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New Stability Conditions for the Delayed Liénard
Nonlinear Equation via Fixed Point Technique

H. Gabsi, A. Ardjouni∗, A. Djoudi

Abstract. The class of second order nonlinear neutral differential equations having the
form

ẍ+ f (t, x, ẋ) ẋ+ b (t) g (x (t− τ (t))) = 0, for t ≥ t0,

is studied by means of contraction mappings. We give some new conditions ensuring
that the zero solution is asymptotically stable. Our results are strong and do not require

conditions that have been indispensable in previous investigations such as, g(x)
x ≥ β > 0

and lim g(x)
x exists as x → 0, the delay τ (t) is differentiable, the map t 7→ t − τ (t) is

strictly increasing (see [16]) or the function b : R+ → R+ is bounded and there exists
a function c : R+ → R+ such that f (t, x, y) ≤ F (x, y) c (t) for all t ≥ 0 and x, y ∈ R.
The results obtained improve those of D. Pi [16] and are very significant because, from
practical point of view, it is hard to control the factors of nuclear reactors that ensure
the delay is smoothly changed if we do not allow dependence between the functions and
the time.
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asymptotic stability.

2010 Mathematics Subject Classifications: AMS 34K20, 47H10

1. Introduction

Time-delay systems constitute basic mathematical models of real phenomenons
such as nuclear reactors, chemical engineering systems, biological systems and
population dynamics models. Such systems are often sources of instability and
degradation in control performance in many control problems. For more than
100 years, the Lyapunov direct method has been the ultimate key tool to study
stability problems. The direct method was widely used to study the stability of
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solutions of ordinary differential equations and functional differential equations.
Nevertheless, the pointwise nature of this method and the construction of the
Lyapunov functionals have been, and still are, an arduous task (see [7]). Re-
cently, many authors have realized that the fixed points theory can be used to
study the stability of the solution (see [1]-[11], [12], [15]-[18]). Levin and Nohel
[14] studied the following nonlinear systems of differential equations of Liénard
form:

ẍ+ h (t, x, ẋ) ẋ+ f (x) = a(t). (1)

They obtained, by constructing a proper Lyapunov function, conditions under
which all solutions of (1) tend to zero as t→∞. In [10], Burton considered the
following delay equation:

ẍ+ f (t, x, ẋ) ẋ+ b(t)g (x (t− L)) = 0, (2)

where L is a positive constant. By using the fixed point theory, he gave sufficient
conditions for each solution x (t) to satisfy (x (t) , ẋ (t)) −→ 0 as t → ∞. D.
Pi (see [16, 18]) studied the asymptotic stability of the following equations with
variable delays:

ẍ+ f (t, x, ẋ) ẋ+ b(t)g (x (t− τ (t))) = 0. (3)

Nevertheless, Pi results (see [16]) rely basically on the assumption that t − τ (t)
is strictly increasing. Many other interesting results on fixed points and stability
properties can be found in the references ([1]-[8]). In this paper, we consider the
Liénard equation with delay

ẍ+ f (t, x, ẋ) ẋ+ b (t) g (x (t− τ (t))) = 0, (4)

with the initial condition

x (t) = ψ (t) for t ∈ [m (t0) , t0] ,

for t ≥ 0, where m (t0) =: inf {t− τ (t) : t ≥ t0}, b : R+ −→ R+ is continuous,
τ : R+ −→ R+, f : R+ × R× R −→ R+, g : [−τ (0) ,∞) −→ R are all continuous
functions. We assume that

t− τ (t) −→∞ as t −→∞. (5)

For each t0 ≥ 0, let C (t0) := C ([m (t0) , t0] ,R) be the space of continuous func-
tions endowed with the supremum norm ‖·‖. That is, for ψ ∈ C (t0) , we let

‖ψ‖ := sup {|ψ (s)| : m (t0) ≤ s ≤ t0} .
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Later, we will also use the same notation ‖ϕ‖ := sup {|ϕ (t)| : t ∈ [m (t0) ,∞)} to
express the supremum of elements of the space C of continuous bounded functions
on [m (t0) ,∞), where the function

ρ (ϕ, φ) := ‖ϕ− φ‖ = sup {|ϕ (s)− φ (s)| : m (t0) ≤ s} , ϕ, φ ∈ C, (6)

is the associated metric.

It is well known (see [13]) that, for a given continuous function ψ and a
number y (t0), there exists a solution for equation (4) on an interval [m (t0) , T ),
and if the solution remains bounded, then T = ∞. We denote by (x (t) , y (t))
the solution (x (t, t0, ψ) , y (t, t0, ψ)) of (4).

Define A(t) := f ((t, x(t), y(t)). We can rewrite equation (4) as a system{
ẋ (t) = y (t) ,
ẏ (t) = −A (t) y(t)− b (t) g (x (t− τ (t))) .

