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A New Type of p-Ideals in BC'I-Algebras Based on
Hesitant Fuzzy Sets
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Abstract. Using the concept of hesitant union (U), the notion of W-hesitant fuzzy p-
ideals is introduced, and their properties are investigated. Relations between U-hesitant
fuzzy ideals and W-hesitant fuzzy p-ideals are considered. Conditions for the U-hesitant
fuzzy ideal to be a W-hesitant fuzzy p-ideal are provided. The reduction property for
U-hesitant fuzzy p-ideals is established.
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1. Introduction

As a generalization of fuzzy sets, Torra introduced the notion of hesitant fuzzy
sets (see [9, 10]), and it is a very useful tool to deal with uncertainty, which can
be accurately and perfectly described in terms of the opinions of decision makers.
Xu and Xia [14] proposed a variety of distance measures for hesitant fuzzy sets,
based on which the corresponding similarity measures can be obtained. They in-
vestigated the connections of the aforementioned distance measures and further
developed a number of hesitant ordered weighted distance measures and hesi-
tant ordered weighted similarity measures. Xu and Xia [15] defined the distance
and correlation measures for hesitant fuzzy information and then discussed their
properties in detail. Also, hesitant fuzzy set theory is used in decision making
problem etc. (see [7, 11, 12, 13, 15]), and is applied to BCK/BCI-algebras, EQ-
algebras, residuated lattices and MT L-algebras (see [2, 3, 4, 6]). In [8], Song et
al. introduced the notion of W-hesitant fuzzy subalgebras and U-hesitant fuzzy
ideals, and investigated several properties.
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In this paper, we introduce the notion of U-hesitant fuzzy p-ideals in BCI-
algebras and investigate several properties. We consider relations between U-
hesitant fuzzy ideals and W-hesitant fuzzy p-ideals, and provide conditions for the
U-hesitant fuzzy ideal to be a U-hesitant fuzzy p-ideal. We establish the reduction
property for W-hesitant fuzzy p-ideals.

2. Preliminaries

A BCK/BC1I-algebra is an important class of logical algebras introduced by
K. Iséki and was extensively investigated by several researchers.

An algebra (X;x*,0) of type (2,0) is called a BCI-algebra if it satisfies the
following conditions:

(@D (Vz,y,2 € X) (((z*y) * (z+2)) * (2% y) = 0),
(1) (Va,y € X) ((z * (z*y)) xy = 0),
(III) (Vo € X) (z xx = 0),
(IV) (Vo,y €X) (zxy=0,yxz=0 = z=1y).

If a BC'I-algebra X satisfies the following identity:
(V) (Vz e X) (0xx=0),

then X is called a BC'K -algebra.
Any BCK/BC1I-algebra X satisfies the following conditions:

(Ve e X)(zx0=1), (1)
Ve,y,ze X)(x<y = xxz2<yx*xz, zxy<z*x), (2)
(Vo,y,z€ X)((x*xy)*xz2=(r*2)*y), (3)
(Vo,y,z € X)((xx2) % (y*x2) <z x*xy) (4)
where x < y if and only if z xy = 0.
Any BClI-algebra X satisfies the following conditions:
(Vo,y,2€ X) (0% (0% ((xx2)x (y*x2))) = (0xy) * (0x2z)), (5)
(Vz,y € X) (0% (0 (zxy)) = (0xy)* (0*x)), (6)
Ve e X)(0x(0x(0%z))=0xx). (7)

A BC1I-algebra X is said to be p-semisimple (see [1]) if 0% (0 * z) = x for all
z e X.
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Every p-semisimple BC'I-algebra X satisfies:
(Va,y,2 € X) (25 2)  (y+ 2) = v % ). (8)
A subset A of a BCK/BC1I-algebra X is called an ideal of X if it satisfies:

0eA, 9)
VeeX)(zxyecA yec A = zcA). (10)

A subset A of a BCI-algebra X is called a p-ideal of X (see [16]) if it satisfies
(9) and

Ve,y,ze X)((xxz)x(y*x2) €A, yec A = € A). (11)

Note that an ideal A of a BCI-algebra X is a p-ideal of X if and only if the
following assertion is valid (see [16]):

(Vo,y,z€ X)((x*x2)x(y*x2) €A = xxye A). (12)

We refer the reader to the books [1, 5] for further information regarding
BCK/BC1I-algebras.

