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One-dimensional and Multidimensional Hardy Operators
in Grand Lebesgue Spaces

S. Umarkhadzhiev

Abstract. Grand Lebesgue spaces on sets of infinite measure are defined using an additional
characteristic a(·) called a grandizer. Conditions on the grandizer a(x) for the Hardy operators to

be bounded in the grand Lebesgue spaces L
p)
a (Rn) are found, and the lower and upper estimates

for a sharp constant in the one-dimensional and multidimensional Hardy inequalities are given in
dependence on the grandizer. For some special choice of the grandizer it is proved that this sharp
constant is equal to the sharp constant for the classical Lebesgue spaces.
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1. Introduction

We study the one-dimensional and multidimensional Hardy operators in the so-called
grand Lebesgue spaces. The theory of grand spaces, in particular the grand Lebesgue
spaces, was intensively developed during the last decades. Such grand spaces Lp)(Ω), 1 <
p <∞, on a bounded set Ω ⊂ Rn were introduced in 1992 by T. Iwaniec and C. Sbordone
[9] in connection with some applications for differential equations.

Operators of harmonic analysis were intensively studied in such spaces and they con-
tinue to attract attention of researchers in connection with their various applications
([1, 3, 4, 5, 6, 7, 10, 12, 13, 20, 11]). In these studies the set Ω was assumed to be of
finite measure only, since the idea of the construction of the grand space was based on
enlargening of Lp when p decreases.

In [24, 25, 30], an approach was proposed which allowed to introduce grand Lebesgue

spaces L
p)
a (Ω), 1 < p < ∞, on sets Ω ⊆ Rn of not necessarily finite measure. This

approach is based on introducing a(x)ε of a weight a(x) with small ε > 0, into the norm

of the grand space, see (1). We call the function a, defining the grand space L
p)
a (Ω), the
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grandizer. Such grand spaces L
p)
a (Ω) and some operators of harmonic analysis in these

spaces have been studied in [28, 31, 29, 32]. The approach suggested in these papers made
it possible to consider in grand spaces on Rn such operators as the Riesz potential, Hardy
operators and others. In [26], the conditions on the grandizer a(x) were obtained ensuring

the validity of the Sobolev theorem for the Riesz potential in the grand spaces L
p)
a (Rn).

In that paper the relationship between the Riesz potential and hypersingular integrals in
the grand spaces was also investigated (see [23] regarding the hypersingular integrals).

There is a vast literature on the Hardy operators in the classical Lebesgue spaces. We
refer to the books [8, 2, 19, 18, 14] and, for example, to the papers [17, 21, 22], where
some other references can be found.

Note that various results concerning grand spaces were presented in the recent two
volume book [15], including also some results for sets with infinite measure.

We consider the multidimensional Hardy operators

Hα
n f(x) := |x|α−n

∫
|y|<|x|

f(y)

|y|α
dy, Hβnf(x) := |x|β

∫
|y|>|x|

f(y)

|y|n+β
dy, x ∈ Rn,

for n ≥ 2, and their semi-axis versions for n = 1:

Hαf(x) := xα−1

x∫
0

f(t)

tα
dt, Hβf(x) := xβ

∞∫
x

f(t)

t1+β
dt, x ∈ R+,

in the grand spaces L
p)
a (Rn) and L

p)
a (R+), respectively.

Hardy operators in the natural setting, i.e. over R+ or Rn, were not studied in grand
spaces. In the one-dimensional case, in [20] a criterion for weighted boundedness of the
Hardy operator on [0, 1] was found.

In this work, we obtain conditions on the grandizer a(x) for the Hardy operators to be

bounded in the grand spaces L
p)
a (Rn) and give the upper estimate for the sharp constant

in the Hardy inequalities in dependence on the grandizer a(x). In the case of power type

grandizer we provide two-sided estimates for norms of Hardy operators in L
p)
a (Rn). Under

the special choice of the grandizer a(x) = |x|−n it is shown that the sharp constant is
equal to the sharp constant for the classical Lebesgue spaces.

The paper is organized as follows. In Section 2 we provide necessary preliminaries,
mainly on grand Lebesgue spaces. Section 3 contains the main results. In Section 3.1
we prove some technical estimates. In Section 3.2 we prove the boundedness of one-
dimensional Hardy operators. We use this result in Section 3.3 to prove estimates for
multidimensional Hardy operators via spherical means of the function f . Such estimates
are stronger result than the boundedness of Hardy operators in grand spaces. Such a result
in terms of spherical means is obtained for radial grandizers. Finally, in Section 3.4 we
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prove a theorem on the boundedness of Hardy operators in the case of general grandizers,
but not via spherical means. The main results are given in Theorems 1, 2, 3, 4, 5, 6 7.

