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Factorization in the Space of Henstock-Kurzweil Inte-
grable Functions

M.G. Morales, J.H. Arredondo*

Abstract. In this work, we extend the factorization theorem of Rudin and Cohen to HK(R),
the space of Henstock-Kurzweil integrable functions. This implies a factorization for the isometric
spaces Ac and Bo. We also study in this context the Banach algebra of functions H K (R)N BV (R),
which is also a dense subspace of L?(R). In some sense this subspace is analogous to L*(R)NL?(R).
However, while L!(R) N L?(R) factorizes as L'(R)N L?(R) * L' (R), via the convolution operation *,
it is shown in the paper that HK (R) N BV (R) x L'(R) is a Banach subalgebra of HK (R)N BV (R).
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1. Introduction

For appropriate functions f,g: R — R, the convolution is defined as

feglt) = gx f(t) = /R £t — w)g()dy. (1)

Thus, f g is a superposition of translates of f taken with the weights g(y)dy, and we
can expect that f % g inherits properties of f as well as of g, [9]. For example, the space
of Lebesgue integrable functions L'(R), is a Banach algebra with the convolution (1). In
fact, W. Rudin [18] proved that

LY @) * LNG) = LY(@),

for G = R™ and any locally compact abelian group [19]. In [5] and [8], the results of
Rudin were generalized to Banach algebras with a bounded approximate unit. Moreover,
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the result of Cohen [5] states that if A is a Banach algebra with product o and bounded
approximate unit, then A o A = A. This type of results are important because they give
different representations of the algebra. The subject was later developed in a more general
setting in [8].

On the other hand, integration theory has been developed. For example,/vg can con-
sider the Banach space of Henstock-Kurzweil integrable functions on R, H K (R), which
strictly contains L'(R). Recently this integral has been used in order to generalize the
classical Fourier transform [12].

The convolution operator has been studied on several spaces, for example, this op-
erator is well defined for ultradistributions. This subject has been developed in recent
years, where surjectivity characterizations and existence of right inverses for convolution
operations are given, among others. See [6] and the references therein.

In this paper, the convolution of functions is extended to obtain a factorization theorem
for HK (R) and therefore for the related spaces Ac and B¢ defined in [16]. Also, we define
and analyse some Banach algebras contained in HK(R) and embedded continuously in
L?(R). In particular, we show that the subspace HK(R) N BV (R) x L'(R) is a Banach
subalgebra of HK(R) N BV (R), which is also a dense subspace of L?(R). We recall that
this subspace of L?(R) is, in some sense, the analogue of the space L'(R) N L?(R) for the
classical Fourier transform, in the context of the HK-Fourier Transform. See [10], [11] and
Definition 2.10 in [12].

2. Preliminaries

We follow the notation from [15] in order to introduce basic definitions of the Henstock-
Kurzweil integral theory. The Henstock-Kurzweil integrable real valued functions on I will
be denoted as HK(I), where I := [a,b] is any interval in R = [~o00, cc]. The Alexiewicz
seminorm on HXC(I) is defined in [15] by

X
I£lla=sup| [ 1.
zel |Ja
It is equivalent to
t
ifl= s [ ].
s,tel,—oco<s<t<oo |J s

Furthermore

1114 < I1f11a < 211514 (2)
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We remark that H/C(I) is not a Banach space, see [17].

The quotient space HI(I)/W(I) will be denoted by H K (I). Here W(I) is the subspace
of HIC(I) for which the Alexiewicz seminorm vanishes. The completion of the Henstock-

—

Kurzweil space in the Alexiewicz norm is denoted by HK (R), [11], [17].
Let g be a real valued function over R. It is said that g is a bounded variation function
over [a,b] C R if and only if

n
Var(g, [a,b]) := Sng l9(ti) — g(te—i)| < o0,
i=1
where the supreme is taken over all possible partitions on [a,b]. It is said that g is a
bounded variation function over R if and only if

Var(g,R):=  lim  Var(g,[s,t])

t—00,5——00

exists in R. We will denote the set of bounded variation functions over an interval I as
BV(I).

