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On Third Order Coupled Systems with Full Nonlineari-

ties

F. Minhós, I. Coxe∗

Abstract. This work studies the solvability of the nonlinear third order coupled system composed
by the differential equations

{

−u′′′ (t) = f (t, v(t), v′(t), v′′(t))
−v′′′ (t) = h (t, u(t), u′(t), u′′(t)) ,

with f, h : [0, 1]× R
3 → R L1-Carathéodory functions and the two-point boundary conditions

{

u (0) = u′ (0) = u′ (1) = 0
v (0) = v′ (0) = v′ (1) = 0.

An adequate truncature together with Nagumo-type conditions allow the dependence of the non-
linearities on the second derivatives. By lower and upper solutions method we obtain strips where
the unknown functions and their derivatives must lie, which provides some qualitative data on the
solutions.

Key Words and Phrases: coupled systems, Green functions, Nagumo-type condition, coupled
lower and upper solutions.
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1. Introduction

This work gives sufficient conditions for the existence of solution, positive or not, of
the nonlinear third order coupled system composed by the differential equations

{

−u′′′ (t) = f (t, v(t), v′(t), v′′(t))
−v′′′ (t) = h (t, u(t), u′(t), u′′(t)) ,

(1)
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where f, h : [0, 1] × R
3 → R are L1-Carathéodory functions, and the two-point boundary

conditions
{

u (0) = u′ (0) = u′ (1) = 0,
v (0) = v′ (0) = v′ (1) = 0.

(2)

Moreover, by applying lower and upper solutions technique, the localization part of the
result allows us to have some qualitative data about solutions sign, growth or variation,
as suggested in [19].

Higher order nonlinear systems of differential equations have had an increasing interest
in last years, mostly due to their applications in several fields such as populations dynamics,
mechanics, optimal control, harvesting; see [1, 3, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18] and the
references therein.

In particular, third order equations model many phenomenons in physics, engineering
and physiology, among others. As examples, we mention the flow of a thin film of viscous
fluid over a solid surface (see [2, 21]), the deflection of a curved beam having a constant or
varying cross section, the solitary waves solution of the Korteweg–de Vries equation ([17]),
the thyroid-pituitary interaction ([4]) or vehicles nonlinear suspensions ([11]).

The methods used in the literature for third order coupled systems can not deal with
the second derivatives of the unknown functions. See, for example, [20] where the author
proves the existence of at least three positive solutions for the boundary-value problem















u′′′ (t) + a(t) f(t, u(t), v(t)) = 0, 0 < t < 1,
v′′′ (t) + b(t) h(t, u(t), v(t)) = 0, 0 < t < 1,

u (0) = u′ (0) = 0, u′ (1) = βu′(η),
v (0) = v′ (0) = 0, v′ (1) = βv′(η),

where f, h : [0, 1] × [0,∞)2 → [0,∞) are continuous and 0 < η < 1, 1 < β < 1/η,
a(t), b(t) ∈ C([0, 1], [0,∞)) and are not identically zero on [η/β, η], applying the Leggett-
Williams fixed point theorem. And [12], where the authors study the third order differen-
tial equations

u′′′i (t) + fi
(

t, u1(t), ..., un(t), u
′
1(t), ..., u

′
n(t)

)

= 0, 0 < t < 1, i = 1, ..., n,

where fi : [0, 1] × R
n → R are continuous functions, with multi-point integral boundary

conditions, via the Guo-Krasnosels’kii fixed point theorem in a cone.
Motivated by the above papers and by those applications which include a second

derivative dependence, we consider problem (1), (2). Note that standard cone theory can
not be applied to our problem because the second derivative of the Green´s functions,
associated to the linear form of (1), changes sign.

Our arguments apply an integral system defined with the Green´s functions as the
kernel component, and some auxiliary compact operators, in which an adequate truncature
plays a key role. Coupled lower and upper solutions provide a localization tool to establish



On Third Order Coupled Systems 149

not only the equivalence between auxiliary and initial problems, but also to give some
qualitative properties of the solution. Moreover, a Nagumo-type condition allows an a
priori control on second derivatives, as in [5].