Notation.

Sn−1 is the unit sphere in Rn centered at the origin, |Sn−1| is its area;

B(x0, r) is the ball in Rn of radius r centered at the point x0;

ϕ∗(t) = supx>0
ϕ(xt)
ϕ(x) .

2. Preliminaries

2.1. Grand Lebesgue spaces

Denote Lp(Ω, w) :=
{
f : ‖f‖Lp(Ω,w) <∞

}
, where

‖f‖Lp(Ω,w) =

∫
Ω

|f(x)|pw(x)dx

 1
p

.

In the case w ≡ 1 we write Lp(Ω, w) = Lp(Ω).

Following [30], we define the grand Lebesgue spaces on sets Ω of finite or infinite
measures:

Lp)a (Ω) :=

f : ‖f‖
L
p)
a (Ω)

:= sup
0<ε<p−1

ε ∫
Ω

|f(x)|p−εa(x)
ε
p dx

 1
p−ε

<∞

 , 1 < p <∞, (1)

where a(x) is an arbitrary non-negative function on Ω, called grandizer. The choice of the
grandizer may be dictated by problems of study in grand spaces. In [24, 25, 30] it was

assumed that a ∈ L1(Ω), which ensures the embedding Lp(Ω) ↪→ L
p)
a (Ω), see Lemma 1.

In this paper we deal with Ω = R+ or Ω = Rn and when studying Hardy operators, we
find it convenient to admit grandizers not necessarily integrable at the origin or infinity,
and we always assume it to be locally integrable outside the origin:

a(x) ∈ L1(BδN ) 0 < δ < N <∞, (2)

where BδN = {x : δ < |x| < N}; in the case Ω = R+ we write

a(x) ∈ L1(δ,N). (3)

So defined grand space in general depends on the grandizer, although different choice
of grandizers may lead to the same grand space (see [27]).
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Lemma 1. ([32]) Let a ∈ L1(Ω). Then the norm (1) is equivalent to the norm

sup
0<ε<ε0

ε ∫
Ω

|f(x)|p−εa(x)
ε
p dx

 1
p−ε

for any ε0 > 0.

When a ∈ L1(Ω), the following embeddings hold:

Lp(Ω) ↪→ Lp)a (Ω) ↪→ Lp−ε1(Ω, a
ε1
p ) ↪→ Lp−ε2(Ω, a

ε2
p ), 0 < ε1 < ε2 < p− 1. (4)

Remark 1. In the case of bounded set Ω, when it is usual to take a(x) ≡ 1, there always

holds the embedding Lp(Ω) ↪→ L
p)
a (Ω), i.e. the grand Lebesgue space in this sense is

an enlargening of the classical Lebesgue space. According to (4), similar enlargening on
unbounded sets is guaranteed by the assumption a ∈ L1(Ω). This condition was usually
assumed to hold in the study of grand spaces on unbounded sets, see for instance [30], [26],
though grand spaces on such sets may be studied without this condition.

Remark 2. The procedure of enlargening the Lebesgue space by means of different gran-
dizers may generate the same grand space. Different grand spaces may be obtained by
using, for example, grandizers with power and exponential decay at infinity. For in-

stance, when a(x) has a power type decay, the function 1
(1+|x|)γ is in L

p)
a (Rn) if and

only if γ ≥ n
p , while it belongs to L

p)
a (Rn), a(x) = e−|x|, for all γ ≥ 0. Note that⋃

p≤q≤∞ L
q(Rn) ⊂ L

p)
a (Rn), a(x) = e−|x|. When considering Hardy operators, we ad-

mit in particular exponential grandizers, see for instance Corollary 2.

2.2. Dilation function

Let a(x) be a positive, almost everywhere finite function on R+. The function

a∗(t) = sup
x>0

a(xt)

a(x)
(5)

is called a dilation of a, see [16, . 53]. The following properties of dilations hold:

10 If xγa(x), γ ∈ R, is non-increasing on R+, then a∗(t) ≤ 1
tγ for t > 1.

20 If xγa(x), γ ∈ R, is non-decreasing on R+, then a∗(t) ≤ 1
tγ for t < 1.

Let a(x) be a positive, almost everywhere finite function on Rn \ {0}. Define a multi-
dimensional analogue of dilation by the formula

a∗(x) := sup
y∈Rn

a(x|y|)
a(y)

.
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Lemma 2. If a(x) = b(ρ)g(σ), ρ = |x|, σ = x
|x| , b(ρ) ≥ 0, g(σ) > 0, then a∗(x) ≤

b∗(ρ) g(σ)
inf

σ∈Sn−1
g(σ) .

The proof is direct.