Note that if g € BV(R), then lim, ,4+. g(z) € R. Thus, we can extend g on R :=

[—00, 00| as

g(+o0) i= lim g(x).
Moreover, Var(g,R) = Var(g,R). Thereby, we can use the same symbol BV (R) for the
bounded variation functions over R.

BVy(R) will denote the bounded variation functions over R having limits equal to zero
at +oo. It is easy to prove that HK(R) N BV(R) C BVy(R), see [14]. We consider the
real vector space

B:=HK(R)NBV(R) = HK(R) N BV,(R),

with the norm ||f||5 := ||fl||la + || f||Bv, where || f||pv := Var(f,R).

For 1 < p < oo, the Banach space LP(R) over the field R with norm || - ||, consists of
equivalence classes of measurable real valued functions over R such that |f(x)[P is Lebesgue

integrable:
1

Il i= ([ 1f@lras)” < o

For a measurable function f: R — R the uniform norm is defined to be
[ flloo := sup | f()].
zeR

We mention that if a continuous function f on R has limits at +c0, then f is uniformly
continuous.
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Theorem 1. (B, || - ||B) is a real Banach space. Moreover, B is continuously embedded
in L*(R), HK(R) and BV (R).

Proof. Let (f,) be a Cauchy sequence in B. Then it is also a Cauchy sequence in the
norm || - ||py. Given x € R, for the partition P = {a,z,b} one gets that

|(fn = fm)(@) = (fo = fm)(@)] 4+ |(fn = fi) () = (fn — frn) ()]
§ Var(fn - fm7 [a7 b])
< Var(fn — fm,R). (3)

Taking a — —oo and b — oo in the expression (3) we obtain

limsup |(fn_fm)(x)_(fn_fm)(a)|+|(fn_fm)(b)_(fn_fm)(x))| < Var(fn_fm7R) Se

a——00,b—00

Thus, for n and m great enough,

2[(fn — fm)(@)| <€

This means that (f,(z)) is a Cauchy sequence in R. We define

F(2) = lim fo(2).

n—oo

To prove that f € BV(R), let P = {[z;—1,2;]}/".; be a partition of an interval [a,b]. One
obtains

D (o = k) = (f = Hlaxa)l = Z Jim [(fn = fin)(@k) = (fn = fin) (@h-1)]
k=1

Tr}gnooZ’ fm xk (fn_fm)(xk—l)’

< lim supVar(fn — fm., [a,b])
m—ro0

< limsup Var(f, — fm,R)
m—0o0

< e

This proves that f, — f € BV(R), yielding f € BV(R). Now we show that f € HK(R).
Since ||f — fmlla < €, then there exits f in the completion of HK (R), HK( ), such that

/:fn—>/:f,
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for all s,t € R. Moreover, (f,) converges pointwise to f, so that by the Lebesgue Domi-
nated Convergence Theorem we have

[n=]s
/:fzz,gggo :fnz/:f,

for all s,t € R, see [17]. Therefore, f € HK(R). So, B is a Banach space.
We prove now that B is continuously embedded in L*(R). For f € B and by [2,
Multiplier Theorem| we have

Thus,

113 = / (f(2))2da
< @i+ | [ ra
< il sy
1
< SOUIR + 11716
1
< 2l + 11 115v)*,

where F(z) = [*_ f(t)dt. The other two embeddings follow directly. <«

Remark 1. B is not compactly embedded in (L*(R), || - ||2), neither in (HK(R),|| - ||4),
nor in (BV(R),||-[|pv). It is easy to see that the sequence fn () := X{n ni1)(x) forn € N
1s in B, but does not have Cauchy subsequences in those spaces.

