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Abstract. In this paper we consider the Cauchy problem for the systems of three Klein-
Gordon equations with a week bond with the masses and damping term. We study
qualitative characteristics of the family of potential wells, the existence and nonexistence
of global solutions, the instability of standing waves, and the behavior of the energy
norms of solutions at large time.
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1. Introduction

The Klein–Gordon equation is distinguished among other nonlinear hyper-
bolic equations b its theoretical and practical significance. The nonlinear Klein–
Gordon equation appears in the study of some problems of mathematical physics.
For example, this equation arises in general relativity, nonlinear optics (e.g., in
the study of instability phenomena such as self-focusing), plasma physics, fluid
mechanics, radiation theory or in the theory of spin waves [1, 2, 3].

The Cauchy problem for nonlinear Klein-Gordon equation

utt −∆u+mu+ ut = f(u), t > 0, x ∈ Rn, (1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn, (2)

has been studied by many authors (see e.g. [4]).
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Existence and nonexistence of global solutions are the main points of study
for the problem (1), (2) in the case m = 0, f(u) ∼ |u|p (see e.g. [5, 6]).

In [7, 8], the problem (1), (2) has been investigated in the casem = 0, f(u) ∼
|u|p, where 1 < p ≤ pc = 1 + 2

n , and the existence of sufficiently small initial data
(u0, u1) was proved for which the corresponding Cauchy problem has no global
solution. In [7, 8] the Klein-Gordon equation has been investigated in the case
m = 0, f(u) ∼ |u|p when p > pc = 1 + 2

n , and the existence of a global solution
for the problem (1), (2) has been proved for sufficiently small (u0, u1).

In the case m > 0, i.e for the Klein-Gordon equation with mass, the above
effects do not occur. In this case, the main objects of study are the corresponding
potential well and stability or instability of standing wave. There is a series of
works devoted to that problem [9, 10, 11, 12].

In [12], the Cauchy problem (1), (2) has been studied in the case f(u) =
|u|p−1 u, where p > 1, if n = 2 and 1 < p < n+2

n−2 if n ≥ 3. By investigating
the family of potential wells, the set of initial data for which the corresponding
Cauchy problem has no global solution has been found . The exponential de-
cay of energetic norms corresponding to global solutions was also established in
[12]. More information on the Cauchy problem for the system of Klein-Gordon
equations can be found in [13, 14, 15, 16].

In this paper, we consider the Cauchy problem for the systems of three Klein-
Gordon equations with a weak bond with the masses and damping term.

Consider the Cauchy problem
u1tt −∆u1 +m1u1 + γ1u1t = |u1|p1−1 |u2|p2+1 |u3|p3+1 u1

u2tt −∆u2 +m2u2 + γ2u2t = |u1|p1+1 |u2|p2−1 |u3|p3+1 u2

u3tt −∆u3 +m3u3 + γ3u3t = |u1|p1+1 |u2|p2+1 |u3|p3−1 u3

(3)

in the domain [0,∞)×Rnwith the initial conditions

ui(0, x) = ui0(x), uit(0, x) = ui1(x), x ∈ Rn, i = 1, 2, 3, (4)

where u1, u2, u3 are real functions depending on t ∈ R+, x ∈ Rn;

n ≥ 2, pj > 0, j = 1, 2, 3, (5)

and additionally

p1 + p2 + p3 ≤ 1if n = 3. (6)

We study the family of potential wells and the existence and nonexistence of
global solutions.
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In the case mj > 0, j = 1, 2, 3, the system (3) determines a model of interac-
tion between three fields with masses m1,m2 and m3 with interaction constants
λ1, λ2 and λ3. As in [13], in this paper we examine a quality characteristics of
a family of potential wells, the existence and nonexistence of global solutions,
the unstable standing waves, the behavior of the energy norms of solution for a
large values of time. For the systems of two Klein-Gordon equations the similar
problems have been studied in [15].

In the sequel, by | . |q we denote the usual Lq(R
n)-norm. For simplicity,

we write | . |q instead of | . |. The scalar product in L2(Rn) will be denoted

by 〈., .〉. The norm in the Sobolev space H1 = W 1
2 (Rn), will be denoted by

‖u‖ =
[∣∣∣|∇u|2 + |u|2

∣∣∣]1/2
, where ∇ is the gradient. The constants C and c used

throughout this paper are positive generic constants throughout this paper and
can may be different in different occasions.

For simplicity, hereafter we will assume m1 = m2 = m3 = 1.

2. Structure of potential well and the existence of a vacuum zone

Consider the system of equations
−∆φ1 + φ1 = |φ1|p1−1 |φ2|p2+1 |φ3|p3+1 φ1,

−∆φ2 + φ2 = |φ1|p1+1 |φ2|p2−1 |φ3|p3+1 φ2,

−∆φ3 + φ3 = |φ1|p1+1 |φ2|p2+1 |φ3|p3−1 φ3.

(7)

Suppose
(
φ1, φ2, φ3

)
is a solution of system (1). Then

(u1(t, x), u2(t, x), u3(t, x)) =
(
φ1, φ2, φ3

)
, is the solution of system (3) with

initial conditions

u1(0, x) = φ1(x), u2(0, x) = φ2(x), u3(0, x) = φ3(x).

Then
(
φ1, φ2, φ3

)
is called a standing solution of the problem (3), (4).

