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Abstract. Our aim is to give an elementary and self-contained proof of the Carathéodory
kernel convergence theorem based on some fundamental facts in complex analysis.
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1. Introduction

The Bieberbach conjecture [1] was one of the most difficult problems in com-
plex analysis. It was initially proved by de Branges [2]. The proof is deeply
depending on some major theorems of the theory of univalent functions ([3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13]). We focus on the Carathéodory kernel convergence
theorem from among them. The origin of this theorem is the paper [14] and we
can find the overview of it in several recent books [4, 8, 10, 11, 13]. But there are
some unclear points in those five books as below.

Case 1: Gong [13] and Pommerenke [10] have given the Carathéodory kernel
convergence theorem in the following form:

Theorem 1. Let {fn}
∞
n=1 be a sequence of holomorphic and injective functions

on the unit open disk D satisfying fn(0) = 0 and f ′
n(0) > 0 for every n ∈ N,

Dn := fn(D) and D be the kernel of the sequence of domains {Dn}
∞
n=1. Then the

following two conditions are equivalent:

1. The sequence {fn}
∞
n=1 converges uniformly in the wider sense on D.
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2. The kernel satisfies D 6= C and {Dn}
∞
n=1 converges in the kernel sense to

D.

Moreover, the limit function of {fn}
∞
n=1 is a surjection from D to D. Precise

definitions of the kernel and the convergence in the kernel sense are given in
Definition 3 below.

Gong [13] and Pommerenke [10] have considered the image domain Dn :=
fn(D), where fn is holomorphic and injective on D and satisfies fn(0) = 0 and
f ′
n(0) > 0. But it is not obvious that fn(D) is simply connected (see Remark
1). In addition, they do not comment whether the kernel D is simply connected
or not (see Remark 2). But D must be a simply connected domain because
the Riemann mapping theorem is applied to D. In addition, we can find the
claim that there exist two subsequences {fmk

}∞k=1, {fnk
}∞k=1 ⊂ {fn}

∞
n=1 such that

{fmk
}∞k=1, {fnk

}∞k=1 converge uniformly in the wider sense on D to f, g, respec-
tively, where f 6= g on D, provided that {fn}

∞
n=1 does not converge uniformly in

the wider sense on D. But the claim seems to be not obvious. We also note that
any comment on an application of the Vitali theorem is not included in [10, 13].

Remark 1. Yoshida [15] has commented on the fact that the image f(Ω) is a
simply connected domain whenever f is holomorphic and injective on a simply
connected domain Ω. But many other literatures do not comment on it and any
detailed proof is not found.

Remark 2. The books [10, 11, 13] do not comment on the claim that the kernel
should be a simply connected domain. On the other hand, the two books [4, 8]
include the claim, however they do not prove it.

Case 2: Segal [11] has given the Carathéodory kernel convergence theorem in
the following form:

Theorem 2. Let {Dn}
∞
n=1 be a sequence of simply connected domains, D be the

kernel of {Dn}
∞
n=1 and {fn}

∞
n=1 be a sequence of functions defined on D satisfying

the following for every n ∈ N:

1. 0 ∈ Dn ( C.

2. fn : D → Dn is holomorphic and bijective.

3. fn(0) = 0 and f ′
n(0) > 0.

4. There exists an open disk B(0, ρ) := {z ∈ C : |z| < ρ} independent of n
such that B(0, ρ) ⊂ Dn.
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Then the following hold:

(A) If {fn}
∞
n=1 converges uniformly in the wider sense on D to a limit function

f , then f is holomorphic and injective on D and satisfies f(0) = 0, f ′(0) > 0
and f(D) = D. In addition, {Dn}

∞
n=1 converges in the kernel sense to D.

(B) Conversely, if {Dn}
∞
n=1 converges in the kernel sense to D and D 6= C, then

{fn}
∞
n=1 converges uniformly in the wider sense on D to a limit function f .

The case that the kernel is {0} is removed by supposing that there exists
B(0, ρ) such that B(0, ρ) ⊂ Dn holds for every n ∈ N. The fact that {fn}

∞
n=1

is normal on D implies the following claim: “If there exist two subsequences
{fnk

}∞k=1, {fmk
}∞k=1 ⊂ {fn}

∞
n=1 such that {fnk

}∞k=1, {fmk
}∞k=1 converge to f, g,

respectively, where f 6= g on D, then there exist {f̃l}
∞
l=1 ⊂ {fnk

}∞k=1 and {g̃l}
∞
l=1 ⊂

{fmk
}∞k=1 converging uniformly in the wider sense on D to f̃ , g̃, respectively, where

f̃ 6= g̃ on D.” It is not obvious that the kernel of {Dnk
}∞k=1 does not coincide

with the one of {Dmk
}∞k=1 by using only the claim. It seems that the simply

connectedness of the kernel D should be clarified and an argument involving the
Riemann mapping theorem should lead to some contradiction.