A hesitant fuzzy set on a reference set X (see [9]) is defined in terms of a
function G that when applied to X returns a subset of [0, 1], that is, G : X —
2([0,1]).

Given a hesitant fuzzy set G on X, we define InfG as follows:

minimum of G(x) if G(z) is finite,
infimum of G(z)  otherwise.

InfG(z) = {

for all z € X. It is obvious that InfG is fuzzy set in X.
For a hesitant fuzzy set G on X and z,y € X, we define

G(x)uG(y) :={t € G(x) UG(Y) | t = max{InfG(z), InfG(y)}}.  (14)

We say that G(z) U G(y) is the hesitant union of G(z) and G(y). Note that the
following assertions are always true:

g(x)ug(z) = G(z), (15)
G(a) CG(x), G(b) CG(y) = G(a)UG(b) € G(x) UG(y) (16)

for all a,b,x,y € X. For any hesitant fuzzy set G on X and 7 € £([0,1]), we
consider the set

L(G,7)={zre X |G(z) C 7},
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which is called the lower hesitant T-level set of G on X.

A hesitant fuzzy set G on a BCK/BCI-algebra X is called a hesitant fuzzy
ideal of X based on the hesitant union (V) (briefly, U-hesitant fuzzy ideal of X)
(see [8]) if it satisfies:

(Ve € X) (G(0) € G(x)), (17)
(vz,y € X) (G(x) C G(x +1) WG(y)). (18)

3. p-ideals of B(CI-algebras based on the hesitant union

In what follows, let X denote a BC'I-algebra unless otherwise specified.

Definition 1. A hesitant fuzzy set G on X is called a hesitant fuzzy p-ideal of a
BC1I-algebra X based on the hesitant union (V) (briefly, U-hesitant fuzzy p-ideal
of X ) if it satisfies (17) and

(Va,y,2 € X) (G(x) C G((z * 2) % (y + 2)) UG(y)) .- (19)

Example 1. Let X = {0,a,b,c} be a BCI-algebra with the following Cayley
table (see [1]):

o Qe O %
o o oo
S0 O QR
2 Ooa oo
S a2 >-alo

Define a hesitant fuzzy set G on X as follows:

] {0.4,0.45} U (0.5,0.7) if x € {0,c}
G: X = 2(01]), = { [0.4,0.7] otherwise,
It is routine to verify that G is a U-hesitant fuzzy p-ideal of X .

Theorem 1. Every U-hesitant fuzzy p-ideal of X is a U-hesitant fuzzy ideal of
X.

Proof. Let G be a U-hesitant fuzzy p-ideal of X. Since x %0 =« for all x € X,
taking z := 0 in (19) yields

G(z) CG((x*0) x(y+0) UG(y) =Gz *y) UG(y)
for all x,y € X. Therefore G is a U-hesitant fuzzy ideal of X.

The converse of Theorem 1 is not true in general as seen in the following
example.
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Example 2. Consider a BCI-algebra X = {0,1,2,a,b} with the following Cayley
table (see [1]):

*[0 1 2 a b
0{0 0 0 a a
111 01 b a
212 2 0 a a
ala a a 0 O
blb a b 1 0.

Define a hesitant fuzzy set G on X as follows:

{0.4} U[0.5,0.6) U{0.7} if = € {0,2,a},

G: X —-2(0,1)), z— { [0.4,0.6] U {0.7} otherwise,

Then G is a U-hesitant fuzzy ideal of X. But it is not a U-hesitant fuzzy p-ideal
of X since

G((bxb)x(axb))VUG(a) =G(0) UG(a)

={t € G(0)UG(a) | t > max{InfG(0),InfG(a)}}

={t {04} U[0.5,0.6) U{0.7} | t > 0.4}

={0.4} U[0.5,0.6) U{0.7} 2 [0.4,0.6] U {0.7} = G(b).