(7)

Since 1990 a series of papers, including references [10] and [16, 17, 18], have been
published to investigate stability of equation (4) subject to various conditions.
Dingheng Pi [16] has recently considered equation (4) for the case of variable
delay. The details are as follows. Suppose that (A) t− τ (t) is strictly increasing
and lim (t− τ (t)) = ∞ as t → ∞. Then, the inverse of t − τ (t) exists and we
denote it by p (t). Let 0 ≤ b (t) ≤M , for some constant M > 0.

Theorem 1 ([16]). Suppose (A) holds and assume that

B1) there exists constant l > 0 such that g satisfies a Lipschitz condition on
[−l, l]. g is odd, strictly increasing on [−l, l] and x− g (x) is nondecreasing
on [0, l],

B2) there exists an α ∈ (0, 1) and a continuous function a : R+ → R+ such that
a (t) ≤ f (t, x, y) for t ≥ 0, x, y ∈ R and

2 sup
t≥0

∫ p(t)

t

∫ ∞
0

e−
∫ w+s
s a(v)dvb (s) dwds+

+ 2 sup
t≥0

∫ t

0

∫ ∞
t−s

e−
∫ w+s
s a(v)dvb (s) dwds ≤ α, (8)

B3) there exist constants a0 > 0 and Q such that for each t ≥ 0 if J ≥ Q then∫ t+J

t
a (s) ds ≥ a0J. (9)
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Then there exists δ ∈ (0, l) such that for each initial function ψ : [m (t0) , t0]→
R and ẋ (t0) satisfying |ẋ (t0)|+‖ψ‖ ≤ δ, there is a unique continuous func-
tion x : [m (t0) ,∞) → R satisfying x (t) = ψ (t), t ∈ [m (t0) , t0], which is
a solution of (4) on [t0,∞). Moreover, the zero solution of (4) is stable.
Furthermore, if in addition ∫ ∞

0
a (t) dt =∞ (10)

and there exist continuous functions F : R × R → [0,∞) and c : [0,∞) →
[0,∞) such that for all t > 0, x, y ∈ R we have

f (t, x, y) ≤ F (x, y) c (t) , (11)

g′ (x) is continuous on [−l, l], g′ (0) 6= 0. Then,

(i) if for each γ > 0,∫ ∞
0

∫ ∞
0

e−
∫ u+s
s γc(v)dvb (s) duds =∞, (12)

the zero solution of (4) is asymptotically stable.

(ii) if the zero solution of (4) is asymptotically stable, then∫ ∞
0

∫ ∞
0

e−
∫ u+s
s a(v)dvb (s) duds =∞. (13)

Here we use fixed point technique to give, what we hope, an essential im-
provement to this problem of great and continuing interest.

Stability definitions, fixed point technique and more details on delay differen-
tial equations can be found in ([7, 13]) which also contain substantial references.

Definition 1. The zero solution of (7) is stable if for each ε > 0 there ex-
ists δ = δ (ε, t0) > 0 such that [ψ ∈ C (t0) , y0 ∈ R, ‖ψ‖+ |y0| < δ] implies that
|x (t, t0, ψ)|+ |y (t, t0, ψ)| < ε for t ≥ t0.

Definition 2. The zero solution of (7) is asymptotically stable if it is stable and
there is a δ1 = δ1 (t0) > 0 such that [ψ ∈ C (t0) , y0 ∈ R, ‖ψ‖+ |y0| < δ1] implies
that |x (t, ψ, y0)|+ |y (t, ψ, y0)| −→ 0 as t −→∞.
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2. Statement of main results

Now we try to define a fixed point mapping from (4). For that purpose
we begin first by domesticating the equation by rewriting it in another, but
equivalent, form.

Lemma 1. Let ψ : [m (t0) , t0]→ R be a given continuous initial function. Then,
x (t) is a solution of equation (7) and hence solution of (4) on an interval [t0, T )
satisfying the initial condition x(t) = ψ(t) on [m(t0), t0] and y(t0) = ẋ(t0) if and
only if x (t) is a solution of the following integral equation:

x (t) = ψ (t0) e
−

∫ t
t0
D(v)dv

+ ẋ (t0)

∫ t

t0

e−
∫ t
s D(v)dve

−
∫ s
t0
A(v)dv

ds+

+ ẋ (t0)

∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθduds−

−
∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)×

×
∫ s

u−τ(u)

∫ µ

t0

e−
∫ µ
θ A(v)dvb (θ) g (x (θ − τ (θ))) dθdµduds+

+

∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u) [x (u− τ (u))− g (x (u− τ (u)))] duds.

(14)

Conversely, if a continuous function x (·) is equal to ψ (·) for t ∈ [m(t0), t0] and
is the solution of equation (14) on an interval [t0, T1], then x (·) is a solution of
(7) on [t0, T1].