The paper is organized as follows: Section 2 contains the expression of the Green’s
functions, coupled lower and upper solutions definitions and a priori estimations for the
second derivatives. The main theorem, an existence and localization result, is in Section
3. In last section we present an example to show the applicability of our main result.

2. Definitions and auxiliary results

Let E = C2[0, 1] be the Banach space equipped with the norm ‖ · ‖C2 , defined by

‖w‖C2 := max
{

‖w‖, ‖w′‖, ‖w′′‖
}

,

where

‖y‖ := max
t∈[0, 1]

|y(t)|

and E2 =
(

C2[0, 1]
)2

with the norm

‖(u, v)‖E2 = max {‖u‖C2 , ‖v‖C2} .

For the reader’s convenience, we present the definition of L1-Carathéodory function:

Definition 1. A function g : [0, 1]×R
3 → R is a L1-Carathéodory function, if it satisfies

the following properties:

1. g(t,·,·,·) is continuous in R
3 for a.e. t ∈ [0, 1] .

2. g(·, x, y, z) is measurable in [0, 1] for all (x, y, z) ∈ R
3.

3. For every L > 0 there exists ψL ∈ L1 [0, 1] such that, for a.e. t ∈ [0, 1] and all
(x, y, z) ∈ R

3 with ‖(x, y, z)‖ ≤ L,

|g(t, x, y, z)| ≤ ψL(t).

Lemma 1. The pair of functions (u(t), v(t)) ∈
(

C3[0, 1], R
)2

is a solution of problem
(1)-(2) if and only if (u(t), v(t)) is a solution of the following system of integral equations:







u(t) =
∫ 1
0 G(t, s)f(s, v(s), v

′(s), v′′(s))ds,

v(t) =
∫ 1
0 G(t, s)h(s, u(s), u

′(s), u′′(s))ds,

(3)
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where G(t, s) is the Green’s function associated to problem (1)-(2), defined by

G (t, s) =











− t2s
2 − s2

2 + ts , 0 ≤ s ≤ t ≤ 1,

− t2s
2 + t2

2 , t ≤ s ≤ 1.

(4)

The proof follows by standard arguments and is omitted.

Definition 2. The pair of functions (α1, α2) ∈
(

C3 [0, 1]
)2

is called coupled lower solution
of (1)-(2) if

{

−α′′′
1 (t) ≤ f (t, α1 (t) , α

′
1 (t) , α

′′
1 (t)) ,

−α′′′

2 (t) ≤ h (t, α2 (t) , α
′
2 (t) , α

′′
2 (t)) ,

with
α1 (0) ≤ 0, α′

1 (0) ≤ 0, α′
1 (1) ≤ 0 (5)

and
α2 (0) ≤ 0, α′

2 (0) ≤ 0, α′
2 (1) ≤ 0.

The pair (β1, β2) ∈
(

C3 [0, 1]
)2

is said to be coupled upper solutions of (1)-(2) if β1 and
β2 verify the reversed inequalities.

To control the growth of the second derivatives we need Nagumo-type conditions:

Definition 3. The L1-Carathéodory functions f, h : [0, 1]×R
3 → R satisfy Nagumo-type

conditions if there are positive continuos functions φ1, φ2 such that

|f (t, v0, v1, v2) | ≤ φ1 (v2) (6)

and
|h (t, u0, u1, u2) | ≤ φ2 (u2) (7)

with
+∞
∫

0

s

φ1 (s)
ds = +∞ and

+∞
∫

0

s

φ2 (s)
ds = +∞. (8)

Next lemma gives a priori estimations for u′′(t) and v′′(t) :

Lemma 2. Let f, h : [0, 1]×R
3 → R be L1-Carathéodory functions satisfying (6), (7) and