3. Main results

3.1. Auxiliary lemmas

Denote Qpf(x) = |x|−
2n
p f
(

x
|x|2

)
, x ∈ Rn, so that Q2

p = I. In the case n = 1 we

interpret the operator Qp as an operator on functions f(x), x > 0. It is an isometry on
classical Lebesgue spaces Lp(Rn):

‖Qpf‖Lp(Rn) = ‖f‖Lp(Rn), 1 ≤ p ≤ ∞. (6)

The following relationship

Hα
n = QpHβnQp, α+ β =

p− 2

p
n, (7)

between the Hardy operators is known, see, e.g., [21]. In the case of grand spaces the
isometry (6) in general does not hold, but some modification of it is valid as stated in the
following lemma. In this lemma and everywhere in the sequel we use the notation

ã(x) =
1

|x|2n
a

(
x

|x|2

)
.

Lemma 3. The following isometry holds:

‖Qpf‖Lp)a (Rn)
= ‖f‖

L
p)
ã (Rn)

, 1 < p <∞, (8)

and

‖Hβn‖Lp)a (Rn)
= ‖Hα

n ‖Lp)ã (Rn)
, α+ β =

p− 2

p
n. (9)

Proof. We have

‖Qpf‖Lp)a (Rn)
= sup

0<ε<p−1

ε ∫
Rn

∣∣∣∣∣∣
f
(

x
|x|2

)
|x|

2n
p

∣∣∣∣∣∣
p−ε

a(x)
ε
pdx


1
p−ε

.

Whence after the change of variables x
|x|2 = y, dx = 1

|y|2ndy, we get (8).
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Furthermore, taking the inequalities (8) and (7) into account, we obtain

‖Hβn‖Lp)a (Rn)
= sup

f

‖Hβnf‖Lp)a (Rn)

‖f‖
L
p)
a (Rn)

= sup
f

‖Hα
nQpf‖Lp)ã (Rn)

‖Qpf‖Lp)ã (Rn)

= ‖Hα
n ‖Lp)ã (Rn)

.

J

The next lemma provides estimates for

Iµ(a) := sup
0<ε<p−1

∞∫
1

t−µ−1 [tna∗ (t)]
ε

p(p−ε) dt,

Jν(a) := sup
0<ε<p−1

1∫
0

tν−1 [tna∗ (t)]
ε

p(p−ε) dt,

where a∗(t) is the dilation of a(x).

Lemma 4. Let 1 < p <∞, µ > 0, ν > 0, n = 1, 2, ... and A(r) be a non-negative function.
If rγA(r) is non-increasing on R+ for some γ > n− µp′, then

Iµ(A) ≤ 1

µ− max(n−γ,0)
p′

.

If rλA(r) is non-decreasing on R+ for some λ < n+ νp′, then

Jν(A) ≤ 1

ν + min(n−λ,0)
p′

.

Proof. Let us prove the estimate for Iµ(A). It is easy to see that A∗(t) ≤ t−γ for t ≥ 1
under the assumptions of the lemma. Therefore

Iµ(A) ≤ max
0≤ε≤p−1

∞∫
1

t
−µ−1+

ε(n−γ)
p(p−ε) dt,

and the proof of the estimate is obtained by calculation of the integral and finding the
maximum.

The proof of the estimate for Jν(A) is similar. J

For lower estimates for the norms of the Hardy operators we need the following lemma.
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Lemma 5. Let a(x) = |x|−λ for x ∈ B(0, 1), where λ ∈ R. Then |x|−
ν
p ∈ Lp)a (B(0, 1)), if

ν

p
+
λ

p′
< n (10)

when λ > n and ν ≤ n when λ ≤ n.

Proof. We have to verify that

sup
0<ε<p−1

ε

∫
|x|<1

|x|−
ν
p

(p−ε)−λ ε
pdx <∞.

Under the choice ν < λ the integral should exist for ε = p− 1, which yields the condition
(10). Under the choice ν ≥ λ we have to ensure the existence of the integral for ε → 0,
which leads to the condition ν ≤ n, and then the supremum in the case ν = n is finite
due to the factor ε. It remains to note that the conditions ν < λ and ν ≥ λ arising in this
calculation are guaranteed by the assumptions n < λ and n ≥ λ, respectively. J

3.2. One-dimensional case

In relation to Remark 1, note the following. The nature of the Hardy operators is such
that it has a sense to admit grandizers a non-integrable at the origin and infinity in order
to obtain some natural results for these operators in grand spaces. This in particular can
be seen in the theorems below.

Denote

cα(a) := sup
0<ε<p−1

∞∫
1

t
α+ 1

p−ε−2
a∗ (t)

ε
p(p−ε) dt, (11)

dβ(a) := sup
0<ε<p−1

1∫
0

t
β+ 1

p−ε−1
a∗ (t)

ε
p(p−ε) dt, (12)

where a∗ is the dilation of a as defined in (5).