Case 3: Henrici [8] has given the Carathéodory kernel convergence theorem
in the following form:

Theorem 3. Let {Dn}
∞
n=1 be a sequence of simply connected domains, D be the

kernel of {Dn}
∞
n=1 and {fn}

∞
n=1 be a sequence of functions defined on D satisfying

the following:

1. 0 ∈ Dn ( C for every n ∈ N.

2. fn : D → Dn is holomorphic and bijective for every n ∈ N.

3. fn(0) = 0 and f ′
n(0) > 0 for every n ∈ N.

4. 0 is an interior point of
∞
⋂

n=1

Dn.

Then {fn}
∞
n=1 converges uniformly in the wider sense on D to a limit function

f if and only if {Dn}
∞
n=1 converges in the kernel sense to D. Moreover, D is a

simply connected domain and {f−1
n }∞n=1 converges uniformly in the wider sense

on D to f−1.

We can find the claim that D is a simply connected domain without proof.
In addition, it is not obvious that the normality of {fn}∞n=1 implies the uniformly
convergence of it in the wider sense on D. We also note that any comment on
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applications of the Vitali theorem and the Riemann mapping theorem is not
found in [8].

Case 4: Duren [4] has given the Carathéodory kernel convergence theorem in
the following form:

Theorem 4. Let {Dn}
∞
n=1 be a sequence of simply connected domains, D be the

kernel of {Dn}
∞
n=1 and {fn}

∞
n=1 be a sequence of functions defined on D satisfying

the following for every n ∈ N:

1. 0 ∈ Dn ( C.

2. fn : D → Dn is holomorphic and bijective.

3. fn(0) = 0 and f ′
n(0) > 0.

Then {fn}
∞
n=1 converges uniformly in the wider sense on D to a limit function f

if and only if {Dn}
∞
n=1 converges in the kernel sense to D 6= C. Moreover, one

of the following two conclusions holds:

(A) If D = {0}, then we have f ≡ 0 on D.

(B) If D 6= {0}, then D is a simply connected domain, f : D → D is holomor-
phic and bijective, and {f−1

n }∞n=1 converges uniformly in the wider sense on
D to f−1.

The conclusion of the theorem above includes the claim that the kernel is a
simply connected domain. But any proof of it is not found. We also note that
an argument involving the Riemann mapping theorem should be needed as is the
case with [11] (Case 2).

Keeping the unclear points above in mind, we will give an elementary and
self-contained proof of the Carathéodory kernel convergence theorem based on
some fundamental facts. We state basic notions in Section 2. In particular, we
give straightforward proofs of the Hurwitz theorem and the Vitali theorem. Later
we formulate the main theorem and prove it in Section 3. In the present paper,
we use the following notation:

1. Given a ∈ C and r > 0, we write B(a, r) := {z ∈ C : |z − a| < r} and
B0(a, r) := {z ∈ C : 0 < |z − a| < r} = B(a, r) \ {a}.

2. We denote the unit open disk by D := B(0, 1) = {z ∈ C : |z| < 1}.
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2. Preliminaries

2.1. Fundamental concepts

In this subsection, we give some fundamental facts used in the present paper.
For further informations and detailed proofs we refer to [3, 4, 8, 9, 11, 16].

Definition 1. The set S consists of all functions f satisfying the following con-
ditions:

1. f is holomorphic and injective on D.

2. f(0) = 0 and f ′(0) = 1.

Theorem 5. Let Ω ⊂ C be a domain and {fn}
∞
n=1 be a sequence of holomorphic

functions on Ω satisfying the following:

1. fn(z) 6= 0 for all z ∈ Ω and all n ∈ N.

2. {fn}
∞
n=1 converges uniformly in the wider sense on Ω to a function f .

Suppose that there exists a point z0 ∈ Ω such that f(z0) 6= 0. Then we have
f(z) 6= 0 for all z ∈ Ω.

Remark 3. In some books (for example [17, 18]) one says that Theorem 5 is
the Hurwitz theorem. In the present paper we say that Theorem 9 is the Hurwitz
theorem following the books [4, 6, 19].

Theorem 6 (The Riemann mapping theorem). For any simply connected domain
Ω ( C and any z0 ∈ Ω, there exists a unique bijective and holomorphic function
f : Ω → D such that f(z0) = 0 and f ′(z0) > 0.

Theorem 7 (The Koebe 1/4 theorem). For every f ∈ S, we have B(0, 1/4) ⊂
f(D).

Theorem 8 (The Koebe distortion theorem). For every f ∈ S, we have for all
z ∈ D

1− |z|

(1 + |z|)3
≤ |f ′(z)| ≤

1 + |z|

(1− |z|)3
,

|z|

(1 + |z|)2
≤ |f(z)| ≤

|z|

(1− |z|)2
.