We define the following functionals

J (φ1, φ2, φ3) =
3∑
j=1

pj + 1

2
‖φj‖2 −G,

I (φ1, φ2, φ3) =
3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖φj‖2 −G,

where

G = G(φ1, φ1, φ1) =

∫
Rn
|φ1(x)|p1+1 |φ2(x)|p2+1 |φ3(x)|p3+1 dx.
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Lemma 1. Let (φ1, φ2, φ3) ∈ H1 ×H1 ×H1\ {(0, 0, 0)}. Then
(i) lim

λ→0
J (λφ1, λφ2, λφ3) = 0, lim

λ→+∞
J (λφ1, λφ2, λφ3) = −∞;

(ii) there is a single point λ∗ = λ∗ (φ1, φ2, φ3) in the interval 0 < λ < +∞, where

d

dλ
J (λφ1, λφ2, λφ3) |λ=λ∗ = 0;

(iii) J (λφ1, λφ2, λφ3) is not decreasing on 0 ≤ λ ≤ λ∗, not increasing on λ∗ ≤
λ < +∞ and it reaches its maximum at the point λ = λ∗;
(iv) I (λφ1, λφ2, λφ3) > 0 for 0 < λ < λ∗; I (λφ1, λφ2, λφ3) < 0 for λ∗ < λ < +∞
and

I (λ∗φ1, λ
∗φ2, λ

∗φ3) = 0.

We define the set

N =
{

(φ1, φ2, φ3) : (φ1, φ2, φ3) ∈ H1 ×H1 ×H1\ {(0, 0, 0)} , I (φ1, φ2, φ3) = 0
}
.

Suppose (φ1, φ2, φ3) ∈ N . Then

J (φ1, φ2, φ3) =

(
1− 2

p1 + p2 + p3 + 3

) 3∑
j=1

pj + 1

2
‖φj‖2 > 0,

i.e J is bounded from below on the set N . Consider the variation problem

d = inf
(φ1,φ2,φ3)∈N

J (φ1, φ2, φ3) .

Lemma 2. There is
(
φ1, φ2, φ3

)
∈ Nsuch that

(i) J
(
φ1, φ2, φ3

)
= inf

(φ1,φ2,φ2)∈N
J (φ1, φ2, φ2) = d > 0;

(ii)
(
φ1, φ2, φ3

)
is the standing solution of the problem (3), (4).

For δ > 0 we define also

Iδ (φ1, φ2, φ3) = δ
3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖φj‖2 −

∫
Rn
|φ1|p1+1 · |φ2|p2+1 |φ3|p3+1 dx,

and

r (δ) = r (δ, p1, p2, p3) =

(
δ

Cp1+p2+p3+3

) 2
p1+p2+p3+1

,

where C = Cp1+p2+p3+3 = sup
‖u‖6=0

|u|p1+p2+p3+3

‖u‖ .
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Lemma 3. If (u1, u2, u3) ∈ H1 × H1 × H1\ {(0, 0, 0)} and
∑3

j=1
pj+1

p1+p2+p3+3×
‖uj‖2 < r (δ), then Iδ (u1, u2, u3) > 0.

Lemma 4. If (u1, u2, u3) ∈ H1 × H1 × H1 and Iδ (u1, u2, u3) < 0, then∑3
j=1

pj+1
p1+p2+p3+3 ‖uj‖

2 > r (δ).

Lemma 5. If (u1, u2, u3) ∈ H1 × H1 × H1\ {(0, 0, 0)} and Iδ (u1, u2, u3) = 0,
then

3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖uj‖2 ≥ r (δ) .

Lemma 6. Suppose that conditions (5), (6) are fulfilled. Then

d (δ) ≥ a (δ) r (δ) , (8)

where

d (δ) = δ
2

p1+p2+p3+1
p1 + p2 + p3 + 3− 2δ

p1 + p2 + p3 + 1
d, (9)

a (δ) =
p1 + p2 + p3 + 3

2
δ. (10)

It’s obvious that
lim
δ→+0

d (δ) = 0, (11)

d

(
p1 + p2 + p3 + 3

2

)
= 0, (12)

d (1) = d, (13)

d′ (δ) > 0, δ ∈ (0, 1) , (14)

d′ (δ) < 0, δ ∈
(

1,
p1 + p2 + p3 + 3

2

)
. (15)

Let the conditions (5) and (6) be satisfied. Then for arbitrary (u10, u20, u30) ∈
H1 × H1 × H1, (u11, u12, u13) ∈ L2 (Rn) × L2 (Rn) × L2 (Rn), there exists
T ′ > 0 such that problem (3), (4) has a unique solution (u1 (·) , u2 (·) , u3 (·)) ∈
C
(
[0, T ′);H1 ×H1 ×H1

)
∩C1 ([0, T ′);L2 (Rn)× L2 (Rn)× L2 (Rn)). If Tmax =

supT ′, i.e. Tmax is the length of the maximal existence inter-
val of the solution (u1 (·) , u2 (·) , u3 (·)) ∈ C

(
[0, Tmax);H1 ×H1 ×H1

)
∩

C1 ([0, Tmax);L2 (Rn) ×L2 (Rn)× L2 (Rn)), then either Tmax = +∞, or
lim sup
t→Tmax−0

∑3
i=1 [||ui (t, ·)||+ |u̇i (t, ·)|] = +∞.
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We denote by E (t) the following energy function:

E (t) =
3∑
j=1

pj + 1

2

[
|ujt (t, ·)|2 + ‖uj (t, ·)‖2

]
−

−
∫
Rn
|u1 (t, x)|p1+1 · |u2 (t, x)|p2+1 |u3 (t, x)|p3+1 dx,

and we define the following sets

Wδ =
{

(u1, u2, u3) ∈ H1 ×H1 ×H1 : Iδ(u1, u2, u3) > 0,

J(u1, u2, u3) < d(δ) } ∪ {(0, 0, 0)} ,
Vδ =

{
(u1, u2, u3) ∈ H1 ×H1 ×H1 : Iδ(u1, u2, u3) < 0, J(u1, u2, u3) < d(δ)

}
,

where 0 < δ < r0. From (11)-(15) it follows that for every e ∈ (0, d) the equation
d (δ) = e has two roots δ1, δ2, so that δ1 < 1 < δ2.