Theorem 1. Let 1 < p < ∞ and a be a non-negative function on R+, satisfying the
integrability condition (3).

The conditions cα(a) < ∞ and dβ(a) < ∞ are sufficient for the boundedness of the

operators Hα and Hβ, respectively, in the grand space L
p)
a (R+), and

‖Hα‖
L
p)
a (R+)

≤ cα(a), ‖Hβ‖
L
p)
a (R+)

≤ dβ(a). (13)
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If α ≥ 1
p′ , then the operator Hα is not bounded in any grand space L

p)
a (R+) with

grandizer a integrable in a neighbourhood (0, τ) of the origin, τ > 0. Similarly, if a ∈
L1(N,∞) for some N > 0, then the condition β > −1

p is necessary for the boundedness of

the operator Hβ in L
p)
a (R+), and

1
1
p′ − α

≤ ‖Hα‖
L
p)
a (R+)

, α <
1

p′
, (14)

1
1
p + β

≤ ‖Hβ‖
L
p)
a (R+)

, β > −1

p
. (15)

If α < 1
p′ and xγa(x) is non-increasing in the case of the operator Hα and β > −1

p and

xλa(x) is non-decreasing in the case of the operator Hβ for some γ > αp′ and λ < (β+1)p′,
then

‖Hα‖
L
p)
a (R+)

≤ 1
min{γ,1}

p′ − α
, (16)

‖Hβ‖
L
p)
a (R+)

≤ 1

β + 1− max{λ,1}
p′

. (17)

Proof.

We first prove

‖Hβf‖
L
p)
a (R+)

≤ dβ(a)‖f‖
L
p)
a (R+)

. (18)

Since Hβf(x) =
∞∫
1

f(xt)
t1+β

dt, by Minkowsky inequality for Lp−ε we get


∞∫

0

|Hβf(y)|p−εa(y)
ε
pdy


1
p−ε

≤
∞∫

1

t−β−1


∞∫

0

|f(ty)|p−εa(y)
ε
pdy


1
p−ε

dt

=

∞∫
1

t
−β−1− 1

p−ε


∞∫

0

|f(x)|p−εa
(x
t

) ε
p
dx


1
p−ε

dt.

Taking into account that a
(
x
t

)
≤ a(x)a∗

(
1
t

)
, x ∈ R+, and making the inversion change

of the variable in the integral in t, we obtain the inequality
∞∫

0

|Hβf(y)|p−εa(y)
ε
pdy


1
p−ε

≤
1∫

0

t
β+ 1

p−ε−1
a∗(t)

ε
p(p−ε)dt


∞∫

0

|f(x)|p−εa(x)
ε
pdx


1
p−ε

. (19)
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Hence (18) follows.

The estimate ‖Hαf‖
L
p)
a (R+)

≤ cα(a)‖f‖
L
p)
a (R+)

is obtained from (18) by means of the

formula (9).

Let as show the necessity of the conditions on α and β mentioned in the theorem and
prove the lower estimates for the operator norms. In the case of the operator Hβ we choose
the function

fδ(x) =

{
0, 0 < x ≤ N,
x
− 1
p
−δ
, x > N,

δ > 0.

By the Hölder inequality with the exponent p
ε , it is easy to check that ‖fδ‖Lp)a (R+)

<∞ for

all δ > 0. If Hβ is bounded in L
p)
a (R+), it must be defined on the functions fδ ∈ L

p)
a (R+)

for all δ > 0. For x > N we have

Hβfδ = xβ
∞∫
x

dt

t
1
p

+δ+β+1
,

which is finite, if β > −1
p − δ. Since δ is arbitrary, we arrive at the condition β ≥ −1

p .
Moreover

‖Hβ‖
L
p)
a (R+)

≥
‖Hβfδ‖Lp)a (N,∞)

‖fδ‖Lp)a (R+)

=
1

β + 1
p + δ

.

Passing to the limit as δ → 0, we get the inequality (15). Also, in the case β = −1
p the

boundedness of the operator Hβ is obviously excluded.

The lower estimate for the operator ‖Hα‖ is similarly obtained by means of the function

fδ(x) =

{
x
− 1
p

+δ
, 0 < x ≤ τ

0, x > τ,
δ > 0.