(8), in [0, 1] × R
3. Then there exist R1,R2 > 0 (not depending on (u, v) ) such that for

every solution of (1) verifying

α
(i)
1 (t) ≤ u(i) (t) ≤ β

(i)
1 (t) ,

α
(i)
2 (t) ≤ v(i) (t) ≤ β

(i)
2 (t) , for i = 0, 1, and t ∈ [0, 1] ,

we have
||u′′|| < R1 and ||v′′|| < R2. (9)
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Proof. Let (u, v) be a solution of (1) such that

α1(t) ≤ u(t) ≤ β1(t), α
′
1(t) ≤ u′(t) ≤ β′1(t), for t ∈ [0, 1] , (10)

and
α2(t) ≤ v(t) ≤ β2(t), α

′
2(t) ≤ v′(t) ≤ β′2(t), for t ∈ [0, 1] .

Define r > 0 such that

r := max
{

β′1(0) − α′
1(1), β

′
1(1)− α′

1(0), β
′
2(0)− α′

2(1), β
′
2(1) − α′

2(0)
}

(11)

and take R1,R2 > 0 such that

R1
∫

r

s

φ1 (s)
ds > max

t∈[0,1]
β′1 (t)− min

t∈[0,1]
α′
1 (t) (12)

and
R2
∫

r

s

φ2 (s)
ds > max

t∈[0,1]
β′2 (t)− min

t∈[0,1]
α′
2 (t) .

Let us prove the a priori estimation for u′′(t). For v′′(t) the technique is identical.
If, by contradiction, |u′′ (t)| > r,∀t ∈ [0, 1] , in the case u′′(t) > r, for t ∈ [0, 1] , by (10)

and (11), we have the contradiction

β′1(1) − α′
1(0) ≥ u′(1)− u′(0) =

1
∫

0

u′′(t)dt >

1
∫

0

r dt ≥ β′1(1) − α′
1(0).

In the case where u′′(t) < −r, for t ∈ [0, 1] , we arrive at a similar contradiction.
Therefore there exists t ∈ [0, 1] such that |u′′ (t)| < r.

If |u′′ (t)| < r, ∀t ∈ [0, 1], the proof would be finished assuming R1 > r.
Consider that there is t0 ∈ [0, 1[ such that |u′′ (t0)| > r. If u′′ (t0) > r, there is t∗ ∈ [0, 1],

with t∗ < t0, u
′′ (t∗) = r and u′′ (t) > r,∀t ∈]t∗, t0].

By a change of variable,

u′′(t0)
∫

u′′(t∗)

s

φ1 (s)
ds =

t0
∫

t∗

u′′ (s)

φ1 (u
′′

(s))
u′′′ (s) ds

=

t0
∫

t∗

u
′′

(s)

φ1 (u
′′ (s))

f
(

s, v (s) , v′ (s) , v′′ (s)
)

ds
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≤
t0
∫

t∗

u′′ (s) ds = u′ (t0)− u′ (t∗)

≤ max
t∈[0,1]

β′1 (t)− min
t∈[0,1]

α′
1 (t) <

R1
∫

r

s

φ1 (s)
ds.

As t0 is taken arbitrarily on the values where u′′ (t0) > r, we have u′′ (t) < R1,∀t ∈
[0, 1] .

If we assume u′′ (t0) < −r, the method is analogous. Therefore, ||u′′|| < R1.
Applying a similar technique and (7) it can be shown that ‖v′′‖ < R2, for some R2 > 0.

The existence tool will be the Schauder’s fixed point theorem:

Theorem 1. ([22]) Let Y be a nonempty, closed, bounded and convex subset of a Banach
space X, and suppose that P : Y → Y is a compact operator. Then P has at least one
fixed point in Y .

3. Existence and localization theorem

The main theorem will provide the existence and the localization of a solution for the
problem (1)-(2).