Proof. By applying the variation of parameters formula to the second equation
of (7), we obtain

ẋ (t) = ẋ (t0) e
−

∫ t
t0
A(v)dv −

∫ t

t0

e−
∫ t
s A(v)dvb (s) g (x (s− τ (s))) ds. (15)

Rewrite (15) as

ẋ (t) = ẋ (t0) e
−

∫ t
t0
A(v)dv −

∫ t

t0

e−
∫ t
s A(v)dvb (s)x (s− τ (s)) ds+

+

∫ t

t0

e−
∫ t
s A(v)dvb (s) [x (s− τ (s))− g (x (s− τ (s)))] ds. (16)
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Let

D (t) :=

∫ t

t0

b (s) e−
∫ t
s A(v)dvds. (17)

Obviously, we have

x (s− τ (s)) = x (t)−
∫ t

s−τ(s)
y (v) dv. (18)

Inserting (17) and (18) into (16), we get

ẋ (t) = −x (t)D (t) + ẋ (t0) e
−

∫ t
t0
A(v)dv

+

+ ẋ (t0)

∫ t

t0

e−
∫ t
s A(v)dvb (s)

∫ t

s−τ(s)
e
−

∫ u
t0
A(v)dv

duds−

−
∫ t

t0

e−
∫ t
s A(v)dvb (s)

∫ t

s−τ(s)

∫ u

t0

e−
∫ u
θ A(v)dvb (θ) g (x (θ − τ (θ))) dθduds+

+

∫ t

t0

e−
∫ t
s A(v)dvb (s) [x (s− τ (s))− g (x (s− τ (s)))] ds. (19)

Applying the variation of parameters formula by multiplying both sides of the

equation (19) by the factor e
∫ t
t0
D(v)dv

and integrating from t0 to any t ∈ [t0, T ],
we can see that this last equation is exactly (14).

Conversely, suppose that a continuous function x is equal to ψ on [m (t0) , t0]
and satisfies (14) on an interval [t0, T ). Then, x is differentiable on [t0, T ). Dif-
ferentiating x with the aid of Leibniz’s rule, we obtain (4). J

From (14) we shall derive a fixed point mapping P for (4). But the challenge
here is to choose a suitable metric space of functions on which the map P can be
defined. Moreover, we have to choose prudently a weighted metric so that P do
not only maps this set into itself but also is a contraction.

Toward this, let S be the space of all continuous functions ϕ : [m(t0),∞)→ R.
For a given initial function ψ : [m(t0), t0]→ [−l, l], l > 0 define the set

Slψ := {ϕ : [m(t0),∞)→ R | ϕ ∈ S, ϕ ≡ ψ on [m(t0), t0], |ϕ (t)| ≤ l}.

Define the mapping P on Slψ as follows, for ϕ ∈ Slψ:

(Pϕ)(t) := ψ(t) if t ∈ [m(t0), t0],

while for t > t0

Pϕ(t) := ψ (t0) e
−

∫ t
t0
D(v)dv

+ ẋ (t0)

∫ t

t0

e−
∫ t
s D(v)dve

−
∫ s
t0
A(v)dv

ds+
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+ ẋ (t0)

∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθduds−

−
∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)

∫ µ

t0

e−
∫ µ
θ A(v)dv×

× b (θ) g (ϕ (θ − τ (θ))) dθdµduds+

+

∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u) [ϕ (u− τ (u))− g (ϕ (u− τ (u)))] duds.

(20)

Lemma 2. Suppose that

i) there exists a constant l > 0 such that g satisfies a Lipschitz condition on
[−l, l] and let L be the Lipschitz constant for both g (x) and x − g (x) on
[−l, l].

Then there exists a metric d on Slψ such that

ii) the metric space
(
Slψ, d

)
is complete,

iii) P is a contraction mapping on
(
Slψ, d

)
if P maps Slψinto itself.

Proof. Let S be the space of all continuous functions ϕ : [m (t0) ,∞) → R
that satisfy

|ϕ|h := sup
{
|ϕ (t)| e−h(t) : t ∈ [m (t0) ,∞)

}
<∞.

where h (t) :=
∫ t
t0

[b (v) + kL] dv, k is a constant with 2 < k and L is the above
mentioned common Lipschitz constant for x − g (x) and g (x). Then, one can
check that (S, |·|h) is a Banach space by using Cauchy’s criterion for uniform
convergence. Thus, (S, d) is a complete metric space, where d denotes the induced
metric d (φ, ϕ) = |φ− ϕ|h, for φ, ϕ ∈ S. Under this metric, the subset Slψ is

closed in S. Therefore, the metric space
(
Slψ, d

)
is complete. Consequently, (ii)

is proved.
To see (iii), let $ (φ (u)) := φ (u− τ (u)) − g (φ (u− τ (u))). Since P : Slψ →

Slψ and g satisfies a Lipschitz condition on [−l, l], we can obtain for ϕ, φ ∈ Slψ
and for t > t0,

|Pϕ− Pφ|h ≤
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≤
∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)

∫ µ

t0

e−
∫ µ
θ A(v)dvb (θ)×

× |g (ϕ (θ − τ (θ)))− g (φ (θ − τ (θ)))| e−h(θ−τ(θ))+h(θ−τ(θ))−h(t)dθdµduds+

+

∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)×

× |$ (ϕ (u))−$ (φ (u))| e−h(θ−τ(θ))+h(θ−τ(θ))−h(t)duds ≤

≤

{∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)

∫ µ

t0

e−
∫ µ
θ A(v)dv×

× b (θ) eh(θ−τ(θ))−h(t)dθdµduds+

+

∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u) eh(θ−τ(θ))−h(t)duds

}
L |ϕ− φ|h .