Theorem 1. Suppose that (u10, u20, u30) ∈ H1 × H1 × H1,(u11, u12, u13) ∈
L2 (Rn) × L2 (Rn) × L2 (Rn), and conditions (5),(6) hold. If 0 < e < d and
δ1 < δ2 are the roots of the equation d(δ) = e, then the following assertions are
valid:
(a) if I (u10, u20, u30) > 0 or ‖u10‖ = ‖u20‖ = ‖u30‖ = 0, then, for all solutions
(u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) of problem (3), (4) with initial energy 0 < E (0) ≤ e,
(u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) ∈Wδ, where δ1 < δ < δ2;
(b) if I (u10, u20, u30) < 0, then, for all solutions (u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) of
problem (3), (4) with initial energy 0 < E (0) ≤ e, (u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) ∈
Vδ, where δ1 < δ < δ2.

Proof. a) Let (u10, u20, u30) ∈ H1 × H1 × H1, (u11, u12, u13) ∈ L2 (Rn) ×
L2 (Rn)× L2 (Rn) and

0 < E (0) ≤ e. (16)

Let
I (u10, u20, u30) > 0 or ‖u10‖ = ‖u20‖ = ‖u30‖ = 0. (17)

It follows from (3), (4) that the following energy equality holds

E (t) +
3∑
j=1

γj(pj + 1)

2

∫ t

0
|u̇j(s, .)|2 ds = E(0). (18)

By virtue of (16) and (18), J (u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) < e. On the other hand,
for δ1 < δ < δ2 we have e < d(δ). Therefore

J (u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) < d (δ) . (19)
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Suppose that the assertion a) does not hold. Then in view of (17) and (19) there
exists t̄ ∈ (0,∞) such that

Iδ (u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) > 0, t ∈ (0, t̄) , (20)

Iδ
(
u1

(
t, ·
)
, u2

(
t, ·
)
, u3 (t̄, ·)

)
= 0. (21)

Thus, (u1 (t̄, ·) , u2 (t̄, ·) , u3 (t̄, ·)) ∈ Nδ, therefore, by the definition of d (δ) we
have

d (δ) ≤ J (u1 (t̄, ·) , u2 (t̄, ·) , u3 (t̄, ·)) ,

which contradicts (9).

Now we prove the assertion b). Let (u10, u20, u30) ∈ H1 × H1 × H1,
(u11, u12, u13) ∈ L2 (Rn)×L2 (Rn)×L2 (Rn), 0 < E (0) ≤ e and I (u10, u20, u30) <
0. Similar to the case a), we obtain the existence of t̄ ∈ [0, T ] such that for any
t ∈
[
0, t
)

the inequality

I (u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) < 0,

holds and I
(
u1

(
t, ·
)
, u2

(
t, ·
)
, u3 (t̄, ·) ,

)
= 0.

Then we again have a contradiction:

d (δ) ≤ J (u1 (t̄, ·) , u2 (t̄, ·) , u3 (t̄, ·) , ) ≤ e < d (δ) . J

By Theorem 1, we have the following theorem.

Theorem 2. Suppose that (u10, u20, u30) ∈ H1 × H1 × H1, (u11, u12, u13) ∈
L2 (Rn) × L2 (Rn) × L2 (Rn), and conditions (5),(6) hold. If 0 < E (0) ≤ e and
δ1 and δ2 are the roots of the equation d(δ) = e, then the sets Wδ1δ2 =

⋃
δ1<δ<δ2

Wδ

and Vδ1δ2 =
⋃

δ1<δ<δ2

Vδ are invariant on the trajectories of the dynamical system

generated by problem (3), (4).

The next theorem is a consequence of Theorem 2 and shows that there is a
so-called vacuum zone between the two invariant sets.

Theorem 3. If the assumptions of Theorem 2 hold, then all solutions of problem
(3), (4) satisfy the relation (u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) /∈ Nδ1,δ2 =

⋃
δ1<δ<δ2

Nδ.

Now, consider the case E(0)≤0.
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Theorem 4. Suppose that (u10, u20, u30) ∈ H1 × H1 × H1, (u11, u12, u13) ∈
L2 (Rn)× L2 (Rn)× L2 (Rn), and conditions (5),(6) hold. If E (0) = 0, ‖u10‖ 6=
0, ‖u20‖ 6= 0 and ‖u30‖ 6= 0, then the solution of problem (3), (4) satisfies the
inequality

3∑
j=1

pj + 1

2
‖uj (t, ·)‖2 ≥ r0, (22)

where r0 =
(
p1+p2+p3+3

2C2

) p1+p2+p3+3
p1+p2+p2+1

.

Proof. Let (u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) be the solution of problem (3), (4) with
initial energy E (0) = 0, where ‖u10‖ 6= 0, ‖u20‖ 6= 0, ‖u30‖ 6= 0.

Let Tmax be the maximal interval of existence of the solution
(u1 (t, ·) , u2 (t, ·) , u3 (t, ·)). In view of the definition of E (t), we have

E (t) =

3∑
j=1

pj + 1

2
|u̇j (t, ·)|2 + J (u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) = 0, t ∈ [0, Tmax).

(23)
It follows that

J (u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) ≤ 0 < d (δ) , t ∈ [0, Tmax) , (24)

and

3∑
j=1

pj + 1

2
|uj (t, ·)|2 ≤

∫
Rn
|u1 (t, x)|p1+1 · |u2 (t, x)|p2+1 |u3 (t, x)|p3+1 dx.

On the other hand, according to the Hölder’s inequality

G =

∫
Rn
|u1 (t, x)|p1+1 · |u2 (t, x)|p2+1 |u3 (t, x)|p3+1 dx ≤

≤
(∫

Rn
|u1 (t, x)|p1+p2+p3+3 dx

) p11+1
p1+p2+p31+3

×

×
(∫

Rn
|u2 (t, x)|p1+p2+p3+3 dx

) p12+1
p1+p2+p31+3

×

×
(∫

Rn
|u3 (t, x)|p1+p2+p3+3 dx

) p3+1
p1+p2+p3+3

. (25)
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Then, using the embedding theorem [21], we get

3∑
j=1

pj + 1

2
|uj (t, ·)|2 ≤

≤ Cp1+p2+p3+3

(
2

p1 + p2 + p3 + 3

) p1+p2+p3+3
2

 3∑
j=1

pj + 1

2
|uj (t, ·)|2


p1+p2+p3+3

2

.