Lemma 1 ([8]). Every U-hesitant fuzzy ideal G of X satisfies:

(Vz,ye X)(x <y = G(z) CG(y)), (20)
(Ve,y,z€ X)(zxy <z = G(z) CG(y)VG(2)). (21)

Proposition 1. FEvery U-hesitant fuzzy p-ideal G of X satisfies the following
assertion:

(Vz e X) (G(x) CG(0x (0xx))). (22)
(Va,y,2 € X) (G((x x 2) * (y * 2)) C G(x xy)). (23)

Proof. Let G be a W-hesitant fuzzy p-ideal of X. If we put z := z and y := 0
in (19), then

G(x) CG((xxx)* (0xx))UG0) =G(0x(0*z))UG(0) CG(0x*(0xx))

for all x € X by (III), (17), (15) and (16). Thus (22) holds.
Note that G is a U-hesitant fuzzy ideal of X by Theorem 1. Since (x * z) *
(yxz) <zxyforal z,y,z € X, it follows from (20) that

G(z*2) x (y*2)) CG(zxy),
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which proves (23).
Given a hesitant fuzzy set G on X, we consider the following inclusion:

(Va,y,2 € X) (G(z xy) € G((x * 2) * (y * 2))) . (24)

The following example shows that there is a U-hesitant fuzzy ideal G of X
which does not satisfy the condition (24).

Example 3. Let X = {0,1,2,a,b} be a BCI-algebra with the following Cayley
table (see [5]):

*[0 1 2 a b
0{0 0 0 a a
11 0 0 a a
212 2 0 b a
ala a a 0 O
blb b a 2 0.

Define a hesitant fuzzy set G on X as follows:

{0.4,0.45,0.5} if x =0,
{04} U[0.45,0.5] ifz =1,
G:X = 2(0,1]), x—{ {041U[0.45,0.6) ifz =2,
[0.4,0.5] if v = a,
[0.4,0.6] ifz =b.

It is routine to verify that G is a U-hesitant fuzzy ideal of X. But G does not
satisfy the condition (24) because

G(2*a)=G(b) =1[0.4,0.6] ©[0.4,0.5] =G((2%2) *(a*x2)).

We provide conditions for a UW-hesitant fuzzy ideal to be a W-hesitant fuzzy
p-ideal.

Theorem 2. If a U-hesitant fuzzy ideal G of X satisfies the condition (24), then
it is a U-hesitant fuzzy p-ideal of X.

Proof. Let G be a W-hesitant fuzzy ideal of X satisfying the condition (24).
Then

G(x) CGxxy)UG(y) CG((x*2)*(y*2) UG(y)

for all z,y,z € X by (18) and (16). Therefore G is a W-hesitant fuzzy p-ideal of
X.
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Lemma 2 ([8]). Every U-hesitant fuzzy ideal G of X satisfies the following as-
sertion:

(Vz e X)(G(0* (0xx)) CG(x)). (25)

Theorem 3. If a U-hesitant fuzzy ideal G of X satisfies the condition (22), then
it is a U-hesitant fuzzy p-ideal of X.

Proof. Let x,y,z € X. Using (22), (6), (5) and Lemma 2, we have

zxy))) = G((0xy) * (0*x))
z ok z) * (y * 2))))

It follows from Theorem 2 that G is a W-hesitant fuzzy p-ideal of X.

Theorem 4. In a p-semisimple BCI-algebra, every U-hesitant fuzzy ideal is a
W-hesitant fuzzy p-ideal.

Proof. Let G be a W-hesitant fuzzy ideal of a p-semisimple BCI-algebra X.
Using (18) and (8), we have

G(z) CG(x+xy)UG(y) = G((z x 2) x (y*2)) UG(y)

for all x,y,z € X. Therefore G is a U-hesitant fuzzy p-ideal of X.