For t ≥ s ≥ µ ≥ θ we have

h (θ − τ (θ))− h (t) =

∫ θ−τ(θ)

t0

b (v) dv + kL (θ − τ (θ))−
∫ t

t0

b (v) dv − kLt ≤

≤ −
∫ µ

θ
b (v) dv − kL (t− θ) ≤ −

∫ µ

θ
b (v) dv − kL (s− µ) .

For t ≥ s ≥ u,

h (u− τ (u))− h (t) = −
∫ t

u
b (v) dv − kL (t− u) ≤ −

∫ s

u
b (v) dv − kL (t− s) .

Making use of these inequalities, we have

|Pϕ− Pφ|h ≤
{∫ t

t0
e−

∫ t
s D(v)dv

∫ s
t0
e−

∫ s
u A(v)dvb (u) ×

×
∫ s

u−τ(u)
e−kL(s−µ)

∫ µ

t0

b (θ) e−
∫ µ
θ b(v)dvdθdµduds+

+

∫ t

t0

e−kL(t−s)
∫ s

t0

b (u) e−
∫ s
u b(v)dvduds

}
L |ϕ− φ|h ≤

≤
{

1

kL
+

1

kL

}
L |ϕ− φ|h ≤

2

k
|ϕ− φ|h ,

for all t > t0. Obviously, this holds for all t ≥ m (t0) by definition of the map-
ping P . Thus, d (Pϕ, Pφ) ≤ 2

kd (ϕ, φ). Since k > 2, we conclude that P is a

contraction on
(
Slψ, d

)
. J

Now, we prove an existence and uniqueness result for P whenever ‖ψ‖ is well
chosen.
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Theorem 2. Suppose g satisfies condition (i) in Lemma 2 and

H1) g is odd and strictly increasing on [−l, l];

H2) x− g (x) is non-decreasing on [0, l];

H3) there exists an α ∈ (0, 1) and a continuous function A1 : R+ → R+ such
that A (t) = f (t, x, y) ≥ A1 (t) for t ≥ 0, x, y ∈ R and∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)

∫ µ

t0

e−
∫ µ
θ A(v)dvb (θ) dθdµds ≤ α,

H4) there exist constants a0 > 0 and J0 > 0 such that∫ t

t0

A1 (s) ds ≥ a0t, for t ≥ J0.

Then, a δ exists such that for each initial function ψ : [m (t0) , t0]→ R and
for each ẋ (t0) satisfying |ẋ (t0)| + ‖ψ‖ < δ, there is a unique continuous
function x : [m (t0) ,∞) → R satisfying x (t) = ψ (t), on [m (t0) , t0], which
is a solution of (4) on [t0,∞). Furthermore, the zero solution of (4) is
stable at t = t0.

Proof. First, for the fixed value |ẋ (t0)| , we examine the second and the third
terms containing ẋ on the right hand side of (20) and show that each term is
bounded. Indeed, obviously, by hypotheses (H1) and (H4), the second term is
bounded because

|ẋ (t0)|
∫ t

t0

e−
∫ t
s D(v)dve

−
∫ s
t0
A(v)dv

ds ≤

≤ |ẋ (t0)|
(∫ J0

t0

e
−

∫ s
t0
A(v)dv

ds+
e−a0J0

a0

)
≤

≤ |ẋ (t0)|M1, (21)

where

M1 :=

∫ J0

t0

e
−

∫ s
t0
A(v)dv

ds+
e−a0J0

a0
.

For the third term we see that

|ẋ (t0)|
∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθ ≤
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≤ |ẋ (t0)|

(∫ J0

−τ(t0)
e
−

∫ θ
t0
A(v)dv

dθ +
e−a0J0

a0

)
≤

≤ |ẋ (t0)|M2,

where

M2 :=

∫ J0

−τ(t0)
e
−

∫ θ
t0
A(v)dv

dθ +
e−a0J0

a0
.