Lemma 1. If a function f is holomorphic and injective on a domain Ω ⊂ C,
then we have f ′(z) 6= 0 for all z ∈ Ω.
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2.2. The three important theorems

In this subsection, we state the three important theorems, that is, Hurwitz,
Montel and Vitali theorems. Let us begin with the Hurwitz theorem.

Theorem 9 (The Hurwitz theorem). Let Ω ⊂ C be a domain, E ⊂ C, and
{fn}

∞
n=1 be a sequence of holomorphic functions on Ω satisfying the following:

1. {fn}
∞
n=1 converges uniformly in the wider sense on Ω to a function f .

2. The limit function f is not any constant function on Ω.

3. The closure E satisfies E ⊂ Ω and is a closed domain enclosed by a piece-
wise smooth simple closed curve.

4. f(z) 6= 0 for any z ∈ ∂E.

Then for sufficiently large n ∈ N, the number of the zero points included in E of
the function fn equals to the one of f , where we take the order of each zero point
into account.

Proof. Following the outline shown by [4, 6, 19] we give a straightforward
proof. By virtue of the Weierstrass theorem we see that f is holomorphic on Ω. In
particular, f is continuous on ∂E. Thus, the minimum valuem := min

z∈∂E
|f(z)| > 0

does exist. Namely, we have |f(z)| ≥ m for all z ∈ ∂E. On the other hand,
{fn}

∞
n=1 converges uniformly on ∂E to the limit function f . Thus, we can take

n0 ∈ N so that |fn(z) − f(z)| < m holds for every n ≥ n0 and z ∈ ∂E. This
implies that |fn(z)− f(z)| < |f(z)|. Therefore, the Rouché theorem gives us the
desired conclusion. ◭

As a corollary of the Hurwitz theorem we obtain the next result.

Corollary 1. Let Ω ⊂ C be a domain and {fn}
∞
n=1 be a sequence of holomorphic

and injective functions on Ω. Suppose that {fn}
∞
n=1 converges uniformly in the

wider sense on Ω to a function f and that the limit function f is not any constant
function. Then f is also holomorphic and injective on Ω.

Proof. By virtue of the Weierstrass theorem we see that f is holomorphic on
Ω. Assume that f is not injective on Ω. Then there exist z1, z2 ∈ Ω such that
z1 6= z2 and f(z1) = f(z2). Now we write α := f(z1) = f(z2). We note that the
function f −α is not any constant function on Ω. Thus, we can take two positive
numbers ρ′1, ρ

′
2 so that for j = 1, 2, B(zj , ρ

′
j) ⊂ Ω and f−α 6= 0 onB0(zj , ρ

′
j) hold.

In addition, we can take ρ′1 > ρ1, ρ
′
2 > ρ2 so that B(z1, ρ1) ∩B(z2, ρ2) = ∅ holds.

We remark that each function fn − α is holomorphic and {fn − α}∞n=1 converges
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uniformly on Ω in the wider sense to the limit function f−α. Applying Theorem 9
(the Hurwitz theorem) to {fn−α}∞n=1, for sufficiently large n ∈ N, we obtain that
the number of the zero points included in B(z1, ρ1) of the function fn −α equals
to the one of f − α, where we take the order of each zero point into account. In
particular, the function f −α satisfies f −α 6= 0 on B0(z1, ρ1) and f(z1)−α = 0.
Thus, fn − α has a unique zero point w1 in B(z1, ρ1). The same argument is
valid for B(z2, ρ2). That is, there exists a unique point w2 ∈ B(z2, ρ2) such that
fn(w2) − α = 0. Therefore, we obtain fn(w1) = fn(w2) = α and w1 6= w2. This
conclusion and the fact that fn is injective are contradictory. Hence we have
proved that f is injective on Ω. ◭

Before stating the next two theorems we need the following definition.

Definition 2. Let F be a family of functions defined on an open set Ω ⊂ C.

1. Let E ⊂ Ω. The family F is said to be uniformly bounded on E if there
exists a positive constant M such that |f(z)| ≤ M holds for every z ∈ E
and f ∈ F .

2. The family F is said to be uniformly bounded in the wider sense on Ω if F
is uniformly bounded on K for any bounded and closed set K ⊂ Ω.

3. The family F is said to be normal on Ω if any sequence {fn}
∞
n=1 ⊂ F has

a subsequence converging uniformly in the wider sense on Ω.

Theorem 10 (The Montel theorem). Let F be a family of holomorphic functions
on an open set Ω. If F is uniformly bounded in the wider sense on Ω, then F is
normal on Ω.

We omit the proof of the Montel theorem because some self-contained proofs
are well-known. For example, we can find them in [4, 6, 16, 20]. We next state
the Vitali theorem.