Corollary 1. In a BCI-algebra X in which its BCK-part is {0}, every U-
hesitant fuzzy ideal is a Y-hesitant fuzzy p-ideal.

Corollary 2. In a BCI-algebra X in which every element is minimal, every
U-hesitant fuzzy ideal is a U-hesitant fuzzy p-ideal.

Corollary 3. Let X be a BCI-algebra in which any one of the following condi-
tions 1s true:

ZXT =2%xY = T =1,

rxy=0 = x=y
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for all x,y,z,u € X. Then every U-hesitant fuzzy ideal is a U-hesitant fuzzy
p-ideal.

Lemma 3 ([8]). If G is a U-hesitant fuzzy ideal of X, then the lower hesitant T-
level set L(G,T) of G on X is an ideal of X for all 7 € 2(]0,1]) with L(G,T) # 0.

Lemma 4 ([16]). An ideal A of X is a p-ideal of X if and only if it satisfies
VzeX)0x(0xz)e A = xz€A). (26)

Theorem 5. If G is a U-hesitant fuzzy p-ideal of X, then the lower hesitant T-
level set L(G,T) of G on X is a p-ideal of X for all T € Z([0,1]) with L(G,T) # 0.

Proof. Let T € £([0,1]) be such that L(G,7) # 0. If G is a U-hesitant fuzzy
p-ideal of X, then it is a W-hesitant fuzzy ideal of X, and so L(G, ) is an ideal
of X by Lemma 3. Assume that 0% (0 xz) € L(G,7) for all x € X. Then
G(0* (0 %)) C 7, which implies by (22) that G(x) C G(0* (0% z)) C 7. Hence
x € L(G,7), and thus L(G, 7) is a p-ideal of X by Lemma 4.

Corollary 4. If G is a U-hesitant fuzzy ideal of a p-semisimple BCI-algebra X,
then the lower hesitant T-level set L(G,T) of G on X is a p-ideal of X for all
T € 2([0,1)) with L(G,T) # 0.

Corollary 5. Let X be a BCI-algebra in which at least one of the five conditions
in Corollary 8 is true. If G is a W-hesitant fuzzy ideal of X, then the lower
hesitant T-level set L(G,7) of G on X is a p-ideal of X for all T € 2([0,1]) with
L(G,T) # 0.

The following example shows that the converse of Theorem 5 is not true in
general.

Example 4. Consider a BCI-algebra X = {0,1,a,b,c} with the following Cayley
table (see [1]):

*[0 1 a b ¢
0|0 0 a b ¢
111 0 a b c
ala a 0 ¢ b
blb b ¢ 0 a
cle ¢ b a O

Let G be a hesitant fuzzy set on X given as follows:
(0.5,0.6) if z€{0,1},

G:X - 2(0,1), z—<{ [0506)U{0.7} if z=a,
{0.4} U[0.5,0.7] otherwise.
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Then we have

{0,1}  if (0.5,0.6) C 7 and [0.5,0.6) U{0.7} € T,
LG 7) — {0,1,a} if [0.5,0.6) U{0.7} C 7 and {0.4} U[0.5,0.7] € T,
@) =19 x if {0.4}U[0.5,0.7] C T,

0 otherwise,

and so L(G, ) is a p-ideal of X for all T € 2([0,1]) with L(G,T) # 0. Note that
G(0) C G(x) for allx € X. But G(b) = {0.4} U[0.5,0.7] and

G((b+a) * (1% ) WG(1) = G6) L G(1)
={teg(b)ug(l) |t > max{InfG(b),InfG(1)}}
={t €{0.4} U[0.5,0.7] | t > max{0.4,0.5}}

— [0.5,0.7],

and thus G(b) € G((b* a) x (1 xa)) WG(1). Therefore G is not a U-hesitant fuzzy
p-ideal of X .

We provide a condition for the converse of Theorem 5 to be true.