(26)
J

Since (u10, u20, u30) ∈ H1×H1×H1, (u11, u12, u13) ∈ L2 (Rn)×L2 (Rn)×L2 (Rn)
and ‖u30‖ 6= 0, there exists a half-interval [0, t1), where ‖u1(t, .)‖ 6= 0, ‖u2(t, .)‖ 6=
0, ‖u3(t, .)‖ 6= 0. Then from (14) we obtain

3∑
j=1

pj + 1

2
‖uj (t, ·)‖2 ≥

(
p1 + p2 + p2 + 3

2C2

) p1+p2+p2+3
p1+p2+p2+1

= r0, t ∈ [0, t1) . (27)

It follows that ‖u1(t, .)‖ 6= 0, ‖u2(t, .)‖ 6= 0, ‖u3(t, .)‖ 6= 0, therefore (26) is also
valid on the half-open interval δ1 < δ < δ2, and so on. Thus, (22) is true on
0 ≤ t < Tmax.

Theorem 5. Suppose that (u10, u20, u30) ∈ H1 × H1 × H1\ {0, 0, 0},
(u11, u12, u13) ∈ L2 (Rn) × L2 (Rn) × L2 (Rn), and conditions (5),(6) hold. If
E (0) < 0 or E (0) = 0 and (u10, u20, u30) 6= (0, 0, 0), then (u1 (t, ·) , u2 (t, ·) ,
u3 (t, ·)) ∈ Vδ for t ∈ [0, Tmax), where 0 < δ < p1+p2+p3+3

2 .

Proof. If E (0) < 0, then from (14) we obtain

J (u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) ≤ E (0) < 0 < d (δ) . (28)

On the other hand
J (u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) =

=
p1 + p2 + p3 + 3− 2δ

p1 + p2 + p3 + 3

3∑
j=1

pj + 1

2
|uj(t, .)|2 + Iδ(u1(t, .), u2(t, .), u3(t, .)),

therefore
Iδ(u1(t, .), u2(t, .), u3(t, .)) < 0, t ∈ [0, Tmax), (29)

if

0 < δ <
p1 + p2 + p3 + 3

2
.
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If E(0) = 0, then in view of Theorem 4, from (27), (28) we find that the inequality
(29) is true in this case also if 0 < δ < p1+p2+p3+3

2 .
Thus

(u1(t, .), u2(t, .), u3(t, .)) ∈ Vδ,

where 0 < δ < p1+p2+p3+3
2 . J

Theorems 3-5 imply the following result.

Theorem 6. If E(0) < 0, then W1 and V1 are invariant with respect to the
dynamical system generated by problem (3), (4).

3. Existence and asymptotes of global solutions

Theorem 6 implies the following theorem on global solvability

Theorem 7. Suppose that (u10, u20, u30) ∈ H1 × H1 × H1, (u11, u12, u13) ∈
L2 (Rn) × L2 (Rn) × L2 (Rn), (u1 (t, ·) , u2 (t, ·)) ∈ Wδ, and conditions (5),(6)
hold. If (u1(t0, .), u2(t0, .), u3(t0, .)) ∈W1 at some moment of time t0 ∈ [0, Tmax),
then Tmax = +∞ and (u1(t, .), u2(t, .), u3(t, .)) satisfies a priori estimate

3∑
j=1

(pj + 1)
[
‖uj(t, .)‖2 + |u̇j(t, .)|2

]
≤ 2d(p1 + p2 + p3 + 3)

p1 + p2 + p3 + 1
, t ∈ [0, Tmax) .

(30)

Proof. By Theorem 5, (u1(t, .), u2(t, .), u3(t, .)) ∈ W1, t ∈ [0, Tmax), therefore
I (u1(t, .), u2(t, .), u3(t, .)) > 0 , 0 < t < Tmax. Then from (23) it follows that for
0 ≤ t < Tmax the a priori estimate (30) is true, therefore Tmax = +∞, i.e. the
problem (3), (4) has a global solution. J

Theorem 7 implies the following

Theorem 8. Suppose that (u10, u20, u30) ∈ H1 × H1 × H1, (u11, u12, u13) ∈
L2 (Rn) × L2 (Rn) × L2 (Rn), and conditions (5), (6) hold. If 0 <
E (0) < d and Iδ2 (u10, u20, u30) > 0 or ‖u10‖ = ‖u20‖ =
‖u30‖ = 0, where δ1 < δ2 are the roots of the equation d (δ) =
E (0), then problem (3), (4) has a unique solution (u1 (·) , u2 (·) , u3 (·)) ∈
C
(
[0,∞) ;H1 ×H1 ×H1

)⋂
C1 ([0,∞) ;L2 (Rn)× L2 (Rn)× L2 (Rn)) and

(u1 (t, ·) , u2 (t, ·) , u3 (t, ·)) ∈Wδ, δ1 < δ < δ2, 0 ≤ t < +∞.

Proof. It is easy to see that I (u10, u20, u30) > 0. Indeed, otherwise there
would exist δ̄ ∈ [1, δ2) such that Iδ̄ (u10, u20, u30) = 0. Then J (u10, u20, u30) ≤
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d (δ), which contradicts the inequality J (u10, u20, u30) ≤ E (0) < d (δ), for δ1 <
δ < δ2.