Theorem 11 (The Vitali theorem). Let {fn}
∞
n=1 be a sequence of holomorphic

functions on a domain Ω and A ⊂ Ω satisfy A′ ∩Ω 6= ∅, where the set A′ consists
of all accumulating points of A. Suppose that {fn}

∞
n=1 is normal on Ω and take

a subsequence {gn}
∞
n=1 ⊂ {fn}

∞
n=1 converging uniformly in the wider sense on

Ω to a limit function g, and that {fn}
∞
n=1 converges pointwise on A to g. Then

{fn}
∞
n=1 converges uniformly in the wider sense on Ω.

Some outlines of the proof can be found in [4, 9, 15, 21], however those books
include unclear points. Based on the strategy established by those books we give
a detailed proof.
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Proof. Assume that {fn}
∞
n=1 does not converge uniformly in the wider sense on

Ω. Then there exist a bounded and closed set K ⊂ Ω and ε0 > 0 such that for any
N ∈ N we can take n0 > N and z0 ∈ K so that |fn0

(z0)−g(z0)| ≥ ε0 holds. Thus,
we can take a natural number n1 > 1 and z1 ∈ K so that |fn1

(z1)− g(z1)| ≥ ε0
holds. We can additionally take a natural number n2 > n1 and z2 ∈ K so that
|fn2

(z2) − g(z2)| ≥ ε0 holds. Hence we can construct {nk}
∞
k=1 ⊂ N, {fnk

}∞k=1 ⊂
{fn}

∞
n=1 and {zk}

∞
k=1 ⊂ K such that |fnk

(zk) − g(zk)| ≥ ε0 and nk+1 > nk hold
for every k ∈ N. Because K is bounded and closed, by virtue of the Bolzano–
Weierstrass theorem there exists a subsequence {zkm}

∞
m=1 ⊂ {zk}

∞
k=1 converging

to a point z∗ ∈ K. Below we rewrite {zk}
∞
k=1 := {zkm}∞m=1. Noting that {fn}

∞
n=1

is normal on Ω again, we obtain a subsequence {fnkl
}∞l=1 ⊂ {fnk

}∞k=1 converging
uniformly in the wider sense on Ω to a limit function h. Take α ∈ A arbitrarily.
Then we have lim

n→∞
gn(α) = g(α) and lim

l→∞
fnkl

(α) = h(α) because both {gn}
∞
n=1

and {fnkl
}∞l=1 converge pointwise on A. On the other hand, the sequence of

complex numbers {fn(α)}
∞
n=1 converges to the limit g(α) because the sequence

of functions {fn}
∞
n=1 converges pointwise on A to the limit function g. Thus, by

virtue of the fact that {fnkl
(α)}∞l=1 is a subsequence of {fn(α)}

∞
n=1 we have

h(α) = lim
l→∞

fnkl
(α) = lim

n→∞
fn(α) = g(α).

We also remark that the Weierstrass theorem implies that both g and h are
holomorphic on Ω. Hence by the identity theorem we see that g(z) = h(z) holds
for all z ∈ Ω. On the other hand, the sequence {fnkl

}∞l=1 converges uniformly in
the wider sense on Ω to the limit function h, that is, for all ε > 0, there exists
L0 ∈ N such that |fnkl

(zkl)− h(zkl)| < ε holds for every l ≥ L0. In addition, the
function h is continuous at the point z∗ ∈ Ω, that is, there exists L1 > L0 such
that |h(zkl)− h(z∗)| < ε holds for every l ≥ L1. Thus, we have

|fnkl
(zkl)− h(z∗)| ≤ |fnkl

(zkl)− h(zkl)|+ |h(zkl)− h(z∗)|

< ε+ ε = 2ε,

namely, the sequence of complex numbers {fnkl
(zkl)}

∞
l=1 converges to the limit

h(z∗). Since we have obtained that |fnkl
(zkl)− g(zkl)| ≥ ε0 holds for every l ∈ N,

we see that h(z∗) − g(z∗) 6= 0, namely, h(z∗) 6= g(z∗). Because of z∗ ∈ Ω, this
contradicts the fact obtained by the identity theorem above. Consequently, we
have proved that {fn}

∞
n=1 converges uniformly in the wider sense on Ω. ◭

2.3. The kernel and the kernel convergence

In this subsection, we define the kernel and convergence in the kernel sense
for sequence of domains and give some examples based on the books [10, 13].
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Definition 3. Let {Dn}
∞
n=1 be a sequence of domains such that 0 ∈ Dn for every

n ∈ N. The set D′ consists of all w ∈ C for which there exists a domain H such
that {0, w} ⊂ H ⊂ Dn holds for all sufficiently large n ∈ N. Then the kernel D
of {Dn}

∞
n=1 is defined by

D := {0} ∪D′.

The sequence {Dn}
∞
n=1 is said to be converging in the kernel sense to D if all

subsequences of {Dn}
∞
n=1 have the same kernel D. In this case we write Dn → D.