The estimates (16) and (17) are consequences of the estimates (13) in view of Lemma
4. J

Corollary 1. Let a(x) = x−γ(1 + x)−µ, where γ > 0, µ ≥ 0 and γ < 1 in the case of the
operator Hα and γ + µ > 1 in the case of the operator Hβ. Then the conditions α < 1

p′

and β > −1
p are necessary for the boundedness of the operators Hα and Hβ, respectively,

in the grand space L
p)
a (R+) and

1
1
p′ − α

≤ ‖Hα‖
L
p)
a (R+)

≤ 1
γ
p′ − α

, (20)
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1
1
p + β

≤ ‖Hβ‖
L
p)
a (R+)

≤ 1

β + 1− γ+µ
p′

(21)

in the cases αp′ < γ < 1 and 1 < γ + µ < (1 + β)p′, respectively.

Proof. It is easy to see that a∗(x) =

{
1

xγ+µ
, 0 < x < 1,

1
xγ , 1 < x <∞, and then the direct

calculations yield cα(a) =


1

γ
p′−α

, γ ≤ 1,

1
1
p′−α

, γ > 1,
which proves the right-hand side estimate

in (20). To obtain the left-hand side estimate, in view of Theorem 1 it suffices to note
that a is integrable in a neighbourhood of the origin.

The estimate (21) is proved similarly. J

Corollary 2. Let a(x) = e−x. The operator Hα is bounded in L
p)
a (R+), if α < 1

p′ .

Proof. Note that a∗(t) ≤ 1, t ≥ 1, for a(x) = e−x. According to the arguments in the
proof of Theorem 1, in view of Lemma 1 we see that there holds the boundedness

‖Hαf‖
L
p)
a (R+)

≤ c(ε0) sup
0<ε<ε0

∞∫
1

t
α+ 1

p−ε−2
dt‖f‖

L
p)
a (R+)

,

where c(ε0) is the constant arising from the equivalence of norms provided by Lemma 1.
The integral on the right-hand side converges if ε = 0 and consequently for all 0 < ε ≤ ε0

with any sufficiently small ε0: ε0 < p− 1
1−α . J

In Theorems 2 and 3 we provide, in case of power grandizers, more precise two-sided
estimates for the Hardy operators, including the case which allows the explicit calculation
of the norm of the operators. We omit the proofs of these theorems, since they are
contained in the proofs of Theorems 5 and 6, under the change of Rn by R+.

Theorem 2. Let a(x) = x−λ, λ ∈ R. The condition α < min{1,λ}
p′ is sufficient and the

condition α < max{1,λ}
p′ is necessary for the boundedness of the operator Hα in the grand

space L
p)
a (R+) and under these conditions

1
max{1,λ}

p′ − α
≤ ‖Hα‖

L
p)
a (R+)

≤ 1
min{1,λ}

p′ − α
.

In particular, when λ = 1, the operator Hα is bounded in grand space L
p)
a (R+) if and only

if α < 1
p′ , and ‖Hα‖

L
p)
a (R+)

= 1
1
p′−α

.
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Theorem 3. Let a(x) = x−λ, λ ∈ R. The condition β > −min{1,λ}
p is sufficient and the

condition β > −max{1,λ}
p is necessary for the boundedness of the operator Hβ in the grand

space L
p)
a (R+), and under these conditions

1

1− min{1,λ}
p′ + β

≤ ‖Hβ‖
L
p)
a (R+)

≤ 1

1− max{1,λ}
p′ + β

.

In particular, when λ = 1, the operator Hβ is bounded in grand space L
p)
a (R+) if and only

if β > −1
p , and ‖Hβ‖

L
p)
a (R+)

= 1
1
p

+β
.

3.3. Multidimensional case: estimates via spherical means

We call a function f(x), x ∈ Rn, radial, if it depends only on |x|. Let

F (ρ) :=
1

|Sn−1|

∫
Sn−1

f(ρσ)dσ

and F(x) = F (|x|). We write A(x) = A(|x|) in the case of radial grandizer.

Multidimensional Hardy operators Hα
n and Hβn are radical to one-dimensional Hardy

operators Hα and Hβ, respectively, by the formulas

Hα
n f(x) = |Sn−1|Hα−n+1F (ρ);

Hβnf(x) = |Sn−1|HβF (ρ), ρ = |x|. (22)

The following inequalities∫
Sn−1

a(ρσ)λdσ ≤ |Sn−1|A(ρ)λ, 0 < λ < 1, (23)

|F (ρ)|q ≤ 1

|Sn−1|

∫
Sn−1

|f(ρσ)|qdσ, q ≥ 1, (24)

are obvious.
The lemmas below are direct consequences of the inequalities (23) and (24).

