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Absolute Convergence of Orthogonal Expansion in
Eigen-Functions of Odd Order Differential Opera-
tor

V.M. Kurbanov∗, R.I. Shahbazov

Abstract. We consider an ordinary differential operator of odd order. Absolute and
uniform convergence of orthogonal expansion of the function from the class W 1

1 (G),
G = (0, 1) in eigenfunctions of the given operator are studied, rate of uniform convergence
in the interval G = [0, 1] is estimated.
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1. Statement of results

Consider the odd order differential operator

Lu = u(n) + P2 (x)u(n−2) + ...+ Pn (x)u,

on the interval G = (0, 1), where n = 2m + 1, m = 1, 2, ..., Pl (x) ∈ L1 (G),
l = 2, n.

Denote by Dn (G) a class of functions absolutely continuous on G = [0, 1]

together with their derivatives up to (n− 1)-th order
(
Dn (G) ≡W (n)

1 (G)
)

.

By the eigenfunction of the operator L corresponding to the eigenvalue λ
we understand any indentically nonzero function u (x) ∈ Dn (G) satisfying the
equation Lu+ λu = 0 almost everywhere in G (see [1]).
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Assume that the system {uk (x)}∞k=1 is a complete system of orthonormal
eigenfunctions in the space L2(G), and {λk}∞k=1 is an appropriate system of eigen-
values, and Reλk = 0, k = 1, 2, .... Denoting

µk =

{
(−iλk)1/n , Imλk ≥ 0,

(iλk)
1/n , Imλk < 0,

we define partial sums

σν (x, f) =
∑
µk≤ν

fkuk (x) , ν > 0,

of orthogonal expansion of the function f (x) ∈W 1
1 (G) in the system {uk (x)}∞k=1,

where the Fourier coefficients fk are defined by the formula fk = (f, uk) =∫
G

f (x)uk (x)dx.

Denote
Rν (x, f) = f (x)− σν (x, f) .

In this paper we prove the following theorem.

Theorem 1. Let the system {uk (x)}∞k=1 be uniformly bounded and the conditions∣∣∣∣f (1)u
(2m)
k (1)− f (0)u

(2m)
k (0)

∣∣∣∣ ≤ C1 (f)µαk , 0 < α < 2m, µk ≥ 1; (1)

∞∑
k=2

ω1

(
f ′, k−1

)
k−1 <∞, (2)

be satisfied for the function f (x) ∈W 1
1 (G) and the system {uk (x)}∞k=1.

Then the orthogonal expansion of the function f (x) in the system {uk (x)}∞k=1

absolutely and uniformly converges on G = [0, 1] and the estimate

‖Rν (·, f)‖C[0,1] ≤ const

C1 (f) να−2m +
∞∑

n=[ν]

n−1ω1

(
f ′, n−1

)
+

+ν−1

(
2m+1∑
l=2

ν2−l ‖Pl‖1 + 1

)(
‖f‖∞ +

∥∥f ′∥∥
1

)}
, ν ≥ ν0, (3)

is valid. Here ω1 (g, δ) is the continuity modulus of the function g(x) on L1(G),
‖Pl‖p = ‖Pl‖Lp(G), const is independent of f (x), ν0 = 4π/(min

j
|Reωj|), ωj, j =

1, 2m+ 1 are the roots of the number (−1)2m+1 of degree (2m+ 1).
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Corollary 1. If f ′ (x) ∈ Hα
1 (G), 0 < α ≤ 1 and f (0) = f (1) = 0, then the

conditions (1), (2) of Theorem 1 are satisfied and the estimate (3) takes the
following form

‖Rν (·, f)‖C[0,1] ≤ constν
−α ∥∥f ′∥∥α

1
, ν ≥ ν0.

Here Hα
1 (G) is a Nikolski class, ‖f ′‖α1 = ‖f ′‖1 + sup

δ>0
δ−αω1 (f ′, δ), const is inde-

pendent of f (x).

Note that similar results were obtained in [2-4], for second order differential
operators, in [5] for a third order differential operator, and in [6] for an arbitrary
differential operator of even order.

