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A Study of Meromorphically Univalent Functions

Defined by a Linear Operator Associated with the

λ-Generalized Hurwitz-Lerch Zeta Function

H.M. Srivastava, S. Gaboury, F. Ghanim∗

Abstract. By using a linear operator associated with the λ-generalized Hurwitz-Lerch
zeta function, which is defined here by means of the Hadamard product (or convolution),
the authors introduce and investigate certain sufficient conditions for this meromorphic
functions to satisfy a subordination. In fact, these results extend known results of star-
likeness, convexity, and close to convexity.
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1. Introduction, Definitions and Preliminaries

Let Σ denote the class of meromorphic functions f(z) normalized by

f(z) =
1

z
+

∞∑

k=1

akz
k,

which are analytic in the punctured unit disk

U
∗ = {z : z ∈ C and 0 < |z| < 1} = U \ {0},

C being (as usual) the set of complex numbers. We denote by ΣS∗(β) and ΣK(β)
(β ≧ 0) the subclasses of Σ consisting of all meromorphic functions which are,
respectively, starlike of order β and convex of order β in U

∗ (see also the recent
works [43] and [42]).
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For functions fj(z) (j = 1, 2) defined by

fj(z) =
1

z
+

∞∑

k=1

ak,jz
k (j = 1, 2),

we denote the Hadamard product (or convolution) of f1(z) and f2(z) by

(f1 ∗ f2)(z) =
1

z
+

∞∑

k=1

ak,1ak,2z
k.

Let us consider the function φ̃(α, β; z) defined by

φ̃(α, β; z) =
1

z
+

∞∑

k=0

(α)k+1

(β)k+1
akz

k

(
β ∈ C \ Z−

0 ; α ∈ C
)
,

where
Z
−

0 = {0,−1,−2, · · · } = Z
− ∪ {0}.

Here, and in the remainder of this paper, (λ)κ denotes the general Pochhammer
symbol defined, in terms of the Gamma function, by

(λ)κ :=
Γ(λ+ κ)

Γ(λ)
=

{
λ(λ+ 1) · · · (λ+ n− 1) (κ = n ∈ N; λ ∈ C)

1 (κ = 0; λ ∈ C \ {0}),

it being understood conventionally that (0)0 := 1 and assumed tacitly that the
Γ-quotient exists (see, for details, [39, p. 21 et seq.]), N being the set of positive
integers.

Very recently, Ghanim ([8]; see also [9]) made use of the Hadamard product
for functions f(z) ∈ Σ in order to introduce a new linear operator Ls

a(α, β) defined
on Σ by

Ls
a(α, β)(f)(z) = φ̃(α, β; z) ∗Gs,a(z)

=
1

z
+

∞∑

k=1

(α)n+1

(β)n+1

(
a+ 1

a+ k

)s

akz
k

(
z ∈ U

∗
)
,

where

Gs,a(z) := (a+ 1)s
[
Φ(z, s, a) − as +

1

z(a+ 1)s

]



A Study of Meromorphically Univalent Functions Defined by a Linear Operator 37

=
1

z
+

∞∑

k=1

(
a+ 1

a+ k

)s

zk
(
z ∈ U

∗
)

(1)

and the function Φ(z, s, a) is the well-known Hurwitz-Lerch zeta function defined
by (see, for example, [28, p. 121 et seq.]; see also [23], [29, p. 194 et seq.], [34]
and [35])

Φ(z, s, a) :=

∞∑

n=0

zn

(n+ a)s

(a ∈ C \ Z−

0 ; s ∈ C when |z| < 1;ℜ(s) > 1 when |z| = 1).

We recall that the following new family of the λ-generalized Hurwitz-Lerch
zeta functions was introduced and investigated systematically by Srivastava [26]
(see also [24, 25, 30, 32, 33, 34, 35, 36, 38, 41]):

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a; b, λ) =
1

λ Γ(s)

·

∞∑

n=0

p∏
j=1

(λj)nρj

(a+ n)s ·
q∏

j=1
(µj)nσj

H
2,0
0,2

[
(a+ n)b

1

λ

∣∣∣∣ (s, 1),
(
0, 1

λ

)
]

zn

n!
(2)

(
min{ℜ(a),ℜ(s)} > 0; ℜ(b) > 0; λ > 0

)
,

where

(
λj ∈ C (j = 1, · · · , p) and µj ∈ C\Z−

0 (j = 1, · · · , q); ρj > 0 (j = 1, · · · , p);