Lemma 6. For a radial function f the following holds:

‖f‖
L
p)
a (Rn)

≤ ‖f‖
L
p)
A (Rn)

where a(x) is an arbitrary grandizer on Rn such that 1
|Sn−1|

∫
Sn−1

a(ρσ)dσ = A(x).
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Lemma 7. In case of non necessarily radial function f and radial grandizer A the fol-
lowing estimate for spherical means is valid:

‖F‖
L
p)
A (Rn)

≤ ‖f‖
L
p)
A (Rn)

. (25)

By means of Theorem 1 the estimates

‖Hα
n f‖Lp)a (Rn)

≤ C‖F‖
L
p)
A (Rn)

, (26)

‖Hβnf‖Lp)a (Rn)
≤ C‖F‖

L
p)
A (Rn)

(27)

for Hardy operators via spherical means will be proved.
In view of Lemma 7, the estimates via Lp)-norms of spherical means of the function f

are a stronger result than the estimates via Lp)(Rn)-norms of the function f itself, since
the left-hand side in (25) may be finite, but the right-hand side infinite.

In the theorem below we use the notation

cn,α(A) := |Sn−1| sup
0<ε<p−1

∞∫
1

t
α− n

(p−ε)′−1
A∗ (t)

ε
p(p−ε) dt,

dn,β(A) := |Sn−1| sup
0<ε<p−1

1∫
0

t
β+ n

p−ε−1
A∗ (t)

ε
p(p−ε) dt.

Theorem 4. Let 1 < p <∞, α, β ∈ R, A(r) be a non-negative function on R+ satisfying
the integrability condition (3) and a(x) be an arbitrary grandizer on Rn, the spherical mean
of which is equal to A(r).

I. If cn,α(A) < ∞ and dn,β(A) < ∞, then the estimates (26) and (27) hold with
C = cn,α(A) and C = dn,β(A), respectively.

II. If A ∈ L1(B(0, τ)) for some τ > 0, then the condition α < n
p′ is necessary for

the inequality (26) to hold, and the sharp constant C∗ in (26) satisfies the inequality
|Sn−1|
n
p′ − α

≤ C∗. If A ∈ L1(Rn \ B(0, N)) for some N > 0, then the condition β > −n
p is

necessary for the inequality (27)to hold, and the sharp constant C∗ in (27) satisfies the

inequality
|Sn−1|
n
p + β

≤ C∗.

III. If α < n
p′ and the function rγA(r) is non-increating on R+ for some γ > αp′, then

(26) holds with the sharp constant

C∗ ≤ |Sn−1|
min{γ,n}

p′ − α
.
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If β > −n
p and the function rλA(r) is non-decreasing on R+ for some λ < (β + n)p′, then

(27) holds with the sharp constant

C∗ ≤ |Sn−1|
n− max{λ,n}

p′ + β
. (28)

Proof. The proof will be given for the operator Hβn. The proof for the operator Hα
n

may be either similarly conducted, or derived from the relations (7) and (9).
I. In view of the equality in (22) and the inequality (23), we get

‖Hβnf‖Lp)a (Rn)
= |Sn−1| sup

0<ε<p−1

ε ∞∫
0

ρn−1
∣∣∣HβF (ρ)

∣∣∣p−ε ∫
Sn−1

a(ρσ)
ε
pdσdρ


1
p−ε

≤ |Sn−1| sup
0<ε<p−1

ε|Sn−1|
∞∫

0

ρn−1
∣∣∣HβF (ρ)

∣∣∣p−εA(ρ)
ε
pdρ

 1
p−ε

= |Sn−1| sup
0<ε<p−1

ε|Sn−1|
∞∫

0

∣∣∣ρn−1
p HβF (ρ)

∣∣∣p−ε [ρn−1A(ρ)
] ε
p dρ

 1
p−ε

= |Sn−1| sup
0<ε<p−1

ε|Sn−1|
∞∫

0

∣∣∣Hβ+n−1
p Fp(ρ)

∣∣∣p−ε [ρn−1A(ρ)
] ε
p dρ

 1
p−ε

,

where Fp(ρ) = ρ
n−1
p F (ρ). Taking the inequality (19) into account, we obtain

‖Hβnf‖Lp)a (Rn)
≤ |Sn−1| sup

0<ε<p−1

1∫
0

r
β+n−1

p
+ 1
p−ε−1 [

rn−1A∗(r)
] ε
p(p−ε) dr

×

ε ∞∫
0

|Fp(ρ)|p−ε
[
ρn−1A(ρ)

] ε
p dρ

 1
p−ε

= |Sn−1| sup
0<ε<p−1

1∫
0

r
β+ n

p−ε−1
A∗(r)

ε
p(p−ε)dr

×

ε ∞∫
0

|F (ρ)|p−εA(ρ)
ε
p |Sn−1|ρn−1dρ

 1
p−ε

,
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which proves (27).
II. We choose the function

fδ(x) =

{
0, |x| ≤ N,
|x|−

n
p
−δ
, |x| > N,

δ > 0.