Thus,

|ẋ (t0)|
∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθduds ≤

≤ |ẋ (t0)|M2

∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u) duds ≤

≤ |ẋ (t0)|M2. (22)

Now, since g is odd and satisfies the Lipschitz condition on [−l, l], g (0) = 0 and g
is (uniformly) continuous on [−l, l], one can choose a δ that satisfies the inequality

δ + |ẋ (t0)| (M1 +M2) ≤ (1− α) g (l) . (23)

Let ψ : [m (t0) , t0]→ (−δ, δ) be an initial continuous function. Note that condi-
tion (23) implies δ < l since g (l) ≤ l by (H2). Thus, |ψ| ≤ l for m (t0) ≤ t ≤ t0.
We declare that, for such a ψ, P : Slψ → Slψ. Indeed, for an arbitrary ϕ ∈ Slψ, it
follows from conditions (H1) and (H2) that

|Pϕ(t)| ≤
≤ δ + |ẋ (t0)| (M1 +M2) +

+

∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)

∫ µ

t0

e−
∫ µ
θ A(v)dvb (θ)×

× |g (ϕ (u− τ (u)))| dθdµduds+

+

∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u) |ϕ (u− τ (u))− g (ϕ (u− τ (u)))| duds.

for t > t0. By (H3), (23), (21) and (22), this implies

|Pϕ(t)| ≤ δ + |ẋ (t0)| (M1 +M2) + αg (l) + (l − g (l)) ≤
≤ (1− α) g (l) + αg (l) + (l − g (l)) = l. (24)

Hence, |Pϕ (t)| ≤ l for all t ∈ [m (t0) ,∞) since we have |Pϕ (t)| = ψ (t) ≤ l for
t ∈ [m (t0) , t0]. Therefore, Pϕ ∈ Slψ. By Lemma 2, P is a contraction on the
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complete metric space
(
Slψ, d

)
. Then P has a unique fixed point x ∈ Slψ , which

is a solution of (4) on [m (t0) ,∞) by Lemma 2 and x (t) ≤ l for all t ≥ m (t0).
Hence, x is the only continuous function satisfying (4) for t ≥ t0 with x ≡ ψ on
[m (t0) , t0].

Since g is bounded, the boundedness of x (t) in (15) yields that y (t) is bounded
too. More precisely, while A (t) ≥ A1 (t), assume that∫ t

t0

e−
∫ t
s A1(v)dvb (s) ds ≤ σ. (25)

Then, from (15) we have

|y (t)| ≤ δ + g (l)

∫ t

t0

e−
∫ t
s A(v)dvb (s) ds ≤

≤ δ + g (l)M ≤ l (1 + σ) .

It follows that
|x (t)|+ |y (t)| ≤ l (2 + σ) .

To show the stability at t = t0, let ε > 0 be given. By choosing r < min (ε, l (2 + σ))
and replacing l with r we see that there is a δ > 0 satisfying (23) such that ‖ψ‖ < δ
implies that the unique continuous solution coinciding with ψ on [m (t0) , t0] im-
plies |x (t)|+ |y (t)| < r < ε for all t ≥ m (t0). J

Now, supposing that the conditions in Lemma 2 and Theorem 2 hold for some
l > 0, we try to investigate asymptotic stability with necessary and sufficient
conditions. This can be possible if we deal with those functions of Slψ that tends

to zero at infinity. Unfortunately, this subset of functions of Slψ is not complete
with respect to the weighted metric d. Nevertheless, one can take another way
to get round this. So, let C be the set of real continuous bounded functions on
[m (t0) ,∞) and let

C0
ψ : = {ϕ : [m (t0) ,∞)→ R| ϕ ∈ C,ϕ (t) = ψ (t)

for t ∈ [m (t0) , t0] , ϕ (t)→ 0 as t→∞} .

Endowed with the metric ρ (6) induced by the supremum norm, the space
(
S0
ψ, ρ
)

is complete. Define the subset

Sl,0ψ :=
{
ϕ ∈ C0

ψ| |ϕ (t)| ≤ l, ϕ (t)→ 0 as t→∞
}
.

Clearly, Sl,0ψ is a closed subset of C0
ψ. The metric space

(
Sl,0ψ , ρ

)
is then complete.

We are ready to show that, under the conditions of the next theorem, the zero
solution of (4) is asymptotically stable in the sense of Definition 2.
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Theorem 3. Suppose that all of the conditions in Lemma 2 and Theorem 2 hold.
Furthermore, suppose that g is continuously differentiable on [−l, l] and g′ (0) 6= 0.
Then, the zero solution of (4) is asymptotically stable if and only if∫ t

0
D (s) ds→∞ as t→∞. (26)

Proof. Suppose condition (26) is fulfilled. Set

K := sup
t≥0

e−
∫ t
0 D(s)ds. (27)

Denote the five terms on the right hand side of (20) by I1, I2, I3, I4, I5, re-

spectively. If ϕ ∈ Sl,0ψ , we prove that each term of Pϕ (t) tends to 0 as t → ∞.
Obviously, the first term I1 of (20) tends to zero by condition (26) as t→∞. For
the second term I2 of (20), let ε > 0 be given and choose T ≥ J0 large enough so
that e−a0T ≤ a0ε. Then,

|I2| ≤
∣∣ .x (t0)

∣∣ {e− ∫ t
T D(v)dv

∫ T

t0

e−
∫ T
s D(v)dve

−
∫ s
t0
A(v)dv

ds+
e−a0T

a0

}
≤

≤
∣∣ .x (t0)

∣∣ e− ∫ t
T D(v)dv

∫ T

t0

e−
∫ T
s D(v)dve

−
∫ s
t0
A(v)dv

ds+
∣∣ .x (t0)

∣∣ ε. (28)

By condition (26) the first factor on the r.h.s of (28) tends to 0, as t→∞, while
the second is arbitrarily small. Thus, I2 tends to 0, as t→∞.