σj > 0 (j = 1, · · · , q); 1 +

q∑

j=1

σj −

p∑

j=1

ρj ≧ 0

)

and the equality in the convergence condition holds true for suitably bounded
values of |z| given by

|z| < ∇ :=




p∏

j=1

ρ
−ρj
j


 ·




q∏

j=1

σ
σj

j


 .
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Definition 1. The H-function involved in the right-hand side of (2) is the well-
known Fox’s H-function [14, Definition 1.1] (see also [37, 39]) defined by

H
m,n
p,q (z) = H

m,n
p,q

[
z

∣∣∣∣
(a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq, Bq)

]

=
1

2πi

∫

L

Ξ(s)z−s ds
(
z ∈ C \ {0}; | arg(z)| < π

)
,

where

Ξ(s) =

m∏
j=1

Γ(bj +Bjs) ·
n∏

j=1
Γ(1− aj −Ajs)

p∏
j=n+1

Γ(aj +Ajs) ·
q∏

j=m+1
Γ(1− bj −Bjs)

,

an empty product is interpreted as 1, m,n, p and q are integers such that

1 ≦ m ≦ q and 0 ≦ n ≦ p,

Aj > 0 (j = 1, · · · , p) and Bj > 0 (j = 1, · · · , q),

aj ∈ C (j = 1, · · · , p) and bj ∈ C (j = 1, · · · , q)

and L is a suitable Mellin-Barnes type contour separating the poles of the gamma
functions

{Γ(bj +Bjs)}
m
j=1

from the poles of the gamma functions

{Γ(1− aj +Ajs)}
n
j=1.

It is worthy of mention here that, by using the fact that [26, p. 1496, Remark
7]

lim
b→0

{
H

2,0
0,2

[
(a+ n)b

1

λ

∣∣∣∣ (s, 1),
(
0, 1

λ

)
]}

= λ Γ(s) (λ > 0),

the equation (1) reduces to the following form:

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a; 0, λ) := Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a)

=

∞∑

n=0

p∏
j=1

(λj)nρj

(a+ n)s ·
q∏

j=1
(µj)nσj

zn

n!
. (3)
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Definition 2. The function Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a) involved in (3) is the multi-

parameter extension and generalization of the Hurwitz-Lerch zeta function Φ(z, s, a)
introduced by Srivastava et al. [41, p. 503, Eq. (6.2)] defined by

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a) :=
∞∑

n=0

p∏
j=1

(λj)nρj

(a+ n)s ·
q∏

j=1
(µj)nσj

zn

n!

(
p, q ∈ N0; λj ∈ C (j = 1, · · · , p); a, µj ∈ C \ Z−

0 (j = 1, · · · , q);

ρj, σk ∈ R
+ (j = 1, · · · , p; k = 1, · · · , q);

∆ > −1 when s, z ∈ C;

∆ = −1 and s ∈ C when |z| < ∇∗;

∆ = −1 and ℜ(Ξ) >
1

2
when |z| = ∇∗

)

with

∇∗ :=




p∏

j=1

ρ
−ρj
j


 ·




q∏

j=1

σ
σj

j


 ,

∆ :=

q∑

j=1

σj −

p∑

j=1

ρj and Ξ := s+

q∑

j=1

µj −

p∑

j=1

λj +
p− q

2
.

By applying this new family of the λ-generalized Hurwitz-Lerch zeta func-
tions, Srivastava and Gaboury [31] introduced a new linear operator which con-
sists in a generalization of the largely- (and widely-) studied Srivastava-Attiya
operator [27] (see also [3, 20, 40]). This new operator contains, as its special
cases, the operators investigated earlier by Prajapat and Bulboacǎ [19, p. 571,
Eq. (1.8)], Noor and Bukhari [15, p. 2, Eq. (1.3)], Choi et al. [5], Cho and
Srivastava [4], Jung et al. [13], Bernardi [1], Carlson and Shaffer [2], Owa and
Srivastava [16] and Dziok and Srivastava [6, 7]. The Dziok-Srivastava convolution
operator studied by Dziok and Srivastava [6, 7] is a generalization of the Hohlov
operator [11] and the Ruscheweyh operator [21]. In fact, the Dziok-Srivastava
convolution operator is itself a special case of the so-called Srivastava-Wright op-
erator (see, for details, [12] and [22]; see also the other closely-related works cited
in each of these recent publications).
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In this paper, we consider the following linear operator:

Jαf (z) ≡ J
s,a,λ,α,β
(λp),(µq),b

f (z) : Σ → Σ,

which is defined by

Jαf (z) = G
s,a,λ
(λp),(µq),b

(z) ∗ φ̃(α, β; z), (4)

where ∗ denotes the Hadamard product (or convolution) of analytic functions

and the function G
s,a,λ
(λp),(µq),b

(z) is given by

G
s,a,λ

(λp),(µq),b
(z) := (a+ 1)s ·

[
Φ
(1,··· ,1,1,··· ,1)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a; b, λ)

−
a−s

λ Γ(s)
Λ (a, b, s, λ) +

(a+ 1)−s

z

]

=
1

z
+

∞∑

k=1

∏p
j=1(λj)k∏q
j=1(µj)k

(
a+ 1

a+ k

)s Λ (a+ k, b, s, λ)

λ Γ(s)

zk

k!
(5)

with

Λ (a, b, s, λ) := H
2,0
0,2

[
ab

1

λ

∣∣∣∣ (s, 1),
(
0, 1

λ

)
]
.

By combining (4) and (5), we obtain

Jαf (z) =
1

z

+

∞∑

k=1

(α)k+1
∏p

j=1(λj)k

(β)k+1
∏q

j=1(µj)k

(
a+ 1

a+ k

)s Λ (a+ k, b, s, λ)

λ Γ(s)
ak

zk

k!
(6)

(
z ∈ U

∗; α, λj ∈ C (j = 1, · · · , p); β, µj ∈ C \ Z−

0 (j = 1, · · · , q); p ≦ q + 1

)

with
min{ℜ(a),ℜ(s)} > 0; λ > 0 if ℜ(b) > 0

and
s ∈ C and a ∈ C \ Z−

0 if b = 0,

see Srivastava et al. [34] and [35]). Clearly, upon setting p−1 = q = 0 and λ1 = 1
in (6) and taking the limit as b → 0, we obtain the operator Ls

a(α, β)(f)(z) studied
earlier by Ghanim [8].

Let the functions f and g be analytic in U. Then we say that f is subordinate
to g in U, and write f ≺ g; if there exists a Schwarz function w analytic in U
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such that |w(z)| < 1, z ∈ U; and w(0) = 0 with f(z) = g(w(z)) in U (see [10]);
further, if g is univalent in U; then f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

In this paper, we investigate various properties of certain subclasses of the
meromorphically analytic function class Σ in the punctured unit disk U

∗. We
first introduce one of these function classes and investigate the properties of the
linear operator

Jα+1 ≡ J
s,a,λ,α+1,β
(λp),(µq),b

f (z) .

and obtain certain sufficient conditions for a function f ∈ Σ to satisfy either of
the following subordinations:

Jα+1f(z)

Jαf(z)
≺

λ (1− z)

λ− z
,
Jαf(z)

z
≺

1 +Az

1− z
,

Jαf(z)

z
≺

λ (1− z)

λ− z
.

Our results extend corresponding previously known results on starlikeness, con-
vexity, and close to convexity.

To prove our main results, we need the following:

Lemma 1. (cf. Miller and Mocanu [17, Theorem 3.4h, p.132]). Let q(z) be
univalent in the unit disk U and let ϑ and ϕ be analytic in a domain D ⊃ q(U),
with ϕ(w) 6= 0 when w ∈ q(U). Set

Q(z) := zq′(z)ϕ (q(z)) , h(z) := ϑ (q(z)) +Q(z).

Suppose that
(1) Q(z) is starlike univalent in U, and

(2) ℜ
(
zh′(z)
Q(z)

)
> 0 for z ∈ U.

If p(z) is analytic in U with p(0) = q(0), p(U) ⊂ D and

ϑ (p(z)) + zp′(z)ϕ (p(z)) ≺ ϑ (q(z)) + zq′(z)ϕ (q(z)) . (7)

Then p(z) ≺ q(z) and q(z) is the best dominant.

2. Main results

Theorem 1. Let α > 0, µ ∈ R satisfy |µ| ≤ 1 and λ > 1. If f ∈ Σ satisfies
Jαf(z) 6= 0 in U

∗ and

(
Jα+1f(z)

Jαf(z)

)µ(
(α+ 1)

Jα+2f(z)

Jα+1f(z)
− 1

)
≺ h (z) , (8)
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where

h(z) =

(
λ (1− z)

λ− z

)µ+1 (
α−

(λ− 1) z

λ (1− z)2

)
,

then

Jα+1f(z)

Jαf(z)
≺

λ (1− z)

λ− z
.