Theorem 2. Let f, h : [0, 1]×R
3 → R be L1-Carathéodory functions satisfying the Nagumo

type conditions (6), (7) and (8).
If there are coupled lower and upper solutions of (1)-(2), (α1, α2) and (β1, β2) , respec-
tively, such that

(

α′
1, α

′
2

)

≤
(

β′1, β
′
2

)

,

that is,

α′
1(t) ≤ β′1(t) and α

′
2(t) ≤ β′2(t), ∀t ∈ [0, 1],

then there is at least a pair (u(t), v(t)) ∈
(

C3[0, 1], R
)2

solution of (1)-(2) and, moreover,
for i = 0, 1,

α
(i)
1 (t) ≤ u(i)(t) ≤ β

(i)
1 (t)

and
α
(i)
2 (t) ≤ v(i)(t) ≤ β

(i)
2 (t), ∀t ∈ [0, 1].

Remark 1. If α′
1(t) ≤ u′(t) ≤ β′1(t) for t ∈ [0, 1], then by integration in [0, t], and, by (5)

and (2),

α1(t) ≤ α1(t)− α1(0) ≤ u (t) ≤ β1 (t)− β1 (0) ≤ β1(t), for t ∈ [0, 1].
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Analogously, if α′
2(t) ≤ v′ (t) ≤ β′2(t), ∀t ∈ [0, 1], then

α2(t) ≤ v(t) ≤ β2(t) for t ∈ [0, 1].

Proof. Define the operators T1 : E2 → E , T2 : E2 → E and

T (u, v) = (T1 (u, v) , T2 (u, v)) (13)

with

(T1 (u, v)) (t) =

1
∫

0

G (t, s) f
(

s, v (s) , v′ (s) , v′′ (s)
)

ds,

(T2 (u, v)) (t) =

1
∫

0

G (t, s)h
(

s, u (s) , u′ (s) , u′′ (s)
)

ds.

By Lemma 1, the fixed points of T are the solutions of (1)-(2). In the sequel, we prove
that T has a fixed point.

Consider the auxiliary operators T ∗ : E2 → E2, T ∗ (u, v) = (T ∗
1 (u, v) , T ∗

2 (u, v)), where
T ∗
1 : E2 → E is given by

T ∗
1 (u (t) , v(t)) =

1
∫

0

G (t, s)F (s, u (s) , v(s)) ds,
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with F (t, u(t), v(t)) := F defined as

F =



































































































































f (t, β1(t), β
′
1(t), β

′′
1 (t))−

u′(t)−β′

1(t)
1+|u′(t)−β′

1(t)|
− v′(t)−β′

2(t)
1+|v′(t)−β′

2(t)|
if u′(t) > β′1(t),

v′(t) > β′2(t)

f (t, u(t), u′(t), u′′(t))− v′(t)−β′

2(t)
1+|v′(t)−β′

2(t)|
if α′

1(t) ≤ u′(t) ≤ β′1(t),

v′(t) > β′2(t)

f (t, α1(t), α
′
1(t), α

′′
1(t))−

u′(t)−α′

1(t)
1+|u′(t)−α′

1(t)|
+

v′(t)−β′

2(t)
1+|v′(t)−β′

2(t)|
if u′(t) < α′

1(t),

v′(t) > β′2(t)

f (t, β1(t), β
′
1(t), β

′′
1 (t))−

u′(t)−β′

1(t)
1+|u′(t)−β′

1(t)|
if u′(t) > β′1(t),

α′
2(t) ≤ v′(t) ≤ β′2(t)

f (t, v(t), v′(t), v′′(t)) if α′
1(t) ≤ u′(t) ≤ β′1(t), α

′
2(t) ≤ v′(t) ≤ β′2(t)

f (t, α1(t), α
′
1(t), α

′′
1(t))−

u′(t)−α′

1(t)
1+|u′(t)−α′

1(t)|
if u′(t) < α′

1(t), α
′
2(t) ≤ v′(t) ≤ β′2(t)

f (t, β1(t), β
′
1(t), β

′′
1 (t))−

u′(t)−β′

1(t)
1+|u′(t)−β′

1(t)|
+

v′(t)−α′

2(t)
1+|v′(t)−α′

2(t)|
if u′(t) > β′1(t),

v′(t) < α′
2(t)