Remark 4. In the case where D′ = ∅, the kernel D is of course defined by
D := {0}.

Example 1. Consider some examples of sequences of domains {Dn}
∞
n=1 and

their kernels D.

1. Let

Dn := C \

{

1 + it : |t| ≥
1

n

}

(n ∈ N).

Then the kernel D of {Dn}
∞
n=1 is

D = {z ∈ C : Rez < 1}.

We see that any subsequence of {Dn}
∞
n=1 has also the same kernel D. Thus

we have Dn → D.

2. Let

Dn := C \

{

it : |t| ≥
1

n

}

(n ∈ N).

Then the kernel D of {Dn}
∞
n=1 is

D = {0},

because for all ε ∈ (0, 1) there exists n0 ∈ N such that B(0, ε) 6⊂ Dn0
. We

see that any subsequence of {Dn}
∞
n=1 has also the same kernel D. Thus we

have Dn → D.

3. Let
Dn := C \ {z ∈ C : Imz = (−1)n} (n ∈ N).

Then the kernel D of {Dn}
∞
n=1 is

D = {z ∈ C : Imz > −1} ∩ {z ∈ C : Imz < 1}.

On the other hand, the kernel of subsequence {D2n}
∞
n=1 is

{z ∈ C : Imz < 1}.

This implies that {Dn}
∞
n=1 does not converge in the kernel sense to D.
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3. A proof of the Carathéodory kernel convergence theorem

We formulate the Carathéodory kernel convergence theorem by giving the
following two parts in order to make the main result more readable. We also note
that we will apply the first theorem to prove the second one.

Theorem 12. Let {fn}
∞
n=1 be a sequence of holomorphic and injective functions

on D satisfying fn(0) = 0 and f ′
n(0) > 0 for every n ∈ N and D be the kernel

of the sequence {Dn}
∞
n=1, where Dn := fn(D). If the sequence {fn}

∞
n=1 converges

uniformly in the wider sense on D to a limit function f , then we have f(D) = D.

The first theorem itself (Theorem 12) has been essentially proved by Gong
[13] and Pommerenke [10]. For readers’ convenience we will give a self-contained
proof of it.

Theorem 13. Let {Dn}
∞
n=1 be a sequence of simply connected domains such that

0 ∈ Dn ( C for every n ∈ N, {fn}
∞
n=1 be a sequence of functions such that

fn : D → Dn is holomorphic and bijective, fn(0) = 0 and f ′
n(0) > 0, and D be

the kernel of {Dn}
∞
n=1. Then the following hold:

(i) If Dn → D and D = {0} are true, then {fn}
∞
n=1 converges uniformly in the

wider sense on D to 0.

(ii) If Dn → D holds and D ( C is a simply connected domain, then {fn}
∞
n=1

converges uniformly in the wider sense on D to a limit function f , where f
satisfies f(D) = D.

Remark 5. The Riemann mapping theorem guarantees that the sequence of func-
tions {fn}

∞
n=1 does exist in Theorem 13.

As is pointed out in Introduction, we find the following unclearness when we
state the second part (Theorem 13) in the five books [4, 8, 10, 11, 13]:

1. Both the Vitali theorem and the Riemann mapping theorem are indispens-
able in our self-contained proof of the Carathéodory kernel convergence
theorem. We cannot find any comment on an application of the Vitali the-
orem in [8, 10, 13]. On the other hand, the books [4, 8, 11] do not include
any comment on an application of the Riemann mapping theorem.

2. Remarks 1 and 2 say that the five books [4, 8, 10, 11, 13] do not give a
detailed explanation on simply connectedness of the image and the kernel.
By supposing that every Dn and D are simply connected in Theorem 13, we
can avoid the complicated discussion, however we do not give direct proofs
of Remarks 1 and 2.
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Making up for these unclear points above we have formulated Theorem 13.
Applying Theorem 12 we will additionally give an elementary and self-contained
proof of Theorem 13.

Proof. [Proof of Theorem 12] (i) We first consider the case where the limit
function is not any constant function. By virtue of Corollary 1, f is holomorphic
and injective on D. As fn(0) = 0 holds for every n ∈ N, we have

f(0) = lim
n→∞

fn(0) = lim
n→∞

0 = 0.

Step 1: We prove f(D) ⊂ D. Take w0 ∈ f(D) arbitrarily.

If w0 = 0, then by the definition of the kernel we can easily obtain w0 ∈ D.