If (u10, u20, u30) ∈ H2 × H2 × H2, (u11, u12, u13) ∈ H1 × H1 × H1, then for
the solution of problem (3), (4) we have the following identity:

I (u1, u2, u3) = (p1 + p2 + p3 + 3)−1


3∑
j=1

(pj + 1) |u̇j (t, ·)|2−

− d

dt

3∑
j=1

(pj + 1)
[
〈uj (t, ·) , u̇j (t, ·)〉+

γj
2
|uj (t, ·)|2

] , (31)

and the following estimation is valid

I (u1, u2, u3) > (1− δ1)

3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖uj (t, ·)‖2 , (32)

where δ1 is the lowest root of equation d (δ) = E (0). J

The following theorem on asymptotic behavior of energetic function for t →
+∞ can be proved using (31) and (32).

Theorem 9. Suppose that (u10, u20, u30) ∈ H1 × H1 × H1, (u11, u12, u13) ∈
L2 (Rn) × L2 (Rn) × L2 (Rn), 0 < E (0) < d, I (u10, u20, u30) > 0 or ‖u10‖ =
‖u20‖ = ‖u30‖ = 0, and conditions (5),(6) hold. Then there exist K > 0 and a
k > 0 such that E (t) ≤ Ke−kt for t ≥ 0.

4. Absence of global solutions and instability of standing waves

In this section, we investigate the nonexistence of global solution.

Theorem 10. Suppose that δ1 = δ2 = δ3 ≥ 0, (u10, u20, u30) ∈ Hs×Hs×Hs and
(u11, u12, u13) ∈ Hs−1×Hs−1×Hs−1, where s > n

2 . Suppose also that conditions
(5),(6) and one of the following conditions hold:

a) E(0) < 0;
b) 0 ≤ E(0) < d, I (u10, u20, u30) < 0 and 0 ≤ γ < λ1 (p1 + p2 + p3), where

λ1 = 1
c0

and c0 is the norm of the embedding operator W 1
2 (Rn) ⊂ L2(Rn). Then

Tmax < +∞ and lim
t→Tmax−0

∑3
j=1 ||uj (t, ·)||2 = +∞.

Proof. a) If E(0) < 0, then using the proof given in [16], we obtain the
assertion of the theorem.
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b) Let 0 ≤ E(0) < d, I (u10, u20, u30) < 0 and 0 ≤ γ2 < λ1 (p1 + p2 + p3 + 1),
where λ1 = 1

c0
. Denoting

F (t) =
3∑
j=1

(pj + 1) |uj(t, .)|2 , t ∈ [0, Tmax) ,

we obtain

Ḟ (t) = 2
3∑
j=1

(pj + 1) 〈uj(t, .), u̇j(t, .)〉 , t ∈ [0, Tmax) . J (33)

Assume that the assertion of Theorem 10 is not true, i.e Tmax = +∞. Since
(u10, u20, u30) ∈ Hs ×Hs ×Hs and (u11, u12, u13) ∈ Hs−1 ×Hs−1 ×Hs−1, where
s > n

2 , we have
(u1 (t, x) , u2 (t, x) , u3 (t, x)) ∈

∈ C ([0,∞) , Hs ×Hs ×Hs) ∩ C1
(
[0,∞) , Hs−1 ×Hs−1 ×Hs−1

)
,

and obviously F̈ (t) ∈ C [0,∞).
Taking into account (3), by a simple calculation we obtain

d

dt
[eγtḞ (t)] = 2γeγt

3∑
j=1

(pj + 1) 〈uj(t, .), u̇j(t, .)〉+

+2eγt
3∑
j=1

(pj + 1) [|u̇j(t, .)|2 − ‖uj(t, .)‖2 − γ 〈uj(t, .), u̇j(t, .)〉]+

+2(p1 + p2 + p3 + 3)eγt
∫
Rn
|u̇j(t, x)|p1+1 |u̇j(t, x)|p2+1 |u̇j(t, x)|p3+1 dx =

= 2eγt
3∑
j=1

(pj + 1) |u̇j(t, .)|2 + 2(δ − 1)eγt
3∑
j=1

(pj + 1) ‖uj(t, .)‖2−

−2eγtIδ(u1(t, .), u1(t, .), u1(t, .)). (34)

Since E(0) < d, there exist δ1, δ2 such that δ1 < 1 < δ2 and

d(δi) = E(0) , i = 1, 2.

In (33), we take δ = δ2. According to Theorem 5

Iδ2(u1(t, .), u1(t, .), u1(t, .)) ≤ 0, (35)
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therefore, from (34), (35) we get

d

dt
[eγtḞ (t)] ≥ 2(δ2 − 1)eγt

3∑
j=1

(pj + 1) ‖uj(t, .)‖2 . (36)

On the other hand, applying Lemma 4, we have the following estimate:

3∑
j=1

pj + 1

p1 + p2 + p2 + 3
‖uj (t, ·)‖2 > r(δ2) (37)

From (36) and (37) it follows that

d

dt
[eγtḞ (t)] ≥ eγtc(δ2), (38)

where c(δ2) = 2(δ2 − 1)r(δ2) (p1 + p2 + p2 + 3).
From (38) we find that for sufficiently large t0

Ḟ (t) ≥ A(δ2)

2γ
, t ≥ t0, (39)

where A (δ2) > 0. Thus
lim

t→+∞
F (t) = +∞.

On the other hand

F̈ (t) = 2

3∑
j=1

(pj + 1) [|u̇j(t, .)|2 − ‖uj(t, .)‖2]− 2γ

3∑
j=1

(pj + 1) 〈uj(t, .), u̇j(t, .)〉+

+2(p1 + p2 + p3 + 3)

∫
Rn
|u̇j(t, x)|p1+1 |u̇j(t, x)|p2+1 |u̇j(t, x)|p3+1 dx =

= (p1 + p2 + p3 + 5)
3∑
j=1

(pj + 1) |u̇j(t, .)|2 +

+ (p1 + p2 + p3 + 1)

3∑
j=1

(pj + 1) ‖uj(t, .)‖2−

−2γ
3∑
j=1

(pj + 1) 〈uj(t, .), u̇j(t, .)〉+ (p1 + p2 + p3 + 3)
3∑
j=1

∫ t

0
|u̇j(s, .)|2 ds−

−2(p1 + p2 + p3 + 3)E(0) ≥ (4 + ε)
3∑
j=1

(pj + 1) [|u̇j(t, .)|2 + ψ(t), (40)
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where