Since the spherical means Fδ of a radial function fδ coincide with the function itself, by
applying Hölder inequality with the exponent p

ε it can be easily checked that ‖fδ‖Lp)A (Rn)
<

∞ for all δ > 0. If (27) holds for the operator Hβn, then this operator should be defined

on the functions fδ ∈ L
p)
A (Rn) for all δ > 0. For the existence of the integral defining Hβnfδ

it is necessary that β > −n
p − δ and then for |x| > N we have

Hβnfδ(x) =
|Sn−1|

β + n
p + δ

fδ(x).

Due to the arbitrariness of δ we arrive at the condition β ≥ −n
p . We have

‖Hβn‖Lp)A (Rn)→Lp)a (Rn)
≥
‖Hβnfδ‖Lp)a (Rn\B(0,N))

‖fδ‖Lp)A (Rn)

=
|Sn−1|

β + n
p + δ

‖fδ‖Lp)a (Rn\B(0,N))

‖fδ‖Lp)A (Rn\B(0,N))

≥ |Sn−1|
β + n

p + δ
,

where we used Lemma 6. Passing to the limit as δ → 0, we obtain the lower estimate for
the sharp constant C∗. Also, in the case β = −n

p the boundedness of the operator Hβn is
obviously excluded.

III. To prove the inequality (28), it suffices to apply Lemma 4 and note that

dn,β(A) = Jn
p

+β(A).

J

Corollary 3. Let a(x) = A(|x|). The conditions cn,α(A) < ∞ and dn,β(A) < ∞ are
sufficient and the conditions α < n

p′ and β > −n
p are necessary for the boundedness of the

operators Hα
n and Hβn, respectively, in L

p)
a (Rn), and

‖Hα
n ‖Lp)a (Rn)

≥ |S
n−1|

n
p′ − α

, ‖Hβn‖Lp)a (Rn)
≥ |S

n−1|
n
p + β

.
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Proof. It suffices to use Lemma 7. J

Theorem 5. Let a(x) = |x|−λ, λ ∈ R. The condition α < min{n,λ}
p′ is sufficient and the

condition α < max{n,λ}
p′ is necessary for the boundedness of the operator Hα

n in the grand

space L
p)
a (Rn) and under these conditions

|Sn−1|
max{n,λ}

p′ − α
≤ C∗ ≤ |Sn−1|

min{n,λ}
p′ − α

.

In particular, when λ = n, the inequality (26) holds if and only if α < n
p′ and then

C∗ = |Sn−1|
n
p′−α

.

Proof. The sufficiency of the condition α < min{n,λ}
p′ and the upper bound for C∗ follow

from the part III of Theorem 4. Let us prove the necessity and the lower bound. In view
of the part II of Theorem 4, we have only to treat the case λ ≥ n. To this end, choose the
function

fδ(x) =

{
|x|−n+ λ

p′+δ, |x| ≤ 1,

0, |x| > 1.

By Lemma 5, fδ ∈ L
p)
a (Rn) for δ > 0. For |x| < 1 we have Hα

n fδ(x) = |Sn−1|
λ
p′+δ−α

fδ(x),

and then ‖Hα
n fδ‖Lp)a (Rn)

≥ |Sn−1|
λ
p′+δ−α

‖fδ‖Lp)a (Rn)
for all δ > 0. Hence, passing to the limit as

δ → 0, we obtain the inequality |S
n−1|
λ
p′−α

≤ C∗. J

The following theorem is proved in the same way. It may be also derived directly from
Theorem 5 via the relation (9).

Theorem 6. Let a(x) = |x|−λ, λ ∈ R. The condition β > max{n,λ}
p′ − n is sufficient and

the condition β > min{n,λ}
p′ − n is necessary for the boundedness of the operator Hβn in the

grand space L
p)
a (Rn) and under these conditions

|Sn−1|
n− min{λ,n}

p′ + β
≤ C∗ ≤ |Sn−1|

n− max{λ,n}
p′ + β

.

In particular, when λ = n, the inequality (27) holds if and only if β > −n
p and then

C∗ = |Sn−1|
n
p

+β .
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3.4. Multidimensional case: general grandizers

In Theorem 4, for multidimensional Hardy operators we obtained a result stronger
than the boundedness in the grand spaces. Namely, the estimates were given via one-
dimensional norms of spherical means of function f , not n-dimensional norms of the func-
tions f themselves. This result was obtained under the assumption that the grandizer is
a radial function. In the theorem below we use another approach, which allows to obtain
estimates via n-dimensional norms of f for general, i.e. not necessarily radial, grandizers.