f (t, u(t), u′(t), u′′(t))− v′(t)−α′

2(t)
1+|v′(t)−α′

2(t)|
if α′

1(t) ≤ u′(t) ≤ β′1(t), v
′(t) < α′

2(t)

f (t, α1(t), α
′
1(t), α

′′
1(t))−

u′(t)−α′

1(t)
1+|u′(t)−α′

1(t)|
− v′(t)−α′

2(t)
1+|v′(t)−α′

2(t)|
if u′(t) < α′

1(t),

v′(t) < α′
2(t),

and T ∗
2 : E2 → E is given by

T ∗
2 (u (t) , v (t)) =

1
∫

0

G (t, s)H (s, u (s) , v(s)) ds,
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with H(t, u(t), v(t)) := H defined as

H =



















































































































h (t, β2(t), β
′
2(t), β

′′
2 (t))−

u′(t)−β′

1(t)
1+|u′(t)−β′

1(t)|
− v′(t)−β′

2(t)
1+|v′(t)−β′

2(t)|
if u′(t) > β′1(t),

v′(t) > β′2(t)

h (t, β2(t), β
′
2(t), β

′′
2 (t))−

v′(t)−β′

2(t)
1+|v′(t)−β′

2(t)|
if α′

1(t) ≤ u′(t) ≤ β′1(t), v
′(t) > β′2(t)

h (t, β2(t), β
′
2(t), β

′′
2 (t)) +

u′(t)−α′

1(t)
1+|u′(t)−α′

1(t)|
− v′(t)−β′

2(t)
1+|v′(t)−β′

2(t)|
if u′(t) < α′

1(t),

v′(t) > β′2(t)

h (t, v(t), v′(t), v′′(t))− u′(t)−β′

1(t)
1+|u′(t)−β′

1(t)|
if u′(t) > β′1(t), α

′
2(t) ≤ v′(t) ≤ β′2(t)

h (t, u(t), u′(t), u′′(t)) if α′
1(t) ≤ u′(t) ≤ β′1(t), α

′
2(t) ≤ v′(t) ≤ β′2(t)

h (t, v(t), v′(t), v′′(t))− u′(t)−α′

1(t)
1+|u′(t)−α′

1(t)|
if u′(t) < α′

1(t), α
′
2(t) ≤ v′(t) ≤ β′2(t)

h (t, α2(t), α
′
2(t), α

′′
2(t)) +

u′(t)−β′

1(t)
1+|u′(t)−β′

1(t)|
− v′(t)−α′

2(t)
1+|v′(t)−α′

2(t)|
if u′(t) > β′1(t),

v′(t) < α′
2(t)

h (t, α2(t), α
′
2(t), α

′′
2(t))−

v′(t)−α′

2(t)
1+|v′(t)−α′

2(t)|
if α′

1(t) ≤ u′(t) ≤ β′1(t), v
′(t) < α′

2(t)

h (t, α2(t), α
′
2(t), α

′′
2(t))−

u′(t)−α′

1(t)
1+|u′(t)−α′

1(t)|
− v′(t)−α′

2(t)
1+|v′(t)−α′

2(t)|
if u′(t) < α′

1(t),

v′(t) < α′
2(t).

As f and h are L1-Carathéodory functions, it follows F and H are L1-Carathéodory
functions, too. Define the compact subset of E2

K =
{

(u, v) ∈ E2 : ‖(u, v)‖E2 ≤ L
}

,

with L > 0 given by

L > max
{

R1, R2,
∥

∥

∥
α
(j)
i

∥

∥

∥
,
∥

∥

∥
β
(j)
i

∥

∥

∥
, i = 1, 2, j = 0, 1, 2

}

, (14)

where R1, R2 are defined in (9). Therefore, by Definition 1, for (u, v) ∈ K, there are
positive functions ψ1L, ψ2L : [0, 1] → (0,+∞) such that ψ1L, ψ2L ∈ L1[0, 1] and, for (u, v) ∈
K,

|F (t, u(t), v(t))| ≤ ψ1L(t), for a.e. t ∈ [0, 1] , (15)

and
|H(t, u(t), v(t))| ≤ ψ2L(t), for a.e. t ∈ [0, 1] . (16)