2. Proof of the results

To prove the theorem, we must estimate the Fourier coefficients of the function
f (x) ∈ W 1

1 (G) in the system {uk (x)}∞k=1. To this end, we use representation of
the eigenfunction uk (x). Let us introduce the following function

R (z) ≡ Rk (z) =


n∑
j=1

ωje
iωjµk(signImλk)z, n = 4q + 1,

n∑
j=1

ωje
−iωjµk(signImλk)z, n = 4q − 1,

where the numbers ωj , j = 1, n, are different roots of the number (−1)n of n-th
degree,

X±j ≡ X
±
jk (0) =

(i)n+1

nµn−1

n−1∑
r=0

(±iµk)r ωr−1j u
(n−1−r)
k (0) ;

M (ξ, uk) =
(i)n−1

nµn−1k

n∑
r=2

Pr (ξ)u
(n−r)
k (ξ) , i =

√
−1, n = 2m+ 1.

Lemma 1. (see [7]). If λk 6= 0, then the following representation is valid for the
eigenfunction uk (x):

u
(l)
k (t) =

n∑
j=1

(−iωjµk)lX−j e
−iωjµkt +

1∫
0

M (ξ, uk)× (4)

×R(l)
t (ξ − t) dξ, if n = 4q − 1, Imλk > 0 or

n = 4q + 1, Imλk < 0; ` = 0,n− 1;
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u
(l)
k (t) =

n∑
j=1

(iωjµk)
lX+

j e
iωjµkt +

t∫
0

M (ξ, uk) , (5)

R
(l)
t (ξ − t) dξ, if n = 4q − 1, Imλk < 0 or

n = 4q + 1, Imλk > 0, ` = 0,n− 1.

Let us rewrite the formulas (4) and (5) in more convenient form

µ−lk u
(l)
k (t) =

∑
Imωj≤0

(−iωj)lX−jk (0) e−iωjµkt+

+
∑

Imωj>0

(−iωj)lB−jk (0) eiωjµk(1−t)+

+
∑

Imωj≤0
(−i)l ωl+1

j

t∫
0

M (ξ, uk) e
iωjµk(ξ−t)dξ−

−
∑

Imωj>0

(−i)l ωl+1
j

1∫
t

M (ξ, uk) e
iωjµk(ξ−t)dξ, (4′)

if n = 4q − 1, Imλk > 0 or n = 4q + 1, Imλk < 0;

µ−lk u
(l)
k (t) =

∑
Imωj≤0

(iωj)
lX+

jk (0) eiωjµkt+

+
∑

Imωj<0

(iωj)
lB+

jk (0) e−iωjµk(1−t)+

+
∑

Imωj≥0
(i)l ωl+1

j

t∫
0

M (ξ, uk) e
−iωjµk(ξ−t)dξ−

−
∑

Imωj<0

(i)l ωl+1
j

1∫
t

M (ξ, uk) e
−iωjµk(ξ−t)dξ, (5′)

if n = 4q − 1, Imλk < 0 or n = 4q + 1, Imλk > 0. In these relations

B+
jk (0) = X+

jk (0) eiωjµk + ωj

1∫
0

M (ξ, uk) e
−iωjµk(ξ−t)dξ,
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B−jk (0) = X−jk (0) e−iωjµk + ωj

1∫
0

M (ξ, uk) e
iωjµk(ξ−t)dξ.

The following estimates are true for the coefficients X±jk (0) and B±jk (0) (see
[8,9], p. 443): ∣∣∣X±jk (0)

∣∣∣ ≤ const ‖uk‖2 ≤ const, if Imωj = 0; (6)

∣∣∣X−jk (0)
∣∣∣ ≤ const ‖uk‖∞ , if Imωj < 0; (7)∣∣∣X+

jk (0)
∣∣∣ ≤ const ‖uk‖∞ , if Imωj > 0; (8)∣∣∣B−jk (0)
∣∣∣ ≤ const ‖uk‖∞ , if Imωj > 0; (9)∣∣∣B+

jk (0)
∣∣∣ ≤ const ‖uk‖∞ , if Imωj < 0. (10)

Lemma 2. Let f (x) ∈W 1
1 (G), {uk (x)}∞k=1 be uniformly bounded, and the con-

dition (1) be satisfied. Then for the Fourier coefficients fk the estimate

|fk| ≤ const
{
C1 (f)µα−2m−1k + µ−1k ω1(f

′, µ−1k )+

+µ−2k

(
1 +

2m+1∑
l=2

µ2−lk ‖Pl‖1

)(∥∥f ′∥∥
1

+ ‖f‖∞
)}

, (11)

is valid. Here const is independent of f(x) and k; µk ≥ 4π

(
min
j
|Reωj|

)−1
.