Now, to investigate I3, we begin by rewriting it as follows:

|I3| =
∣∣ .x (t0)

∣∣{∫ T

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθduds+

+

∫ t

T
e−

∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθduds

}
. (29)

We check that the decomposition on the right hand side of (29) tends to zero at
infinity. We see that∫ T

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθduds =

= e−
∫ t
T D(v)dv

∫ T

t0

e−
∫ T
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθduds.

(30)
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By (26), the first factor on the r.h.s. of (30) tends to zero as t −→ ∞ and so
does (30). The remaining term of on the r.h.s of (29) needs further consideration.
So, let s ≥ u− τ (u) ≥ T ≥ J0. Then we have∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθ ≤
∫ s

u−τ(u)
e−aθdθ ≤ 1

a0
e−a0(u−τ(u)) → 0 as u→∞.

Thus, for ε > 0 given there exists J > T ≥ J0 such that∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθ ≤ ε, whenever u ≥ J.

Hence, for J > T ≥ J0, we have∫ t

T
e−

∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθduds ≤

≤
∫ t

T
e−

∫ t
s D(v)dv

∫ J

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθduds+ ε. (31)

Also, let S∗ > J and choose σ > S∗ + J0 so that M̂
a0
e−a0σ ≤ ε. Consequently, it

comes∫ t

T
e−

∫ t
s D(v)dv

∫ J

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθduds =

=

∫ t

T
e−

∫ t
s D(v)dve−

∫ s
S∗ A(v)dv

∫ J

t0

e−
∫ S∗
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθduds =

=

(∫ J

t0

e−
∫ S∗
u A(v)dvb (u)

∫ u

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθdu

)∫ t

T
e−

∫ t
s D(v)dve−

∫ s
S∗ A(v)dvds =

= M̂

∫ σ

T
e−

∫ t
s D(v)dve−

∫ s
S∗ A(v)dvds+ M̂

∫ t

σ
e−

∫ t
s D(v)dve−

∫ s
S∗ A(v)dvds ≤

≤ M̂
∫ σ

T
e−

∫ t
s D(v)dve−

∫ s
S∗ A(v)dvds+ M̂

∫ t

σ
e−

∫ s
S∗ A1(v)dvds ≤

≤ M̂e−
∫ t
σ D(v)dv

∫ σ

T
e−

∫ σ
s D(v)dve−

∫ s
S∗ A1(v)dvds+ ε, (32)

where

M̂ :=

∫ J

t0

e−
∫ S∗
u A(v)dvb (u)

∫ u

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθdu.

Clearly, the first term of (32) tends to zero as t → ∞, while the second factor
is arbitrarily small. Thus, we reach the conclusion that the whole third term
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goes to 0 at infinity. Now, consider the fourth term of (20). We observe that
|g (x)| ≤ L |x| , because g (0) = 0 and g is Lipschtizian with constant L on [−l, l].
It follows that

|I4| ≤ L

∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)

∫ µ

t0

e−
∫ µ
θ A(v)dv ×

×b (θ) |ϕ (θ − τ (θ))| dθdµduds.

Having (5) in mind, for a given ε > 0, there exists a J such that θ ≥ J implies
L |ϕ (θ − τ (θ))| < ε

α . So,

|I4| ≤ L

∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)

∫ J

t0

e−
∫ µ
θ A(v)dv ×

×b (θ) |ϕ (θ − τ (θ))| dθdµduds+ ε.

By letting T ≥ J, we can write∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)

∫ J

t0

e−
∫ µ
θ A(v)dv×

×b (θ) |ϕ (θ − τ (θ))| dθdµduds =

∫ T

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dv×

×b (u)

∫ s

u−τ(u)

∫ J

t0

e−
∫ µ
θ A(v)dvb (θ) |ϕ (θ − τ (θ))| dθdµduds+

+

∫ t

T
e−

∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)

∫ J

t0

e−
∫ µ
θ A(v)dv×

×b (θ) |ϕ (θ − τ (θ))| dθdµduds. (33)

By (26), the first integral on the r.h.s of (33) is as∫ T

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)