3. B as a Banach L'(R)-module

Definition 1. A topological algebra over the field K of real or complex numbers is a
topological vector space A over K provided with an associative multiplication continuous
with respect to both variables (i.e. jointly continuous).

Definition 2. A Banach algebra is a topological algebra which, regarded as a topological
vector space, is a Banach space.

These definitions can be seen in [20]. Now we will show that B is a Banach algebra
according to these definitions.
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Theorem 2. B is a commutative Banach algebra with respect to the usual product of
functions.

Proof. Since B is a Banach space, it is a topological vector space. We will prove that
the usual product of functions of B is a function in B, and that the map

BxB>(f,g) > fgeB

is continuous.

When f,g € B, by [2, Multiplier Theorem] we obtain ||fg||la < ||f||Bllg||z- Let us
prove that fg € BV(R). As f,g € B C BV(R), then f and g are bounded functions.
Moreover, ||f|lco < ||f||BV, implying

Var(fg, [a,b]) 1 lleollgll By + llgllsc £ 1 BV

<
< 2[|flIsllgll5-

This results in
I fglls < ClIflIBllgllB,

for some positive constant C. However, by Corollary 2.5 in [20], (B,-, || - ||5) can be con-
sidered a Banach algebra in the usual sense [3].«

We recall that L'(R) is a real Banach algebra with respect to the convolution operation
(1), see [4].

Note that f x g(x) given by (1) is well defined as a Lebesgue integral for f € B and
g € L'(R).

The concept of Banach A — module is defined in [8, Definition 32.14].
Theorem 3. The space B is a Banach L'(R) — module.

Proof. Let (f,g) € Bx LY(R). For a partition P = {[z;_1,2;]}"", of a bounded interval
[a, b], we calculate

n

>

1=1

IN

/R(f(xz- —y) = flzi — y))g(y)dy‘ ; /R |f(zi —y) = f(@i1 — y)llg(y)|dy

IN

| ety Rlgtu)dy

£ llBvlgll:-

Therefore
If *gllpy = Var(f * g,R) <||fl|Bv||gll- (4)
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Let us prove that f x g € HK(R). For s < t arbitrary real numbers

/da:/ flz—vy) = nh_)llolo// flx —y)g(y)dydz, (5)

where we apply the Lebesgue Dominated Convergence Theorem, due to

[ 1= vatwyivda] < 1Al lslh < 11w ol

From equation (5) and Fubini’s Theorem we obtain

‘ /:f x g(x)dz nh_)rrolo/ / flx— d:z:dy‘

Mn/[F@—w—F@—wmwu4

n—oo [ _

n

lim [ {g(y)[dy2[[F|o

n—oo [_

2(lgll111£11a,

/f*g )dx

The inequalities (4) and (6) and the equivalence of the norms (2) imply that

IN

where F(x) = ffoo f- Thus,

1f * gllla == sup < 2[[gll Il (6)

[s,t]CR

f = glls =11f * gllpv + [If * glla < Ifllvilgll +1If * glla < 2[IflBllglli-  (7)
The properties i) f* (g +h) = f*xg+ f*h, ii) (f+f)>kg_f*g+f>kg, i11) f* (ag) =
alf xg) = (af)*gand iv) f*(gxh) = fx(hxg), for g,h € L\(R), f, f € B are easy to
prove. On the other hand, since B is a Banach space, B is a Banach L'(R) — module.<

4. Factorization

Definition 3. A bounded approximate unit in a Banach algebra (A, || -||) is a sequence or
net {eq} such that ||es|| < C for some positive constant C' and

lim|ja —aey| =lim|la—eyal =0
[0 [0

for each a € A.



118 M.G. Morales, J.H. Arredondo
W. Rudin, [18] used properties of the Fourier transform in order to show that
L'R) * LY(R) = L' (R).

The Fourier transforms of functions in B share some properties of functions in L!'(R) N
L?(R) see [10], [11], [12]. On the other hand, the space L'(R) N L?(R) can be factored as
LY(R) N L3(R) * L(R), see [9, Theorem 1.3.2], whereas B * L'(R) is a proper subset of B

as we show below.