The Green’s function G (t, s) is continuous in [0, 1]× [0, 1] and, by Remark 1, functions
F (t, u(t), v(t)) and H(t, u(t), v(t)) are bounded. Then T ∗

1 (u, v) and T ∗
2 (u, v) are well

defined and continuous in E2, and so, the operator T ∗ is well defined and continuous in
E2.

Step 1: T ∗
1 and T ∗

2 are completely continuous in
(

C2 [0, 1]
)2
.
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The operator T ∗
1 is continuous in

(

C2 [0, 1]
)2

as G (t, s) and ∂G(t,s)
∂t

are continuous and

f is a L1-Carathéodory function. Moreover, ∂2G(t,s)
∂t2

is bounded and therefore

1
∫

0

∂2G (t, s)

∂t2
F (s, u (s) , v(s)) ds is continuous.

In the same way, T ∗
2 is continuous in

(

C2 [0, 1]
)2
.

Claim 1.1. T ∗
1 and T ∗

2 are uniformly bounded in
(

C2 [0, 1]
)2
.

Define

M(s) := max

{

max
0≤t≤1

|G (t, s) |, max
0≤t≤1

∣

∣

∣

∣

∂G

∂t
(t, s)

∣

∣

∣

∣

, sup
0≤t≤1

∣

∣

∣

∣

∂2G

∂t2
(t, s)

∣

∣

∣

∣

}

.

.

Then, by Lemma (2) and (15),

|(T ∗
1 (u (t) , v(t)) | ≤

1
∫

0

|G (t, s) | |F (s, u (s) , v(s))| ds ≤
1

∫

0

M(s) ψ1L (s) ds < k0.

Analogously, it can be proved that

| (T ∗
1 (u (t) , v(t)))′ | < k1 and | (T ∗

1 (u (t) , v(t)))′′ | < k2,

for some k0, k1, k2 > 0.

As, for T ∗
2 (u, v), by (7),

|(T ∗
2 (u (t) , v(t)) | ≤

1
∫

0

|G (t, s) | |H (s, u (s) , v(s))| ds ≤
1

∫

0

M(s) ψ2L (s) ds < η0,

for η0 > 0, by similar arguments we have

| (T ∗
2 (u (t) , v(t)))′ | < η1 and | (T ∗

2 (u (t) , v(t)))′′ | < η2,

for some η1, η2 > 0.

Therefore T ∗ is uniformly bounded in
(

C2 [0, 1]
)2
.

Claim 1.2. T ∗
1 and T ∗

2 are equicontinuous in
(

C2 [0, 1]
)2
.
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For the first operator T ∗
1 , consider t1, t2 ∈ [0, 1] and, without loss of generality, suppose

t1 ≤ t2. So, by (15),

|T ∗
1 (u, v) (t1)− T ∗

1 (u, v) (t2)| ≤
1

∫

0

|G (t1, s)−G (t2, s)| ψ1L (s) ds→ 0 as t1 → t2.

By similar arguments,

∣

∣(T ∗
1 (u, v))

′ (t1)− (T ∗
1 (u, v))

′ (t2)
∣

∣ ≤
1

∫

0

∣

∣

∣

∣

∂G (t1, s)

∂t
− ∂G (t2, s)

∂t

∣

∣

∣

∣

ψ1L (s) ds→ 0

as t1 → t2, and

∣

∣(T ∗
1 (u, v))

′′ (t1)− (T ∗
1 (u, v))

′′ (t2)
∣

∣ ≤
1

∫

0

∣

∣

∣

∣

∂2G (t1, s)

∂t2
− ∂2G (t2, s)

∂t2

∣

∣

∣

∣

ψ1L (s) ds

≤
t2
∫

t1

ψ1L (s) ds→ 0 as t1 → t2.