Proof. The condition (8) and Jαf(z) 6= 0 in U
∗ imply that Jα+1f(z) 6= 0 in

U
∗. Define the function p(z) by

p (z) :=
Jα+1f(z)

Jαf(z)
.

Clearly p(z) is analytic in U
∗. A computation shows that

zp′ (z)

p (z)
=

z
(
Jα+1f(z)

)′

Jα+1f(z)
−

z (Jαf(z))′

Jαf(z)
. (9)

By using the identity

z (Jαf(z))′ = α
(
Jα+1f(z)

)
− (α+ 1) Jαf(z), (10)

we get from (9)

(α+ 1)
Jα+2f(z)

Jα+1f(z)
= 1 + αp (z) +

zp′ (z)

p (z)
. (11)

Using (11) in (8), we get

α (p(z))µ+1 + zp′(z) (p(z))µ−1 ≺ h(z). (12)

Let q(z) be the function defined by

q(z) :=
λ (1− z)

λ− z
.

It is clear that q is convex univalent in U
∗. Since

h(z) = α (q(z))µ+1 + zq′(z) (q(z))µ−1 .

We see that (12) can be written as (7) when ϑ and ϕ are given by
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ϑ (w) = αwµ+1 and ϕ (w) = wµ−1.

Clearly ϕ and ϑ are analytic in C\ {0}. Now

Q(z) := zq′(z)ϕ (q(z)) = zq′(z) (q(z))µ−1 =
(1− λ) zλµ (1− z)µ−1

(λ− z)1+µ
,

h(z) := ϑ (q(z)) +Q(z) =

(
λ (1− z)

λ− z

)1+µ(
α−

(λ− 1) z

λ (1− z)2

)
.

By our assumptions on the parameters µ and λ, we see that

ℜ

(
zQ′(z)

Q(z)

)
= ℜ

(
1 +

z(1 − µ)

1− z
+ (1− µ)

z

λ− z

)

> −1 +
1

2
(1− µ) +

(1 + µ)λ

1 + λ

=
(1 + µ) (λ− 1)

2 (1 + λ)
> 0,

and therefore Q(z) is starlike. Also we have

ℜ

(
zh′(z)

Q(z)

)
= α (1 + µ)ℜ

(
λ (1− z)

λ− z

)
+ ℜ

(
zQ′(z)

Q(z)

)
≥ 0.

By an application of Lemma 1, we have p(z) ≺ q(z) or

Jα+1f(z)

Jαf(z)
≺

λ (1− z)

λ− z
.

This completes the proof of Theorem 1. ◭

By taking µ = 0, α = 1 and β = 1 in Theorem 1, we get the following
corollary:

Corollary 1. Let f ∈ Σ and f(z) 6= 0 in U
∗. If λ > 1 and

1 +
zf ′′(z)

f ′(z)
≺

λ (1− z)

λ− z
−

(λ− 1) z

(λ− z) (1− z)
,

then

zf ′(z)

f(z)
≺

λ (1− z)

λ− z
.
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Remark 1. The function

h(z) =
λ (1− z)

λ− z
−

(λ− 1) z

(λ− z) (1− z)
=

z

λ− z
+

1

1− z
,

takes real value for real value of z, h(0) = 1 and h(U) is the region ℜ (h(z)) <
(λ+1)
2(λ−1) for 1 < λ ≤ 2 and ℜ (h(z)) < (5λ−1)

2(λ+1) for 2 < λ. Hence this result general-

izes the result obtained by Owa et al. [18].

We note that the image of the function

h(z) = 1−
(λ− 1) z

λ (1− z)2

is

h(U∗) = C−

[
5λ− 1

4λ
,∞

]
.

Hence by taking µ = −1, α = 1 and β = 1 in Theorem 1, we get the following
corollary:

Corollary 2. Let λ > 1, f ∈ Σ and f(z) 6= 0 in U. If f satisfies

ℜ


1 + zf ′′(z)

f ′(z)

zf ′(z)
f(z)


 <

5λ− 1

4λ
,

then

zf ′(z)

f(z)
≺

λ (1− z)

λ− z
.