Consider the case where w0 6= 0. There exists z0 ∈ D such that w0 = f(z0).
We take a constant r so that |z0| < r < 1. We define a set H by H := f (B(0, r)).
We note that f is holomorphic and is not any constant function on B(0, r).
Thus, by the principle of domain preservation, H is a domain. It also follows
that {0, w0} ⊂ H. If the claim that H ⊂ Dn is true for all sufficiently large
n ∈ N, then the definition of the kernel implies w0 ∈ D, that is, f(D) ⊂ D holds.
Thus, we only have to prove the above claim. Assume that for any n ∈ N, there
exists N > n such that H 6⊂ DN . Then we can take a natural number n1 > 1
so that H 6⊂ Dn1

. In addition, we can take a natural number n2 > n1 so that
H 6⊂ Dn2

. Hence we can construct αk ∈ H \Dnk
and {nk}

∞
k=1 ⊂ N such that

nk+1 > nk > k for every k ∈ N. By virtue of the Archimedes principle, for all
K > 0, there exists L ∈ N such that L > K. Thus, for all l ∈ N with l > L
we have nl > nL > L > K, that is, lim

k→∞
nk = +∞. Because f is continuous

on the bounded and closed set B(0, r), M := max
z∈B(0,r)

|f(z)| does exist. Namely,

|f(z)| ≤ M holds for every z ∈ B(0, r). This implies that H is a bounded
domain. Hence the closure H is also bounded. Thus, by the Bolzano–Weierstrass
theorem, there exists a subsequence {αkl}

∞
l=1 ⊂ {αk}

∞
k=1 ⊂ H converging to a

point α∗ ∈ H. Below we rewrite {αk}
∞
k=1 := {αkl}

∞
l=1. Noting that αk 6∈ Dnk

and
Dnk

= fnk
(D) hold for all k ∈ N, we have fnk

(z) − αk 6= 0 for all z ∈ D and all
k ∈ N. On the other hand, {fnk

−αk}
∞
k=1 converges uniformly in the wider sense

on D to the function f−α∗. There exists z1 ∈ D such that f(z1)−α∗ 6= 0 because
f − α∗ is injective on D. Thus, by virtue of Theorem 5, for every z ∈ D we have
f(z)−α∗ 6= 0, that is, f(z) 6= α∗. This contradicts the fact that α∗ ∈ H ⊂ f(D).

Step 2: We prove D ⊂ f(D). Take w0 ∈ D arbitrarily.

If w0 = 0, then we can easily get 0 = f(0) ∈ f(D).

Consider the case where w0 6= 0. By virtue of the definition of the kernel,
we can take a domain H and a natural number N so that {0, w0} ⊂ H ⊂ Dn

for all n ≥ N . We note that fn : D → Dn is holomorphic and bijective for
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every n ∈ N. Thus, we can define the holomorphic inverse function ϕn := f−1
n :

Dn → D. In particular, ϕn(0) = 0 holds. We see that {ϕn}
∞
n=N is a sequence of

holomorphic and injective functions onH becauseH ⊂ Dn holds for every n ≥ N .
In addition, for every n ≥ N we have ϕn(H) ⊂ ϕn(Dn) ⊂ D, that is, {ϕn}

∞
n=N

is uniformly bounded on H. Hence Theorem 10 (the Montel theorem) implies
that {ϕn}

∞
n=N is normal on H. Namely, there exists a subsequence {ϕnk

}∞k=1 ⊂
{ϕn}

∞
n=N converging uniformly in the wider sense on H to a limit function ϕ.

Applying Corollary 1 to {ϕnk
}∞k=1, we see that ϕ is holomorphic and injective on

H. In particular, {ϕnk
}∞k=1 converges pointwise to ϕ on H. Because of 0 ∈ H,

we have
ϕ(0) = lim

k→∞
ϕnk

(0) = lim
k→∞

0 = 0.

In addition, fixing w ∈ H arbitrarily, we have lim
k→∞

|ϕnk
(w)| = |ϕ(w)| and |ϕnk

(w)|

< 1. Thus, we obtain |ϕ(w)| ≤ 1. Noting that ϕ is holomorphic and is not any
constant function on H, we have |ϕ(w)| < 1 by the maximum modulus principle.
In particular, z0 := ϕ(w0) ∈ D holds. Therefore, f is continuous at the point
z0 ∈ D, that is, for all ε > 0 there exists δ > 0 satisfying B(z0, δ) ⊂ D and
|f(z) − f(z0)| < ε for all z ∈ B(z0, δ). Because {ϕnk

}∞k=1 converges at the point
w0, there exists k0 ∈ N such that |ϕnk

(w0) − ϕ(w0)| < δ holds for all k ≥ k0.
In addition, because {fnk

}∞k=1 ⊂ {fn}
∞
n=1 converges uniformly on B(z0, δ) to f ,

we can take k1 ≥ k0 so that |fnk
(z) − f(z)| < ε holds for all k ≥ k1 and all

z ∈ B(z0, δ). Hence we have

|f(z0)− w0| = |f(z0)− f(ϕnk
(w0)) + f(ϕnk

(w0))− w0|

≤ |f(z0)− f(ϕnk
(w0))|+ |f(ϕnk

(w0))− w0|

= |f(z0)− f(ϕnk
(w0))|+ |f(ϕnk

(w0))− fnk
(ϕnk

(w0))|

< ε+ ε

= 2ε.