ψ(t) = (p1 + p2 + p3 + 1− ε)
3∑
j=1

(pj + 1) |u̇j(t, .)|2 +

+λ1 (p1 + p2 + p3 + 1)
3∑
j=1

(pj + 1) |uj(t, .)|2−

−2γ
3∑
j=1

(pj + 1) 〈uj(t, .), u̇j(t, .)〉 − 2(p+ p+ p+ 3)E(0). (41)

Using Hölder’s and Young’s inequalities, we have∣∣∣∣∣2γ
3∑

>=1

(pj + 1) 〈uj(t, .), u̇j(t, .)〉

∣∣∣∣∣ ≤ (p1 + p2 + p3 + 1− ε)
3∑
j=1

(pj + 1) |u̇j(t, .)|2 +

+
γ2

p1 + p2 + p3 + 1− ε

3∑
j=1

(pj + 1) |uj(t, .)|2 . (42)

From (40)- (42) it follows that for sufficiently large t ≥ t0 the estimate

F̈ (t) ≥ (4 + ε)
3∑
j=1

(pj + 1) [|u̇j(t, .)|2 . (43)

is true. It follows from (33) and (41) that

F̈ (t)F (t)− (1 +
ε

4
)Ḟ 2(t) ≥ (4 + ε)

3∑
j=1

(pj + 1) |u̇j(t, .)|2 ·
3∑
j=1

(pj + 1) |uj(t, .)|2−

−
(

1 +
ε

4

)  3∑
j=1

(pj + 1) 〈uj(t, .), u̇j(t, .)〉

2

, t ≥ t1.

Using Hölder’s inequality, we obtain

F̈ (t)F (t)− (1 +
ε

4
)Ḟ 2(t) ≥ 0, t ≥ t1. (44)

From (39) and (44) we obtain the following inequalities(
F−(1+ ε

4)(t)
)′′
≤ 0, t ≥ t1,
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whence it follows that(
F−(1+ ε

4)(t)
)′

=
−
(
1 + ε

4

)
F ′(t)

F 2+ ε
2 (t)

< 0, t ≥ t1. (45)

In view of (39) and (45), there exists a t∗ ∈ (0, t1) such that lim
t→t∗

F−1(t) = 0, i.e.

lim
t→t∗

F (t) = +∞.

This contradiction shows that Tmax < +∞ .

Remark 1. Under the assumptions of Theorem 10

Lim
t→Tmax−0

3∑
j=1

[
‖|uj (t, ·)|‖2 + ||u̇j (t, ·)||2

]
= +∞.

Theorem 11. Suppose that conditions (5),(6) hold and

E (0) > 0, I (u10, u20, u30) < 0,

3∑
j=1

pj + 1

2
‖|uj0|‖2 >

p1 + p2 + p3 + 3

p1 + p2
E(0).

Then the solution of the Cauchy problem (8), (9) blow up in finite time (see
[17]).

Remark 2. Under the conditions (5), (6), from Theorems 10 and 11 it follows
that the standing waves generated by problems (3), (4) are unstable.

5. Proofs of Lemmas

Proof of Lemma 1. Properties (i) follow directly from

J (λΦ1, λΦ2, λΦ3) = λ2
3∑
j=1

pj + 1

2

(
|∇Φj |2 + |Φj |2

)
−

−λp1+p2+p3+2

∫
Rn
|Φ1 (x)|p1+1 · |Φ2 (x)|p2+1 |Φ3 (x)|p3+1 dx.

(ii) Elementary computation shows that

d

dλ
J (λΦ1, λΦ, λΦ3) = λ

3∑
j=1

(pj + 1) ‖Φj‖2−
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− (p1 + p2 + p3 + 3)λp1+p2+p3+2 ·
∫
Rn
|Φ1 (x)|p1+1 |Φ2 (x)|p2+1 |Φ3 (x)|p3+1 dx.

(46)
Hence, it is evident that at the point

λ∗ =

[ ∑3
j=1 (pj + 1) ‖Φj‖2

(p1 + p2 + p3 + 3)
∫
Rn |Φ1 (x)|p1+1 |Φ2 (x)|p2+1 |Φ2 (x)|p3+1 dx

] 1
p1+p2+p3+1

,

the following equality holds

d

dλ
J (λΦ1, λΦ2, λΦ3) |λ=λ∗ = 0.

(iii) From (46) it is clear that

d

dλ
J (λΦ1, λΦ2, λΦ3) > 0 for the 0 < λ < λ∗,

and
d

dλ
J (λΦ1, λΦ2, λΦ3) < 0 for the λ∗ < λ < +∞,

i.e. the assertion (iii) is true.
(iv) From definitions of functionals J and I, it also follows from (46) that

I (λΦ1, λΦ2, λΦ3) =
λ

p1 + p2 + p3 + 3

d

dλ
J (λΦ1, λΦ2, λΦ3) .

We define the set

N =
{

(φ1, φ2, φ3) : (φ1, φ2, φ3) ∈ H1 ×H1 ×H1\ {(0, 0, 0)} , I (φ1, φ2, φ3) = 0
}
.

Suppose (φ1, φ2, φ3) ∈ N , Then

J (φ1, φ2, φ3) =

(
1− 2

p1 + p2 + p3 + 3

) 3∑
j=1

pj + 1

2
‖φj‖2 > 0, (47)

i.e. J is bounded from below on the set N . Thus J is bounded from below on
the set N . Let us consider the variation problem

d = inf
(φ1,φ2,φ3)∈N

J (φ1, φ2, φ3) . J

Proof of Lemma 2. From (47) it follows that if (u1, u2, u3) ∈ N , then

J (u1, u2, u3) =
p1 + p2 + p3 + 1

p1 + p2 + p3 + 3

3∑
j=1

pj + 1

2
‖uj‖2 .
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Let (u1m, u2m, u3m) be a minimizing sequence, i.e.