We denote the space of real valued continuous functions over R vanishing at infinity
by Co (R)

Let A be a set of real valued functions on R for which the convolution operation with
elements of L!(R) is defined. Then A * L'(R) denotes the set

{f+g: feA ge L'R)}.

Note that B is a dense subset in H K (R) with the Alexiewicz norm, because B contains
the linear combinations of characteristic functions of intervals which are dense in H K (R),
see [11, Lemma 2.1], [15, Theorem 7].

o —

Definition 4. The convolution in HK(R) x L*(R) is defined by

HE(R) x L'(R) 3 (f,9) = [+ g = Tim_fu+g,

o —

where (f,) C B converges to f in HK(R).

Note that if (f,) C B is a Cauchy sequence, then F'(z) = lim,_, ffoo fn exists and
in particular it is a uniformly continuous function on R, see [11], [17].

—

Proposition 4. HK(R) is a Banach L'(R) — module.
Proof. We show that the map

HK(R) x L'(R) 3 (f.9) = f+g

o —

has range in H K (R) and is continuous. Let us see first that (f, * g) is a Cauchy sequence

in HK (R) for (f,) a Cauchy sequence converging to f. Relation (6) yields

fn 9= fm*glla < 1[(fa = fm) * glla < 2llgl1llfn = fmlla-

—

Therefore, f * g :=lim, o0 fr * g € HK(R). Furthermore,

1 *glla = Tim ||+ glla <limsup2||gl[1|[falla = 2llgll1[|f]]4-
n—00 n—o00
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—

The other properties in order that H K (R) is a Banach L!(R) — module are easy to prove
[8, Definition 32.14].«

The support of a function f is defined as supp(f) := {x, f(z) # 0}, the closure of the
set of points in R where f is non-zero. The space of real valued smooth functions with
compact support in R is denoted by C2°(R).

The Banach Module Factorization Theorem in [8, Theorem 32.22] says: “Let A be a
Banach algebra with a bounded approximate identity. If X is a Banach A —module (with
respect to the operation o), then Ao X is a closed linear subspace of X ”. In particular, if
Ao X is dense in X, then Ao X = X. So, we get the following result.

—_— —

Corollary 1. HK(R) = HK (R) * L}(R) = L'(R) * HK (R).

o — o —

Proof. It is easy to show that HK(R) * L'(R) is dense in HK (R), because

LY(R) = L'(R) + L'(R) ¢ HK(R) * L'(R) c HK (R).

—

In fact, for an arbitrary element f € HK(R), and € > 0, we take h € HK(R) N BV(R)
such that

Ih = fllla <e/2.
Let j € C°(R) be a positive function with supp(j) C (—1,1) and f_llj(t)dt =1. We

define for each positive number §, the approximate of the unit in L'(R)

Jalw) = 55/5). 0

Application of Fubini’s Theorem gives

1
|h—hxjsly = sup /(H(t)—H(s)—H(t—5y)+H(3—5y))j(y)dy

s,t -1
< 2e. 9)

Here .
H(t) ::/_ h(y)dy.

The inequality (9) follows by the uniform continuity of H on R. So, given € > 0, there

—

exists & > 0 small enough such that ||h — h * js||’y, < 2e. HK(R) * LY(R) being closed,

—

previous relation means that it contains the dense subspace HK (R) N BV (R) of HK (R),
yielding the result.«

Talvila showed some properties for the convolution in the context of the distributional
Denjoy integral, for example: Ac * L'(R) C Ac, [Theorem 8a, [16]] where Ac = {f €
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D'|f = F',F € B¢}, D' denotes the continuous linear functionals on the space of test
functions D = C°(R), and

Bo={F:R —R|F is continuous on R, lim F(z)=0, lim F(x) € R}
T—00

T—r—00

is a Banach space under the supremum norm. It was proved in [17] that A¢ (with Alex-

iewicz norm) is isomorphic to B¢ and in [13] it was shown that B¢ is isomorphic to H K (R).
When f € LY(R), it follows that F(z) := [* f(t)dt € Bc and f € Ac. Therefore, we
have the following result.