Since ε > 0 is arbitrary, we get w0 = f(z0) ∈ f(D), that is, D ⊂ f(D).
We see that Step 1 and Step 2 imply f(D) = D.
(ii) We next consider the case where the limit function f equals to a constant

C . Then we have

C = f(0) = lim
n→∞

fn(0) = lim
n→∞

0 = 0,

namely, f(D) = {C} = {0}. Now we assume that D 6= {0}. Then we can take
an element w ∈ D \ {0}. By virtue of the definition of the kernel, there exist a
domain H and m ∈ N such that {0, w} ⊂ H ⊂ Dm. Because H is an open set
including 0, we can take ρ > 0 so that B(0, ρ) ⊂ H ⊂ Dm. On the other hand,



An Elementary Proof of the Carathéodory Kernel 81

we can define the holomorphic inverse function ϕm := f−1
m : Dm → D, because

fm : D → Dm is holomorphic and bijective. In particular, ϕm is holomorphic
and injective on Dm. Thus, by Lemma 1 we have ϕ′

m 6= 0 on Dm. On the other
hand, ϕm is holomorphic on B(0, ρ) and satisfies |ϕm(w)| < 1 for all w ∈ B(0, ρ)
and ϕm(0) = 0. Applying the Schwarz lemma to ϕm, we obtain |ϕ′

m(0)| ≤ 1/ρ.
Because fm(ϕm(v)) = v holds for each v ∈ B(0, ρ), by the differentiation we have
f ′
m(ϕm(v))ϕ′

m(v) = 1. Thus, we obtain

|f ′
m(0)| = |f ′

m(ϕm(0))| =

∣

∣

∣

∣

1

ϕ′
m(0)

∣

∣

∣

∣

≥ ρ > 0.

Hence the sequence {f ′
n(0)}

∞
n=1 does not converge to 0. On the other hand,

{fn}
∞
n=1 converges uniformly in the wider sense on D to the limit function f ≡ 0.

Thus, by virtue of the Weierstrass theorem {f ′
n}

∞
n=1 converges uniformly in the

wider sense on D to the limit function 0. In particular, the sequence {f ′
n(0)}

∞
n=1

converges to 0. This contradicts the fact above. Consequently, we have proved
D = {0}, that is, f(D) = D. ◭

Now we prove the second part of the Carathéodory kernel convergence theo-
rem (Theorem 13) applying the previous theorem.

Proof. [Proof of Theorem 13] We can define a holomorphic and injective
function

Fn(z) :=
fn(z)

f ′
n(0)

on D because f ′
n(0) > 0 holds for every n ∈ N. By the definition, we see that

Fn(0) = 0 and F ′
n(0) = 1. Namely, {Fn}

∞
n=1 ⊂ S holds.

We first prove (i). Suppose that D = {0} and Dn → {0}.

Step 1: We prove lim
n→∞

f ′
n(0) = 0. Assume that {f ′

n(0)}
∞
n=1 does not converge

to 0. Then there exists ε > 0 such that for any n ∈ N we can take n0 ≥ n so that
f ′
n0
(0) ≥ ε. Thus, we can take a natural number n1 > 1 so that f ′

n1
(0) ≥ ε. We

can additionally take a natural number n2 > n1 so that f ′
n2
(0) ≥ ε. Hence we

can construct {nk}
∞
k=1 ⊂ N and {fnk

}∞k=1 ⊂ {fn}
∞
n=1 such that f ′

nk
(0) ≥ ε and

nk+1 > nk for each k ∈ N. Applying Theorem 7 (the Koebe 1/4 theorem) to Fnk
,

we get B (0, 1/4) ⊂ Fnk
(D). Take w ∈ B

(

0,
f ′

n
k
(0)

4

)

arbitrarily. Then we have

|w|
f ′

nk
(0) <

1
4 , that is,

w
f ′

nk
(0) ∈ B (0, 1/4) ⊂ Fnk

(D). Hence there exists z0 ∈ D such

that
w

f ′
nk
(0)

= Fnk
(z0) =

fnk
(z0)

f ′
nk
(0)

,
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namely, w = fnk
(z0). Thus, we have

B
(

0,
ε

4

)

⊂ B

(

0,
f ′
nk
(0)

4

)

⊂ fnk
(D) = Dnk

.