∫ J

t0

e−
∫ µ
θ A(v)dv×

×b (θ) |ϕ (θ − τ (θ))| dθdµduds ≤ α ‖ϕ‖[m(t0),T ]
e−

∫ t
T D(v)dv,

which, by (26), tends to zero at infinity.
On the other hand, for µ ≥ J we can choose J∗ > J such that, by taking,

M3 :=

∫ J

t0

e−
∫ J∗
θ A(v)dvb (θ) |ϕ (θ − τ (θ))| dθ,
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we see that the second term on the r.h.s of (33) is as∫ t

T
e−

∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)×

×
∫ s

u−τ(u)

∫ J

t0

e−
∫ µ
θ A(v)dvb (θ) |ϕ (θ − τ (θ))| dθdµduds =

=

∫ t

T
e−

∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e−

∫ µ
J∗ A(v)dv×

×
∫ J

t0

e−
∫ J∗
θ A(v)dvb (θ) |ϕ (θ − τ (θ))| dθdµduds =

= M3

∫ t

T
e−

∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e−

∫ µ
J∗ A(v)dvdµduds =

= M3e
∫ J∗
t0

A(v)dv
∫ t

T
e−

∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ µ
t0
A(v)dv

dµduds ≤

≤M3e
∫ J∗
t0

A(v)dv
∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ µ
t0
A(v)dv

dµduds

(34)
The first factor of (34) is simply a finite number while the second factor tends
to zero as t → ∞ by using a similar technique like that used for (29). Thus, I4
ends at zero for large time. It remains to show that the last term of (20) goes to
zero as time tends to infinity. Using the hypothesis that x− g (x) satisfies an L-
Lipschtiz condition on [−l, l], we obtain

|I5| ≤ L
∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u) |ϕ (u− τ (u))| duds ≤

≤ L |ϕ (θ − τ (θ))|[m(t0),T ]
e−

∫ t
T D(v)dv+

+ L

∫ t

T
e−

∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u) |ϕ (u− τ (u))| duds. (35)

Since ϕ ∈ Sl,0ψ , we have, by (5), |ϕ (u− τ (u))| → 0 as u− τ (u) tends to infinity
and a similar argumentation like in (29) leads to the fact that the terms on the
r.h.s. of (35) tend to zero at infinity and so does I5. Consequently, (Pϕ) (t)→ 0

as t→∞. So, P : Sl,0ψ → Sl,0ψ when l > 0.

Next, we show that P is a contraction mapping on Sl.0ψ . Let ζ ∈ [0, 1] and
define q (ζ) := min {g′ (x) | |x| ≤ ζ}, Q (ζ) := max {g′ (x) | |x| ≤ ζ}. Since α < 1,
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we have α = 1−ε for some ε ∈ (0, 1). We claim that if l is sufficiently small, then
q (l), Q (l) will satisfy the inequality αQ (l) < q (l). In fact, lim

ζ→0
q(ζ) = lim

ζ→0
Q(ζ) =

g′ (0) 6= 0, then lim
ζ→0

Q(ζ)
q(ζ) = 1. Since g is strictly increasing, g′ (0) 6= 0 and g′ (x)

is continuous, then there exists a neighborhood of x = 0 on which g′ (x) > 0. So

Q(ζ) > 0 , for 0 < ζ < l. Then there exists γ ∈ (0, l] such that
∣∣∣Q(ζ)
q(ζ) − 1

∣∣∣ < ε,

for 0 < ζ < γ. Hence αQ (ζ) = (1− ε)Q (ζ) < q (ζ). By replacing the original
l by l = ζ, we can obtain αQ (l) < q (l). Set $ (x) = x − g (x). For x ∈ [−l, l],
|$′ (x)| = 1− g′ (x) ≤ 1− q (l). For φ, ϕ ∈ Sl,0ψ , using (20) we have

|Pϕ (t)− Pφ (t)| ≤

≤
∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)

∫ µ

t0

e−
∫ µ
θ A(v)dvb (θ)×

× |g (ϕ (θ − τ (θ)))− g (φ (θ − τ (θ)))| dθdµduds+

+

∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u) |$ (ϕ (u))−$ (φ (u))| duds.

By the mean value theorem, using the condition (H3) of Theorem 1, we have

|Pϕ− Pφ| ≤ Q (l)α |ϕ− φ|+ (1− q (l)) |ϕ− φ| <
< [Q (l)α+ (1− q (l))] ‖ϕ− φ‖ ,

where Q (t)α+ (1− q (l)) < 1. This implies that P is a contraction mapping, so

P has a unique fixed point x (t) in Sl,0ψ . Thus, x (t)→ 0, as t→∞.
Next, we will prove that y (t)→ 0 as t→∞. Returning to (15), we see that

its first term tends to zero as t → ∞ by (H4). For any ε > 0, choose T > t0 so
that |x (t− τ (t))| < Lσε for t > T . The second integral in (15) is estimated as∫ t

t0

e−
∫ t
s A(v)dvb (s) |g (x (s− τ (s)))| ds ≤

≤ Ll
∫ T

t0

e−
∫ t
s A1(v)dvb (s) ds+ Lσε

∫ t

T
e−

∫ t
s A(v)dvb (s) ds ≤

≤ Ll
∫ T

t0

e−
∫ t
s A1(v)dvb (s) ds+ ε.