Proof. By the definition of the eigenfunction uk (x), for Fourier coefficients
fk, µk ≥ 1 we have

fk = (f, uk) =
(
f,−λ−1k Luk

)
=

= −
(
λk
)−1 (

f, u
(2m+1)
k

)
−
(
λk
)−1 2m+1∑

l=2

(
f, Plu

(2m−l+1)
k

)
. (12)

To estimate the second term on the right-hand side of this equality, we apply
the known estimate (see [8,9])∥∥∥u(s)k ∥∥∥∞ ≤ const (1 + |µk|)s ‖uk‖∞ , s = 0, 2m,
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and take into account uniform boundedness of the system {uk(x)}∞k=1:∣∣∣∣∣− (λk)−1
2m+1∑
l=2

(
f, Plu

(2m−l+1)
k

)∣∣∣∣∣ ≤
≤
‖f‖∞
µ2m+1
k

2m+1∑
l=2

‖Pl‖1
∥∥∥u(2m−l+1)

k

∥∥∥
∞
≤ constµ−2k ‖f‖∞

(
2m+1∑
l=2

µ2−lk ‖Pl‖1

)
‖uk‖∞ ≤

≤ constµ−2k ‖f‖∞
2m+1∑
l=2

µ2−lk ‖Pl‖1 . (13)

We integrate by parts the first term on the right-hand side of (12) and get

−
(
λk
)−1 (

f, Plu
(2m−l+1)
k

)
= −

(
λk
)−1{

f (1)u
(2m)
k (1)− f (0)u

(2m)
k (0)

}
+

+
(
λk
)−1 1∫

0

f ′ (x)u
(2m)
k (x)dx.

Taking into account condition (1), we have∣∣∣− (λk)−1∣∣∣ ∣∣∣f, u(2m+1)
k

∣∣∣ ≤ C1 (f)µα−2m−1k + µ−2m−1k

∣∣∣(f ′, u(2m)
k

)∣∣∣ . (14)

To estimate the term µ−2m−1k

∣∣∣(f ′, u(2m)
k

)∣∣∣, we consider the case m = 2q (i.e.

n = 4q+ 1) and apply formulas (4′) and (5′). For simplicity, we consider the case
Imλk > 0. For l = 2m, by formula (5′)

µ−2m−1k

(
f ′, u

(2m)
k

)
=
(
f ′, µ−2mk u

(2m)
k

)
µ−1k =

= µ−1k

∑
Imωj≥0

(
f ′, (ωjµk)

2mX+
jk (0) eiωjµkt

)
+

+µ−1k

∑
Imωj<0

(
f ′, (iωj)

2mB+
jk (0) eiωjµk(1−t)

)
+

+µ−1k

∑
Imωj≥0

f ′, i2mω2m+1
j

t∫
0

M (ξ, uk) e
−iωjµk(ξ−t)dξ

−
−µ−1k

∑
Imωj<0

f ′, i2mω2m+1
j

1∫
t

M (ξ, uk) e
−iωjµk(ξ−t)dξ

 . (15)
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Let us estimate the terms on the right-hand side of this equality. It is clear
that

(
f ′, (iωj)

2mX+
jk (0) eiωjµkt

)
= (iωj)

2mX+
jk (0)

1∫
0

f (t) eiωjµktdt, Imωj ≥ 0.

Hence, taking into account estimates (6), (8) and uniform boundedness of the
system {uk (x)}∞k=1, and applying the inequality∣∣∣∣∣∣

1∫
0

f ′ (t)eiωjµktdt

∣∣∣∣∣∣ ≤ const{ω1

(
f ′, µ−1k

)
+ µ−1k

∣∣f ′∣∣
1

}
, µk ≥ 4π/

(
min
j
|Reωj|

)
,

(see [10,11], Lemma 6) we have∣∣∣(f ′, (iωj)2mX+
jk (0) eiωjµkt

)∣∣∣ ≤ const{ω1

(
f ′, µ−1k

)
+ µ−1k

∥∥f ′∥∥
1

}
. (16)

For Imωj < 0, taking into account estimate (10), uniform boundedness of the
system {uk (x)}∞k=1 and inequality

1∫
0

f ′ (t)e−iωjµk(1−t)dt ≤ const
{
ω1

(
f ′, µ−1k

)
+ µ−1k

∥∥f ′∥∥
1

}
(see [10,11]), we have∣∣∣(f ′, (iωj)2mB+

jk (0) e−iωjµk(1−t)
)∣∣∣ ≤ const{ω1

(
f ′, µ−1k

)
+ µ−1k

∥∥f ′∥∥
1

}
. (17)