The proof that T ∗
2 is equicontinuous in

(

C2 [0, 1]
)2

follows as above.

By the Arzèla-Ascoli theorem, the operator T ∗ (u, v) is completely continuous.

Step 3: T ∗ : E2 → E2 has a fixed point .

In order to apply Theorem 1 for operator T ∗ (u, v) it remains to prove that T ∗D ⊂ D,
for some closed, bounded and convex D ⊂ E2.

Consider D ⊂ E2 given by D :=
{

(u, v) ∈ E2 : ‖(u, v)‖E2 ≤ ρ
}

, with ρ > 0 such that

ρ > max {R1, R2, L, ki, ηi, i = 0, 1, 2} ,

where R1, R2 are given by (9), L by (14), and ki, ηi, i = 0, 1, 2, are as in Claim 1.1.
By Claim 1.1,

∥

∥(T ∗
1 (u, v)

(i)
∥

∥ ≤ ki, i = 0, 1, 2, and
∥

∥(T ∗
2 (u, v)

(i)
∥

∥ ≤ ηi, i = 0, 1, 2.
Therefore ‖(T ∗

1 (u, v)‖E < ρ and ‖(T ∗
2 (u, v)‖E < ρ, that is,

‖T ∗ (u, v)‖E2 < ρ.

So, T ∗D ⊂ D, and, by Theorem 1, T ∗ has a fixed point (u, v) ∈ D ⊂ E2.

Step 4: This fixed point (u, v) of T ∗ is also a fixed point of T, given by (13).

As (u, v) is a fixed point of T ∗(u, v), it means that (u, v) is a fixed point of T ∗
1 (u, v)

and of T ∗
2 (u, v).
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By standard arguments it can be shown that

−u′′′(t) = F (t, u(t), v(t))

and

−v′′′(t) = H(t, u(t), v(t)).

So, to prove this step it will be enough to show that

α′
1(t) ≤ u′ (t) ≤ β′1(t) and α

′
2(t) ≤ v′ (t) ≤ β′2(t), ∀t ∈ [0, 1].

For the first inequality suppose, by contradiction, that there is t ∈ [0, 1] such that
α′
1(t) > u′ (t) . Define

max
0≤t<1

(

α′
1(t)− u′ (t)

)

:= α′
1(t0)− u′ (t0) > 0.

By (2) and (5), t0 6= 0 because α′(0) − u′ (0) = α′(0) ≤ 0. Analogously, t0 6= 1. So
t0 ∈ ]0, 1[ and

α′′
1(t0) = u′′1 (t0) , α

′′′
1 (t0)− u′′′ (t0) ≤ 0.

As (α′
1(t)− u′ (t)) ∈ C[0, 1], there is I ⊂ [0, 1] such that t0 ∈ I and

α′
1(t)− u′ (t) > 0,

α′′′
1 (t)− u′′′ (t) ≤ 0, ∀t ∈ I.

For all possible values of v′ (t0) , we obtain the following contradictions by the trunca-
ture F and Definition 2:

If v′ (t0) < α′
2(t0), and as v′ (t) − α′

2(t) ∈ C[0, 1], then there is J0 ⊂ [0, 1] such that
t0 ∈ J0 and v′ (t)− α′

2(t) < 0, ∀t ∈ J0.