Corollary 2. Bc * L'(R) = Be and Ac * L' (R) = Ac.

Proof. We give the proof for Ac * L'(R) = Ac. The other equality is quite similar.

We consider Definition 5 from [16] about the convolution mapping * : Ac x L' — Ac.
We use the same symbol * for the mapping. This mapping satisfies the following properties:
Forall f, f€e Ac, g, g€ L', and a € R :

1. Ac* L' C Ac,

2. (fxg)xg=f=(9*9),

3. fx(ag)=(af)xg=a(f=g),
4 fxlg+g)=[f*xg+[*g

5. (F+f)xg=1frg+fxg

6. |If *glla <I[fllallgll,

Properties (1), (2) and (6) hold by [16, Theorem 8 (a)-(b)]. As the elements in A¢
are linear functionals, it is easy to prove (3), (4) and (5). Therefore, Ac is a Banach
LY(R) — module, see [8, Definition 32.14]. On the other hand,

LY'(R) = LYR) * LY(R) € Ac * L' C Ac.
L'(R) is dense in A¢, with Alexiewicz norm, [16, Proposition 7]. Then [8, The Banach
Module Factorization Theorem| implies the result.«

Now we consider the same question about factorization for the Banach algebra B.
Note that L'(R) does not have inclusion relations with B, see for instance [11, corollary
3.3] and [1, example 1, p. 129]. Then the argument in Corollary 1 can not be used for B.
In fact, the answer to our question is negative.

Proposition 5. The L'(R) — module B can not be factored as B * L*(R) .
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Proof. By Theorem 3 and [8, The Banach Module Factorization Theorem], B x L*(R)
is a closed linear subspace of B. We will show that B can not be factored as B * L'(R),
for which it is sufficient to prove that B * L'(R) C Cy(R).
Let f € B and g € L*(R). Since f is continuous except perhaps at countably many
points, we get
fl@+rn—y)gly) = flz—y)9(y),
as r, — 0. If x — y is not a discontinuity point, it means almost everywhere. Since f is
bounded and g is L'-integrable, by the dominated convergence Theorem we get
frgl@+rn) = fxg(x), T —0.
This implies continuity of f * g, so it belongs to BN C(R) C Cy(R).«

Bx*L!(R) being a subspace strictly contained in B, it naturally brings us to the problem
of characterizing the subspace.

We take C'(R) as the Banach space of real valued functions f with continuous deriva-
tive such that || f|lcc + [|f/[lcc < 00.
We study the space B’ = BN C(R), with given norm defined as

1115 = 11fllz + 11f]lco-
Proposition 6. (B',||-||p’) is a Banach algebra strictly contained in B.

Proof. Due to equivalence of the norm ||f||g with the norm || f||oc + [|f/|loc + ||f]B;
then the result holds by standard arguments. <«

We have the following characterization of B’ * L'(R). It follows in particular that
B’ x L'(R) is a proper subset of B’. The characterization is in terms of Cy(R).

Theorem 7.
B xL'R)={fcC'R)NB : f € CyR) }.

Proof. Let (0,0) # (f,g) € B’ x L'(R), then by similar arguments as previously one
shows that f * g € C'(R) N B. It remains to prove that

L frgla) = ' g(x) € Co(®).

Take a sequence (g,) € C°(R) converging to g in L'-norm. Then,

n—oo

1% (9 = gn)lloo < 1f'llsc llg = gnlls —— 0. (10)

Integration by parts gives

o gnla) = /_OO f(@ = y)gn(y)dy
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= S =00 P+ [ @ nawiy (1)
= /_ f(z = y)gn(y)dy.