Also, by (H4), we can choose T ∗ ≥ T such that∫ t

T
e−

∫ t
s A(v)dvb (s) |g (x (s− τ (s)))| ds ≤
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≤ e−
∫ t
T∗ A1(v)dvLl

∫ T

t0

e−
∫ T∗
s A1(v)dvb (s) ds+ ε.

The first factor tends to zero as t→∞, while the second factor is simply a fixed
number. Since we have obtained the stability of the zero solution in Theorem 2,
it follows that the zero solution is asymptotically stable.

Conversely, we shall prove that
∫∞
t0
D(v)dv = ∞. Contrary to this, there

exists a sequence {tn}n≥1 with tn −→∞ as n −→∞ such that
∫ tn
t0
D(v)dv = C0

for a certain finite number C0 ∈ R+. By condition (27), we may also choose µ > 0
that satisfies the inequality −µ ≤

∫ tn
t0
D(v)dv ≤ µ, for all n ≥ 1. For convenience

of notation, we set

Θ (s) :=

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)

∫ µ

t0

e−
∫ µ
θ A(v)dvb (θ) dθdµdu+

+

∫ s

t0

e−
∫ s
u A(v)dvb (u) duds.

By conditions (H3), we have∫ tn

t0

e
−

∫ tn
t0

D(v)dv
Θ (s) ds ≤ (α+ 1) .

This yields

e
−

∫ tn
t0

D(v)dv
∫ tn

t0

e
∫ s
t0
D(v)dv

Θ (s) ds ≤ (α+ 1) .

Then ∫ tn

t0

e
∫ s
t0
D(v)dv

Θ (s) ds ≤ (α+ 1) eµ. (36)

The inequality (36) leads to the fact that the sequence∫ tn

t0

e
∫ s
t0
D(v)dv

Θ (s) ds,

is bounded, so there exists a convergent subsequence. For brevity, we assume
that

lim
t−→∞

∫ tn

0
e
∫ s
0 D(v)dvΘ (s) ds = σ > 0.

Then, we can choose a positive integer n0 large enough such that∫ tn

tn0

e
∫ u
t0
D(v)dv

Θ (s) ds <
δ0

8KL
,
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for n ≥ n0, where L is the common Lipschitz constant for x− g (x) and g (x) and
ε > δ0 > 0 satisfies

δ0 + |ẋ (t0)|
∫ t

t0

e−
∫ t
s D(v)dve

−
∫ s
t0
A(v)dv

ds+

+ |ẋ (t0)|
∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθduds ≤

≤ (1− α) g (l) .

By a similar argument as in (24) and by replacing l by 1, this implies that
|x (t)| ≤ 1.

Now, we consider the solution x (t) = x (t, ψ, ẋ (tn0)) of equation (4) for the
initial values ψ and ẋ (tn0) such that

ψ (tn0) =
3δ0
4

, ẋ (tn0) =
δ0
4
,

|ψ (s)|+ |ẋ (s)| ≤ δ0, s ≤ tn0 .

Since g (x) and x − g (x) satisfy the Lipschitz condition, x is a fixed point of P
and |x (t)| = |ψ (t)| ≤ δ0 ≤ ε < 1 if m (tn0) ≤ t ≤ tn0 , we have, for n ≥ n0

|x (tn)| ≥

∣∣∣∣∣e−
∫ tn
tn0

D(v)dv
ψ (tn0) + ẋ (tn0)

∫ tn

tn0

e−
∫ tn
u D(v)dve

−
∫ u
tn0

A(v)dv
du+

+ẋ (tn0)

∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)
e
−

∫ θ
t0
A(v)dv

dθduds

∣∣∣∣∣−
−L

∣∣∣∣∣
∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u)

∫ s

u−τ(u)

∫ µ

t0

e−
∫ µ
θ A(v)dvb (θ) dθdµduds+

+

∫ t

t0

e−
∫ t
s D(v)dv

∫ s

t0

e−
∫ s
u A(v)dvb (u) duds

∣∣∣∣ ≥
≥ e−

∫ tn
tn0

D(v)dv δ0
4
− L

∫ tn

tn0

e−
∫ tn
s D(v)dvV (s)ds ≥

≥ e−
∫ tn
tn0

D(v)dv

[
δ0
4
− Le−

∫ tn0
0 D(v)dv

∫ tn

tn0

e
∫ s
0 D(v)dvV (s)ds

]
≥ δ0

8
e−2µ > 0.

On the other hand, if the zero solution is asymptotically stable, then x (t) =
x (t, ψ, ẋ(tn0)) tends to zero at infinity. Which leads to a contradiction. This
ends the proof of our claim. J
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