Theorem 6. Let G be a hesitant fuzzy set on X satisfying the condition
(Va,y € X) (G(2) UG(y) = G(x) UG(y)) - (27)

If the lower hesitant T-level set L(G,7) of G on X is a p-ideal of X for all
7€ 2([0,1]) with L(G,7) # 0, then G is a U-hesitant fuzzy p-ideal of X.

Proof. For any x € X, let G(z) = 7,. Then x € L(G,7,), and so L(G,1,) is
a p-ideal of X by assumption. Thus 0 € L(G,7;), and hence G(0) C 7, = G(z).
For any x,y,z € X, taking 7 = G((z % 2) x (y * 2)) UG(y) yields

(xxz)*(y*xz) € L(G,7) and y € L(G, ).
Hence x € L(G, 7), and so
Gx) CT=0G((x*2)*(y*2)UG(y) =G((zx2) * (y*2)) UG(y)
by using the condition (27). Therefore G is a W-hesitant fuzzy p-ideal of X.
Theorem 7. Given a nonempty proper subset A of X, define a hesitant fuzzy
set G on X as follows:

n ifxzeA,
To otherwise,

G: X - 2(0,1]), =z { (28)

where 11,79 € P([0,1]) with 71 C 7o. If G is a U-hesitant fuzzy p-ideal of X, then
A is a p-ideal of X.
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Proof. Note that

A ilegTandTQQT,
LG, 1) =} X ifnCr,
() otherwise.

If G is a W-hesitant fuzzy p-ideal of X, then L(G,7) is a p-ideal of X for all
7€ 2(]0,1]) with L(G,7) # () by Theorem 5. Hence A should be a p-ideal of X.

Lemma 5. If Infry = Infro € 7y N o, then the hesitant fuzzy set G in Theorem
7 satisfies the condition (27).

Proof. Let x,y € X. If x,y € A, then

G(x)ug(y) ={t € G(z) UG(y) | t > max{InfG(z), InfG(y)}}
={temn |t>Infr}}
= = G() UG(y).
If z,y € X \ A, then
G(x)ug(y) ={t € G(z) UG(y) | t > max{InfG(z), InfG(y)}}

={temn|t>Infr}}
=72 =G(@)UG(y).
Ifre Aand y € X \ A, then G(z) =71 € 72 = G(y), and so
G(x) UG(y) = {t € G(x) UG(y) | t = max{InfG(x), InfG(y)}}
= {t € 7o | t > max{Infr, Infro}}
={tem|t>Infr}
=7 =G(x) UG(y).
Similarly, if x € X \ A and y € A, then G(z) U G(y) = G(z) UG(y). Thus G
satisfies the condition (27).

Theorem 8. If Infry = Infry € 7N and A is a p-ideal of X, then the hesitant
fuzzy set G in Theorem 7 is a U-hesitant fuzzy p-ideal of X.

Proof. 1t is by Theorem 6 and Lemma 5.
Theorem 9. (Reduction property for U-hesitant fuzzy p-ideals) Let G and H

be U-hesitant fuzzy ideals of X such that G(0) = H(0) and G(x) 2O H(x) for all
x € X. If G is a U-hesitant fuzzy p-ideal of X, then so is H.
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Proof. Assume that G is a U-hesitant fuzzy p-ideal of X. Note that
0%« (0x(x+x(0x(0x%x2)))=(0%x0x(0*x)))*x(0*xz)=0xx)*(0*xx)=0
for all z € X by (6), (7) and (III). Using the hypothesis and (22) yields

(x* (0% (0%x)))
CGOx*(0x(zx(0x*(0%x)))))
= G(0) = H(0),

H(z*(0x(0xx))) CG
cg

and so

xx (0% (0%2))) UHO = (0*x))
0) UH(O0*(0xx))

* (0% 2)) UH(0 = (0*x))

for all x € X by (18), (16), (17) and (15). Therefore H is a U-hesitant fuzzy
p-ideal of X by Theorem 3.
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