Theorem 2. Let α > 0, −1 ≤ µ < 0 and −1 ≤ A < 1. If f ∈ Σ satisfies the
condition Jαf(z)/z 6= 0 in U

∗ and
(
Jαf(z)

z

)µ(
α
Jα+1f(z)

z

)
≺ h (z) , (13)

where

h(z) =

(
1 +Az

1− z

)µ(
α
1 +Az

1− z
+

(1 +A) z

(1− z)2

)
,

then

Jαf(z)

z
≺

1 +Az

1− z
.
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Proof. Define the function p(z) by

p(z) :=
Jαf(z)

z
. (14)

It is clear that p is analytic in U
∗. By using the identity (10), we get from (14)

α
(
Jα+1f(z)

)′
= zp′ (z)− (α− 1) p (z) . (15)

Using (15) in (13), we see that the subordination becomes

αp(z)1+µ + p(z)µzp′(z) ≺ h(z).

Define the function q(z) by

q(z) :=
1 +Az

1− z
.

It is clear that q(z) is univalent in U and q(U) is the region ℜ (q(z)) > (1−A)/2.
By defining the functions ϑ and ϕ by

ϑ (w) = αwµ+1 and ϕ (w) = wµ.

we observe that (13) can be written as (7). Note that ϕ and ϑ are analytic
in C\ {0}. Also we see that

Q(z) := zq′(z)ϕ (q(z)) =
(1 +A) z (1 +Az)µ

(1− z)2+µ
,

and

h(z) := ϑ (q(z)) +Q(z) =

(
1 +Az

1− z

)µ(
α
1 +Az

1− z
+

(1 +A) z

(1− z)2

)
.

By our assumptions, we have

ℜ

(
zh′(z)

Q(z)

)
= ℜ

[
1 + µ

Az

1 +Az
+ (2 + µ)

z

1− z

]

> 1−
µ |A|

1 + |A|
−

2 + µ

2
=

−µ (1− |A|)

2 (1 + |A|)
> 0,
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and

ℜ

(
zh′(z)

Q(z)

)
= ℜ

[
ϑ′ (q(z))

ϕ (q(z))
+

zQ′(z)

Q(z)

]
= α (1 + µ) + ℜ

(
zQ′(z)

Q(z)

)
≥ 0.

The result now follows by an application of Lemma 1. ◭

The function h(z) = α+ 1+Az
(1−z)(1+Az) takes real values for real values of z with

h(0) = α and h(U) is symmetric with respect to the real axis and

ℜ (h(z)) > α+
1

2
−

1

1− |A|
, z ∈ U

∗.

Consequently, by letting µ = −1 in Theorem 2, we obtain the following corol-
lary:

Corollary 3. Let −1 < A < 1, α > 0 and f ∈ Σ with Jαf(z)/z 6= 0 in U
∗ and

ℜ

(
Jα+1f(z)

Jαf(z)

)
> 1 +

1

2α
−

1

α (1− |A|)
.

Then

Jαf(z)

z
≺

1 +Az

1− z
.

Theorem 3. Let µ ≥ −1, λ > 1, f ∈ Σ and Jαf(z)/z 6= 0 in U
∗. If f satisfies

(
Jαf(z)

z

)µ(
α
Jα+1f(z)

z

)
≺

λ1+µ (1− z)µ

(λ− z)1+µ

(
α (1− z)−

λ (1− z)

λ− z

)
,

then

Jαf(z)

z
≺

λ (1− z)

λ− z
.

Proof. The proof of Theorem 3, also based upon Lemma 1, is similar to that
of Theorem 1. Indeed, in this case, the result follows from Lemma 1 when we
define the functions ϕ and ϑ by ϑ(w) = αw−(1+µ) and ϕ(w) = −w−(2+µ). ◭

Finally we note that ℜ
(
1− (λ−1)z

(λ−z)(1−z)

)
< 3λ−1

2(λ−1) for z ∈ U
∗ and so from

above Theorem by choosing α = β = 1 we can get the following corollary:

Corollary 4. Let λ > 1, f ∈ Σ and f ′ (z) 6= 0 in U
∗. If f satisfies

ℜ

(
1 +

zf ′′(z)

f ′(z)

)
<

3λ− 1

2 (λ− 1)
,

then

f ′(z) ≺
λ (1− z)

λ− z
.
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3. Concluding Remarks and Observations

In our present investigation, we have successfully applied a remarkably general
family of linear operators which are associated with the λ-generalized Hurwitz-
Lerch zeta function. By means of this general linear operator, we have introduced
and investigated various properties of some new subclasses of meromorphically
univalent functions in the punctured unit disk U

∗. We have also considered several
closely-related (known or new) corollaries and consequences of the main results
(Theorems 1, 2 and 3) presented in this paper.
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