Lim
m→∞

J (u1m, u2m, u3m) = inf
(u1,u2,u3)∈N

J (u1, u2, u3) = d.

Let’s denote ujλ = λuj , j = 1, 2, 3 and denote by vjm = (u∗jm)µm the Schwarz
symmetrization [18, 19, 20] of the function yjm = µmujm with respect to the
variable x, where µm is chosen so that (v1m, v2m, v3m) ∈ N

We denote by vjm = (u∗jm)µm the Schwartz symmetrization [18, 19, 20] of the
function yjm = µmujm , where µm is chosen so that (v1m, v2m, v3m) ∈ N .
By virtue of (47)

J (v1m, v2m, v3m) = (1− 2δ

p1 + p2 + p3 + 3
) ·

3∑
j=1

pj + 1

2
‖vjm‖2 , (48)

On the other hand ∫
Rn
|∇vjm|2 dx =

∫
Rn

∣∣∇(u∗jm)µm
∣∣2 dx =

=

∫
Rn
|(∇(ujm)µm)∗|2 dx ≤

∫
Rn
|∇(ujm)µm |

2 dx, (49)

From (48),(49) it follows that

J (v1m, v2m, v3m) ≤ J ((u1m)µm , (u2m)µm , (u3m)µm) . (50)

On the other hand, by the choice of µn, we have
J ((u1m)µm , (u2m)µm , (u3m)µm) ≤ J (u1m, u2m, u3m) . (51)

Consequently, Lim
m→∞

J (v1m, v2m, v3m) = d.

It follows that
‖∇vjm‖ ≤ c. (52)

Then we conclude that there exists (v1∞v2∞v3∞) ∈ H1 × H1 × H1 such that,
possibly taking m→ +∞, along a subsequence,

vjm → vj∞ weakly in H1 j = 1, 2, 3. (53)

Then, by virtue of the compactness of the embedding H1
ralial ⊂ Lp1+p2+p3+3(Rn)

(see [21]), where p1 + p2 + p3 + 3 ≤ 2n
n−2 , we obtain

vjm → vj∞ in Lp1+p2+p3+3(Rn) as m→ +∞, j = 1, 2, 3. (54)

Let us prove that (v1∞, v2∞, v3∞) 6= (0, 0, 0).
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Assume the opposite, i.e. suppose that

(v1∞, v2∞∞, v3∞) = (0, 0, 0). (55)

Then, by (25), (54) and (55), we obtain∫
Rn
|v1m (x)|p1+1 |v2m (x)|p2+1 |v3m (x)|p3+1 dx→ 0 as m→ +∞.

On the other hand, I (v1m, v1m, v1m) = 0, so from (54) it follows that

vjm → 0 in H1 as m→ +∞, j = 1, 2, 3. (56)

Then, using again the condition (v1m, v1m, v1m) ∈ N , Hölder’s inequality and
embedding theorem H1 ⊂ Lp1+p2+p3+3(Rn) (see [22]), we obtain

3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖vjm‖2 =

∫
Rn
|v1m|p1+1 · |v2m|p2+1 |v3m|p3+1 dx ≤

≤ ‖v1m‖p1+1
Lp1+p2+p3+3(Rn) ‖v2m‖p2+1

Lp1+p2+p3+3(Rn) ‖v3m‖p31+1
Lp1+p2+p3+3(Rn) .

By the Gagliardo–Nirenberg type multiplicative inequality, we have

‖vjm‖
pj+1

Lp1+p2+p3+3(Rn) ≤ |∇vjm|
(pj+1)θ|vjm|(pj+1)(1−θ) (see [21]), (57)

where

θ = n(
1

2
− 1

p1 + p2 + p3 + 3
), j = 1, 2, 3.

From (52) and (57) we have

‖vjm‖
pj+1

Lp1+p2+p3+3(Rn) ≤ c |∇vjm|
(pj+1)θ, j = 1, 2, 3.

Consequently

3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖vjm‖2 ≤ c3

 3∑
j=1

‖vjm‖2
n

2
(p1+p2+p3+1)

.

It follows that
3∑
j=1

‖vjm‖2 ≥ c1 > 0.
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Therefore our assumption isn’t correct. Thus d > 0. J
Proof of Lemma 3. Using the inequality (25), embedding H1 ⊂

Lp1+p2+p3+3 (Rn) (see [22]) and Young’s inequality, we get∫
Rn
|u1 (x)|p1+1 |u2 (x)|p2+1 |u3 (x)|p3+1 dx ≤

≤ Cp1+p2+p3+3

 3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖uj‖2


p1+p2+p3+1

2
+1

.

If
∑3

j=1
pj+1

p1+p2+p3+3 ‖uj‖
2 < r (δ), then we get∫

Rn
|u1 (x)|p1+1 |u2 (x)|p2+1 |u3 (x)|p3+1 dx ≤ δ

3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖uj‖2 .

From the definition of Iδ (u1, u2, u3), we have Iδ (u1, u2, u3) > 0. J
Proof of Lemma 4. If (u1, u2, u3) ∈ H1 × H1 × H1, ‖u1‖ 6= 0, ‖u2‖ 6= 0,

‖u3‖ 6= 0 and Iδ (u1, u2, u3) < 0, then we have the following inequality

δ
3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖uj‖2 ≤

≤ Cp1+p2+p3+3

 3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖uj‖2


p1+p2+p3+1

2
+1

,

whence the required inequality follows. J
Proof of Lemma 5. If ‖u1‖ 6= 0, ‖u2‖ 6= 0, ‖u3‖ 6= 0, then from

Iδ (u1, u2, u3) = 0 we get

δ

3∑
j=1

pj + 1

p1 + p2 + p3 + 2
‖uj‖2

∫
Rn
|u1 (x)|p1+1 · |u2 (x)|p2+1 |u3 (x)|p3+1 dx ≤

≤ Cp1+p2+p3+3

 3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖uj‖2


p1+p2+p3+1

2
+1

.