As t0 ∈ I ∩ J0, we have I ∩ J0 6= ∅ and

0 ≥
∫

I∩J0

(

α′′′
1 (t)− u′′′ (t)

)

dt

=

∫

I∩J0

(

α′′′
1 (t) + f

(

t, α1 (t) , α
′
1 (t) , α

′′
1 (t)

)

− u′ (t)− α′
1 (t)

1 + |u′ (t)− α′
1 (t)|

− v′ (t)− α′
2 (t)

1 + |u′ (t)− α′
2 (t)|

)

dt

>

∫

I∩J0

(

α′′′
1 (t) + f

(

t, α1 (t) , α
′
1 (t) , α

′′
1 (t)

))

dt ≥ 0.
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If α′
2(t0) ≤ v′ (t0) ≤ β′2(t0), and as v′, α′

2, β
′
2 ∈ C[0, 1], then there exists J1 ⊂ [0, 1] such

that t0 ∈ J1 and α′
2(t) ≤ v′ (t) ≤ β′2(t), ∀t ∈ J1.

As I ∩ J1 6= ∅, we have

0 ≥
∫

I∩J1

(

α′′′
1 (t)− u′′′ (t)

)

dt

=

∫

I∩J1

(

α′′′
1 (t) + f

(

t, α1 (t) , α
′
1 (t) , α

′′
1 (t)

)

− u′ (t)− α′
1 (t)

1 + |u′ (t)− α′
1 (t)|

)

dt

>

∫

I∩J1

(

α′′′
1 (t) + f

(

t, α1 (t) , α
′
1 (t) , α

′′
1 (t)

))

dt ≥ 0.

If v′ (t0) > β′2(t0), and as v′ (t) − β′2(t) ∈ C[0, 1], then there is J2 ⊂ [0, 1] such that
t0 ∈ J2 and v′ (t)− β′2(t) > 0, ∀t ∈ J2.

As t0 ∈ I ∩ J2, we have I ∩ J2 6= ∅ and

0 ≥
∫

I∩J2

(

α′′′
1 (t)− u′′′ (t)

)

dt

=

∫

I∩J2

(

α′′′
1 (t)− f

(

t, α1 (t) , α
′
1 (t) , α

′′
1 (t)

)

− u′ (t)− α′
1 (t)

1 + |u′ (t)− α′
1 (t)|

+
v′ (t)− β′2 (t)

1 + |v′ (t)− β′2 (t)|

)

dt

>

∫

I∩J2

(

α′′′
1 (t) + f

(

t, α1 (t) , α
′
1 (t) , α

′′
1 (t)

))

dt ≥ 0.

Therefore, α′
1(t) ≤ u′ (t) ,∀t ∈ [0, 1]. By similar arguments it can be proved that

u′ (t) ≤ β′1(t),∀t ∈ [0, 1] , and so,

α′
1(t) ≤ u′ (t) ≤ β′1(t), ∀t ∈ [0, 1]. (17)

Applying the same technique with the truncature H, it can be achieved that

α′
2(t) ≤ v′ (t) ≤ β′2(t), ∀t ∈ [0, 1]. (18)

So, the fixed point (u, v) of T ∗ is also a fixed point of T, given by (13), and by Lemma
1, (u(t), v(t)) is a solution of the problem (1)-(2).
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4. Example

Consider the system of nonlinear and nonautonomous differential equations











−u′′′(t) = v3 (t) + ev
′(t) − 6 3

√

(v′′ (t))2,

−v′′′(t) = t
4 − arctan (u (t)) + (u′ (t))3 + 2 (u′′ (t))2 ,

(19)

with the boundary conditions (2).
In fact, (19) is a particular case of (1) with

f (t, x, y, z) = x3 + ey − 6
3
√
z2

and

h (t, x, y, z) =
t

4
− arctan x+ y3 + 2z2,

where f and h are L1-Carathéodory functions.
By easy calculations, it can be seen that the functions

α1(t) = −1, β1(t) = t2,

α2(t) = −t2, β2(t) = 1,

are the coupled lower and upper solutions of (19), (1).
By Theorem 2, there is a solution (u, v) of (19), (2) such that

−1 ≤ u(t) ≤ t2, − t2 ≤ v(t) ≤ 1,

0 ≤ u′ (t) ≤ 2t, − 2t ≤ v′ (t) ≤ 0, for t ∈ [0, 1].

From the localization part, u (t) is a nondecreasing function and v (t) is a nonincreasing
one.
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