Since lim|,| o f(7) = 0, we can take M. , great enough so that

9
2)lgnlla

n

[f(@)] < (V]| = M ).

Suppose that supp(gn) C [—An, Ay]. It follows that | f(z—y)| < € whenever |z| > M, ,+A,
and y € supp(g,), and we obtain from (11) that

‘ [ 7= vty [< e (el 2 Mo+ 40) (12)

(10) and (12) yield that f’x g is the limit of the sequence (f’ * g,) in the Banach space
(Co(R), [I - [lsc), implying

B+« LY R)c{fcC'R)NB : f € C(R) }.

For the reverse contention, suppose f € B’ with f' € Cy(R). To show that it is approxi-
mated in B’— norm by elements in B’ x L*(R), let us take js(z) as in (8). The following
estimate is valid by [2, Theorem 7.5] and (9):

If = f*3sllB If — f*dsllBv + IIf — [ *jslla

. . 640
= I = f*dsll+1If = f#dslla—0. (13)
Therefore, we need only to verify that
) 510
1" = f"* dslloo = 0. (14)
This is obtained from uniform continuity of f’ on R. Note that B’ is a Banach L!(R) —

module and ||f * g||p < 2||f||z|lg|li. Therefore, B’ x L'(R) is closed by The Banach
Module Factorization Theorem [8]. This proves the statement.«

Given A C B, we denote by 24" the closure of A in the norm of B.

Theorem 8.
B cBxL'= B "
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Proof. B* L'(R) is closed in B by Proposition 5. If f € B’, then relation (13) is valid.
So that B’ C B x L'(R).

For (f,g) € Bx L'(R), we will show that there is a sequence h,, € C*(R)NB converging
in B to f x g. Choose g, € C2°(R) that converges to g in L'(R). It follows from (7) that

n—o0

I f*g—f*agnllz=If*(g—gn)lB <2|fllBllg — gnllt ——0.

We define h,, := f * g,. Thus, h, € B’. This follows directly from Theorem 3 and
(gn) C C(R), because of

d
2 * 9n(@) =[x gu (@)
and
1 * gnllz < 2[ £l (lgnlli + llgnll1),
where we apply (7).«

The following two theorems give a characterization of B * L'(R). The set of absolutely
continuous functions over each compact interval in R is denoted by AC),..

Theorem 9. By := ACj,. N B is a closed subalgebra of B.
Proof. Given (f,) a Cauchy sequence in By, there exists f € B such that

n—o0

1fn = flloo < [lfn = fllBY ——0,
1fn = flla === 0.
It follows that f € C(R) N B. By [7, Theorem 4.14]

fula) = 1ut5) = [ 1t

i (1) = Fu(s)] = fule) = [ A

[2, Hake’s Theorem] implies that f € HK(R) for each n € N. From [2, Theorem 7.5] one
gets

yielding

n, mMm—oo

IIfn—mesz/_ L ] e g,

yielding existence of some g € L*(R) such that f/ — g, in L'-norm. Furthermore,

Fule) = @)= fulo) + £5) =t [ g0y g0 = [ g0 -

Thus f € By, proving that Bj is closed in B.
Since u - v € Bj, in the usual product - of functions and ||u - v||p < 2||ul|s||v||B
whenever u,v € By, then Bj is a Banach subalgebra of B.«
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Theorem 10. The following equality holds:

Bx LY(R) = B;.

Proof. [2, Theorem 7.5] implies that B’ C By. Application of Theorem 8 and Theorem
9 gives that
Bx L'(R) C By.

The reverse inclusion is implied by the following inequalities. With the approximation of
the unit defined in (8), application of (9) and [2, Theorem 7.5] one gets

. . 510
1fxds — flla <IIf xjs — fl's = 0,

) . 510
1 f*ds— fllav = If *js — f'llh =0,

where f € By. As B * L'(R) is closed, the theorem follows. <«
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