Thus

3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖uj‖2 ≥ r (δ) =

(
δ

Cp1+p2+p3+3

) 2
p1+p2+p3+1

. J
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Proof of Lemma 6. In view of Lemma 5, for each (u1, u2, u3) ∈ N we have

3∑
j=1

pj + 1

p1 + p2 + p3 + 2
‖uj‖2 ≥ r (δ) .

Therefore

J (u1, u2, u3) =

(
p1 + p2 + p3 + 3

2
− δ
) 3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖uj‖2 ≥ a (δ) r (δ) ,

where 0 < δ < p1+p2+p3+3
2 , a (δ) = p1+p2+p3+3

2 − δ. It follows that d (δ) ≥
a (δ) r (δ) . Suppose that (ū1, ū2, ū3) ∈ N is the minimizing element, i.e. d =
J (ū1, ū2, ū3)

For any δ > 0 we choose λ = λ (δ) such that

δ
3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖λūj‖2 =

∫
Rn
|λū1|p1+1 · |λū2|p2+1 |λū3|p3+1 dx. (58)

Hence

λ (δ) =


δ
∑3

j=1(pj + 1)

∥∥∥∥uj
∥∥∥∥2

(p1 + p2 + p2 + 3)
∫
Rn |ū1|p1+1 · |ū2|p2+1 |ū3|p3+1 dx


1

p1+p2+p3+1

=

= δ
1

p1+p2+p3+1

In view of (58), (λ (δ) ū1, λ (δ) ū2, λ (δ) ū3) ∈ N δ, therefore, by definition of d (δ),
we have the following inequality

d (δ) ≤ J (λ (δ) ū1, λ (δ) ū2, λ (δ) ū3) =

= δ
2

p1+p2+p2+1

3∑
j=1

pj + 1

2
‖ūj‖2 − δ

1+ 2
p1+p2+p2+1

∫
Rn
|ū1|p1+1 · |ū2|p2+1 |ū3|p3+1 dx.

(59)
On the other hand

(ū1, ū2, ū3) ∈ N. (60)

Therefore∫
Rn
|ū1|p1+1 · |ū2|p2+1 |ū3|p3+1 dx =

3∑
j=1

pj + 1

p1 + p2 + p3 + 3
‖ūj‖2 . (61)
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It follows from (59) and (61) that

d (δ) ≤ δ
2

p1+p2+p2+1

(
1− 2δ

p1 + p2 + p3 + 3

) 3∑
j=1

pj + 1

2
‖ūj‖2 . (62)

Since (ū1, ū2, ū3) is the minimizing element, we have

d = J (ū1, ū2, ū3) =
p1 + p2 + p2 + 1

p1 + p2 + p3 + 3

3∑
j=1

pj + 1

2
‖ūj‖2 ,

i.e.
3∑
j=1

pj + 1

2
‖ūj‖2 =

p1 + p2 + p3 + 3

p1 + p2 + p3 + 1
d. (63)

It follows from (62) and (63) that

d (δ) ≤ p1 + p2 + p3 + 3− 2δ

p1 + p2 + p3 + 1
δ

2
p1+p2+p3+1d. (64)

Let (v̄1, v̄2, v̄3) ∈ Nδ be the minimizing element of the functional J (u1, u2, u3),
i.e.

J (v̄1, v̄2, v̄3) = min
(v̄1,v̄2, ,v̄3)∈Nδ

J (v1, v2, v3) = d (δ) .

The parameter µ = µ (δ) is chosen so that

(µv1, µv2, µv3) ∈ N, I (µ v̄1, µv̄2, µv̄3) = 0. (65)

Then

µ = µ (δ) =

[ ∑3
j=1(pj + 1) ‖v̄j‖2

(p1 + p2 + p3 + 3)
∫
Rn |v̄1|p1+1 |v̄2|p2+1 |v̄3|p3+1 dx

] 1
p1+p2+p3+1

=

=

(
1

δ

) 1
p1+p2+p3+1

.

By the definition of d, we have

d ≤ J (µv̄1, µv̄2, µv̄3) =

(
1

δ

) 1
p1+p2+p3+1

3∑
j=1

pj + 1

2
‖v̄j‖2−

−
(

1

δ

) p1+p2+p3+3
p1+p2+p3+1

∫
Rn
|v̄1|p1+1 · |v̄2|p2+1 |v̄3|p3+1 dx =
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=

(
1

δ

) 1
p1+p2+p3+1 p1 + p2 + p3 + 1

p1 + p2 + p3 + 3

3∑
j=1

pj + 1

2
‖v̄j‖2 . (66)

On the other hand, from (65) and (66) we get

J (v̄1, v̄2, v̄3) = (1− 2δ

p1 + p2 + p3 + 3
) ·

3∑
j=1

pj + 1

2
‖vj‖2 .

Hence we have

3∑
j=1

pj + 1

2
‖v̄j‖2 =

p1 + p2 + p3 + 3

p1 + p2 + p3 + 3− 2δ
J (v̄1, v̄2, v̄3) =

=
p1 + p2 + p3 + 3

p1 + p2 + p3 + 3− 2δ
d (δ) . (67)

From (66) and (67) it follows that

d ≤
(

1

δ

) 1
p1+p2+p3+1 p1 + p2 + p3 + 1

p1 + p2 + p3 + 3− 2δ
d (δ)

i.e.

d (δ) ≥ p1 + p2 + p3 + 3− 2δ

p1 + p2 + p3 + 1
δ

1
p1+p2+p3+1

d. (68)

Comparing (64) and (68), we obtain

d (δ) =
p1 + p2 + p3 + 3− 2δ

p1 + p2 + p3 + 1
δ

1
p1+p2+p3+1

d.

J
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