This implies that the kernel of {Dnk
}∞k=1 includes B(0, ε4 ) and contradicts the

fact that Dn → {0}.
Step 2: We prove that {fn}

∞
n=1 converges uniformly in the wider sense on D to

0. Take bounded and closed setK ⊂ D arbitrarily. The valueM1 := max
z∈K

|z|

(1− |z|)2

does exist because the function |z|
(1−|z|)2

is continuous on K. Applying Theorem

8 (the Koebe distortion theorem) to Fn for every n ∈ N, we obtain that for all
z ∈ K

|Fn(z)| ≤
|z|

(1− |z|)2
≤ M1.

Therefore, we get

|fn(z)| = |Fn(z)| |f
′
n(0)| ≤ M1|f

′
n(0)| → 0 (n → ∞).

Consequently, we have proved that {fn}
∞
n=1 converges uniformly in the wider

sense on D to 0.
We next prove (ii). Suppose that D ( C is a simply connected domain and

Dn → D.
Step 1: We prove that the sequence {f ′

n(0)}
∞
n=1 is bounded above. As-

sume that {f ′
n(0)}

∞
n=1 is not bounded above. Then there exists a subsequence

{f ′
nk
(0)}∞k=1 ⊂ {f ′

n(0)}
∞
n=1 such that lim

k→∞
f ′
nk
(0) = +∞. Applying Theorem 7

(the Koebe 1/4 theorem) to Fnk
, the same argument as in the proof of Step 1 in

(i) gives us

B

(

0,
f ′
nk
(0)

4

)

⊂ fnk
(D) = Dnk

.

Noting that f ′
nk
(0) → +∞ (k → ∞), we see that {Dnk

}∞k=1 has the kernel C.
This contradicts to Dn → D and D ( C.

Step 2: We prove that {fn}
∞
n=1 is normal on D. By virtue of Step 1, there

exists a constant M2 > 0 such that |f ′
n(0)| ≤ M2 holds for every n ∈ N. Applying

Theorem 8 (the Koebe distortion theorem) to Fn for every n ∈ N, we obtain that
for all z ∈ K

|Fn(z)| ≤
|z|

(1− |z|)2
≤ M1.

Therefore, we get
|fn(z)| = |Fn(z)| |f

′
n(0)| ≤ M1M2,
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that is, {fn}
∞
n=1 is uniformly bounded on K. By virtue of Theorem 10 (the

Montel theorem), we have proved that {fn}
∞
n=1 is normal on D.

Step 3: There exists a subsequence {gn}
∞
n=1 ⊂ {fn}

∞
n=1 converging uniformly

in the wider sense on D to a limit function g because {fn}
∞
n=1 is normal on D.

Below we prove that {fn}
∞
n=1 converges pointwise on D to g. Assume that {fn}

∞
n=1

does not converge pointwise on D. Then there exist α ∈ D and ε > 0 such that
for any N ∈ N we can take n > N so that |fn(α) − g(α)| ≥ ε. Thus, we can
take a natural number n1 > 1 so that |fn1

(α) − g(α)| ≥ ε. We can additionally
take a natural number n2 > n1 so that |fn2

(α) − g(α)| ≥ ε. Therefore, we
can construct {nk}

∞
k=1 ⊂ N and {fnk

}∞k=1 ⊂ {fn}
∞
n=1 such that nk+1 > nk and

|fnk
(α) − g(α)| ≥ ε for every k ∈ N. Noting that {fn}

∞
n=1 is normal on D again,

there exists a subsequence {fnkl
}∞l=1 ⊂ {fnk

}∞k=1 converging uniformly in the
wider sense on D to a limit function f . Since |fnkl

(α) − g(α)| ≥ ε holds for all
l ∈ N, we have lim

l→∞
fnkl

(α) − g(α) 6= 0, that is, f(α) 6= g(α). On the other hand,

applying Theorem 12 to {fnkl
}∞l=1 and {gn}

∞
n=1, respectively, we obtain f(D) = D

and g(D) = D. In addition, we have f(0) = lim
l→∞

fnkl
(0) = 0. By virtue of the

Weierstrass theorem we see that f ′(0) = lim
l→∞

f ′
nkl

(0) ≥ 0. By Corollary 1 we see

that f is holomorphic and injective on D. Thus, by Lemma 1 we have f ′(z) 6= 0 for
all z ∈ D, that is, f ′(0) > 0. Similarly we see that g is holomorphic and injective
on D and satisfies g(0) = 0 and g′(0) > 0. We also remark that both f and g are
holomorphic on D and bijections from D to the simply connected domain D ( C.
By virtue of the uniqueness of the map due to the Riemann mapping theorem we
have f(z) = g(z) for all z ∈ D. This contradicts to f(α) 6= g(α).

Step 4: We prove the conclusion of (ii). By virtue of Step 3, {fn}
∞
n=1 converges

pointwise on D to the limit function g. Theorem 11 (the Vitali theorem) implies
that {fn}

∞
n=1 converges uniformly in the wider sense on D. Applying Theorem

12 to {fn}
∞
n=1 we have proved that g(D) = D. ◭
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