Denote

kp :=
|Sn−1|
n
p′ − α

, `p :=
|Sn−1|
n
p + β

,

Cp,α(a) := sup
0<ε<p−1

k
1

(p−ε)′
p−ε

 ∫
|x|>1

|x|α−
n

(p−ε)′−na∗(x)
ε
pdx


1
p−ε

,

Dp,β(a) := sup
0<ε<p−1

`
1

(p−ε)′
p−ε

 ∫
|x|<1

|x|β−
n

(p−ε)′ a∗(x)
ε
pdx


1
p−ε

,

where a∗(x) := sup
y∈Rn

a(x|y|)
a(y) .

Theorem 7. Let 1 < p <∞, a be a non-negative function on Rn, satisfying the integra-
bility condition (2).

The conditions Cp,α(a) < ∞ and Dp,β(a) < ∞ are sufficient for the boundedness of

operators Hα
n and Hβn, respectively, in the grand space L

p)
a (Rn) and

‖Hα
n ‖Lp)a (Rn)

≤ Cp,α(a), ‖Hβn‖Lp)a (Rn)
≤ Dp,β(a).

If a ∈ L1(B(0, τ)) for some τ > 0, then the condition α < n
p′ is necessary for the

inequality ‖Hα
n f‖Lp)a (Rn)

≤ C‖f‖
L
p)
a (Rn)

to hold and |S
n−1|
n
p′−α

≤ ‖Hα
n ‖Lp)a (Rn)

under this con-

dition.

If a ∈ L1(Rn \ B(0, N)) for some N > 0, then the condition β > −n
p is necessary for

the inequality ‖Hβnf‖Lp)a (Rn)
≤ C‖f‖

L
p)
a (Rn)

to hold and |Sn−1|
n
p′−α

≤ ‖Hβn‖Lp)a (Rn)
under this

condition.

Proof.
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For any q > 1 by the Hölder inequality we obtain

|Hβnf(x)| ≤
∫

|y|>|x|

(
|x|β|y|−β−n

) 1
q′ |y|−

n
qq′
(
|x|β|y|−β−n

) 1
q |y|

n
qq′ |f(y)|dy

≤

 ∫
|y|>|x|

|x|β|y|−β−n|y|−
n
q dy


1
q′
 ∫
|y|>|x|

|x|β|y|−β−n|y|
n
q′ |f(y)|qdy


1
q

= `
1
q′
q |x|−

n
qq′

 ∫
|y|>|x|

|x|β|y|−β−
n
q |f(y)|qdy


1
q

.

Furthermore, by Fubini theorem we get

‖Hβnf(x)‖
L
p)
a (Rn)

= sup
0<ε<p−1

ε ∫
Rn

|Hβnf(x)|p−εa(x)
ε
pdx

 1
p−ε

≤ sup
0<ε<p−1

`
1

(p−ε)′
p−ε

ε ∫
Rn

|x|β−
n

(p−ε)′

∫
|y|>|x|

|f(y)|p−ε

|y|β+ n
p−ε

dy a(x)
ε
pdx


1
p−ε

= sup
0<ε<p−1

ε`
1

(p−ε)′
p−ε

∫
Rn

|f(y)|p−εdy
∫
|x|<1

|x|β−
n

(p−ε)′ a(x|y|)
ε
pdx


1
p−ε

≤ sup
0<ε<p−1

ε`
1

(p−ε)′
p−ε

 ∫
|x|<1

|x|β−
n

(p−ε)′ a∗(x)
ε
pdx


1
p−ε

×

∫
Rn

|f(y)|p−εa(y)
ε
pdy

 1
p−ε

= Dp,β(a)‖f‖
L
p)
a (Rn)

.

The necessity of the condition β > −n
p and the lower bound for the norm of the operator

Hβn are proved with the help of the same function fδ(x) as in the proof of Theorem 4.
The proof of the bounedness of the operator Hα

n is similar. J

In the remark below for certain class of non-radial grandizers we provide some easy-
to-check estimates for the constants Cp,α(a) and Dp,β(a).
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Remark 3. Let a(x) = b(r)g(σ), where r = |x|, σ = x
|x| , b and g be non-negative func-

tions on R+ and Sn−1, respectively, inf
σ∈Sn−1

g(σ) > 0 and g ∈ L1(Sn−1). Then the con-

stants Cp,α(a) and Dp,β(a) have the following estimates: Cp,α(a) ≤ |Sn−1|cp,α(b)c(g)
1
p′ ,

Dp,β(a) ≤ |Sn−1|dp,α(b)c(g)
1
p′ , where the constants cp,α and dp,β, corresponding to the

one-dimensional case, were defined in (11) and (12) and

c(g) =

1
|Sn−1|

∫
Sn−1

g(σ)dσ

inf
σ∈Sn−1

g(σ)
.

To verify these estimates, it suffices to note that a∗(x) ≤ b∗(r) g(σ)
inf

σ∈Sn−1
g(σ) , see Lemma 2.
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