

−∞
f(x− y)g′n(y)dy (11)

=

∫ ∞

−∞
f(x− y)g′n(y)dy.

Since lim|x|→∞ f(x) = 0, we can take Mε,n great enough so that

|f(x)| <
ε

2‖g′n‖1
(∀ |x| ≥ Mε,n).

Suppose that supp(gn) ⊂ [−An, An]. It follows that |f(x−y)| < ε whenever |x| > Mε,n+An

and y ∈ supp(gn), and we obtain from (11) that

∣∣∣∣
∫

f ′(x− y)gn(y)dy

∣∣∣∣≤ ε (∀|x| ≥ Mε,n +An). (12)

(10) and (12) yield that f ′ ∗ g is the limit of the sequence (f ′ ∗ gn) in the Banach space
(C0(R), || · ||∞), implying

B′ ∗ L1(R) ⊂ {f ∈ C1(R) ∩B : f ′ ∈ C0(R) }.

For the reverse contention, suppose f ∈ B′ with f ′ ∈ C0(R). To show that it is approxi-
mated in B′− norm by elements in B′ ∗ L1(R), let us take jδ(x) as in (8). The following
estimate is valid by [2, Theorem 7.5] and (9):

‖f − f ∗ jδ‖B = ‖f − f ∗ jδ‖BV + ‖f − f ∗ jδ‖A

= ‖f ′ − f ′ ∗ jδ‖1 + ‖f − f ∗ jδ‖A
δ↓0
−−→ 0. (13)

Therefore, we need only to verify that

‖f ′ − f ′ ∗ jδ‖∞
δ↓0
−−→ 0. (14)

This is obtained from uniform continuity of f ′ on R. Note that B′ is a Banach L1(R) −
module and ||f ∗ g||B′ ≤ 2||f ||B′ ||g||1. Therefore, B′ ∗ L1(R) is closed by The Banach
Module Factorization Theorem [8]. This proves the statement.◭

Given A ⊆ B, we denote by A
B

the closure of A in the norm of B.

Theorem 8.

B′ ⊂ B ∗ L1 = B′ B
.
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Proof. B ∗L1(R) is closed in B by Proposition 5. If f ∈ B′, then relation (13) is valid.
So that B′ ⊂ B ∗ L1(R).

For (f, g) ∈ B×L1(R), we will show that there is a sequence hn ∈ C1(R)∩B converging
in B to f ∗ g. Choose gn ∈ C∞

c (R) that converges to g in L1(R). It follows from (7) that

‖f ∗ g − f ∗ gn‖B = ‖f ∗ (g − gn)‖B ≤ 2‖f‖B‖g − gn‖1
n→∞
−−−→ 0.

We define hn := f ∗ gn. Thus, hn ∈ B′. This follows directly from Theorem 3 and
(gn) ⊂ C∞

c (R), because of
d

dx
f ∗ gn(x) = f ∗ g′n(x)

and
‖f ∗ gn‖B′ ≤ 2‖f‖B (‖gn‖1 + ‖g′n‖1),

where we apply (7).◭

The following two theorems give a characterization of B ∗L1(R). The set of absolutely
continuous functions over each compact interval in R is denoted by ACloc.

Theorem 9. B1 := ACloc ∩B is a closed subalgebra of B.

Proof. Given (fn) a Cauchy sequence in B1, there exists f ∈ B such that

‖fn − f‖∞ ≤ ‖fn − f‖BV
n→∞
−−−→ 0,

||fn − f ||A
n→∞
−−−→ 0.

It follows that f ∈ C(R) ∩B. By [7, Theorem 4.14]

fn(x)− fn(s) =

∫ x

s

f ′
n(t),

yielding

lim
s→−∞

[fn(x)− fn(s)] = fn(x) =

∫ x

−∞
f ′
n(t).

[2, Hake’s Theorem] implies that f ′
n ∈ HK(R) for each n ∈ N. From [2, Theorem 7.5] one

gets

‖fn − fm‖BV =

∫ ∞

−∞
|f ′

n − f ′
m|

n, m→∞
−−−−−−→ 0,

yielding existence of some g ∈ L1(R) such that f ′
n → g, in L1-norm. Furthermore,

fn(x)− f(x)− fn(s) + f(s) = lim
m→∞

∫ x

s

f ′
n(t)− f ′

m(t) =

∫ x

s

f ′
n(t)− g(t).

Thus f ∈ B1, proving that B1 is closed in B.
Since u · v ∈ B1, in the usual product · of functions and ||u · v||B ≤ 2||u||B ||v||B

whenever u, v ∈ B1, then B1 is a Banach subalgebra of B.◭
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Theorem 10. The following equality holds:

B ∗ L1(R) = B1.

Proof. [2, Theorem 7.5] implies that B′ ⊂ B1. Application of Theorem 8 and Theorem
9 gives that

B ∗ L1(R) ⊂ B1.

The reverse inclusion is implied by the following inequalities. With the approximation of
the unit defined in (8), application of (9) and [2, Theorem 7.5] one gets

‖f ∗ jδ − f‖A ≤ ‖f ∗ jδ − f‖′A
δ↓0
−−→ 0,

‖f ∗ jδ − f‖BV = ‖f ′ ∗ jδ − f ′‖1
δ↓0
−−→ 0,

where f ∈ B1. As B ∗ L1(R) is closed, the theorem follows. ◭
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