From the uniform boundedness of the system {uk (x)}∞k=1 and estimate (13)
we get

|M (ξ, uk)| ≤
const

µk

[−2m+1∑
l=2

|Pl (ξ)|µ2−lk

]
. (18)

By inequality (18), we estimate the third and the fourth summands in equality
(15) as follows∣∣∣∣∣∣µ−1k

∑
Imωj≥0

f ′, i2mω2m+1
j

t∫
0

M (ξ, uk) e
−iωjµk(ξ−t)dξ

∣∣∣∣∣∣ ≤
≤ const µ−2k

(
2m+1∑
r=2

‖Pr‖1 µ
2−r
k

)∥∥f ′∥∥
1
, (19)
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∑

Imωj<0

f ′, i2mω2m+1
j

1∫
t

M (ξ, uk) e
−iωjµk(ξ−t)dξ

∣∣∣∣∣∣ ≤
≤ const µ−2k

(
2m+1∑
r=2

‖Pr‖1 µ
2−r
k

)∥∥f ′∥∥
1
. (20)

Thus, by inequalities (16), (17), (19) and (20), from (15) we get

µ−2m−1k

∣∣∣(f ′, u(2m)
k

)∣∣∣ ≤ const

µk

{
ω1

(
f ′, µ−1k

)
+ µ−1k

∥∥f ′∥∥
1

(
1 +

2m+1∑
r=2

µ2−rk ‖Pr‖1

)}
.

(21)
Considering the inequalities (13), (14) and (21) in (12), for the case n = 4q + 1,
Imλk > 0 we get the validity of the estimate (11). Lemma 2 is proved. J

Proof of Theorem 1. To prove the theorem, we must show that the series
∞∑
k=1

|fk| |uk (x)| uniformly converges on G = [0, 1]. To this end, we rewrite it in

the form

∞∑
k=1

|fk| |uk (x)| =
∑

0≤µk<γ
|fk| |uk (x)|+

∑
µk≥γ

|fk| |uk (x)| ,

γ = 4π/

(
min
j
|Reωj|

)
.

By orthogonality of the system {uk (x)}∞k=1 in L2 (G) (see [8,9]),∑
τ≤µk≤τ+1

1 ≤ const, ∀τ ≥ 0. (22)

From inequality (22) and by uniform boundedness of the system {uk (x)}∞k=1,
we have ∑

0≤µk<γ
|fk| |uk (x)| ≤ const ‖f‖1

∑
0≤µk<γ

1 ≤ const ‖f‖1 .

Denote I (µ, x) =
∑
µk≥µ

|fk| |uk (x)|, where µ = γ. Taking into account rela-

tions (1), (11) and (22), we get

I (µ, x) =
∑
µk≥µ

|fk| |uk (x)| ≤ const
∑
µk≥µ

|fk| ≤
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≤ const

C1 (f)
∑
µk≥µ

µα−2m−1k +
∑
µk≥µ

µ−1k ω1

(
f ′, µ−1k

)
+

+
(∥∥f ′∥∥

1
+ ‖f‖∞

) ∑
µk≥µ

µ−2k

(
1 +

2m+1∑
l=2

µ2−lk ‖Pl‖1

) ≤
≤ const

C1 (f)

∞∑
r=[µ]

∑
r≤µk≤r+1

µα−2m−1k +

∞∑
r=[µ]

∑
r≤µk≤r+1

µ−1k ω1

(
f ′, µ−1k

)
+

+
(∥∥f ′∥∥

1
+ ‖f‖∞

) ∞∑
r=[µ]

∑
r≤µk≤r+1

µ−2k

(
1 +

2m+1∑
l=2

µ2−lk ‖Pl‖1

) ≤
≤ const

C1 (f)µα−2m +
∞∑

r=[µ]

r−1ω1

(
f ′, r−1

)
+
(∥∥f ′∥∥

1
+ ‖f‖∞

)
×

×

 ∞∑
r=[µ]

r−2 +
2m+1∑
l=2

‖Pl‖1
∞∑

r=[µ]

r−l

 ≤
≤ const

C1 (f)µα−2m +
∞∑

r=[µ]

r−1ω1

(
f ′, r−1

)
+

+ [µ]−1
(∥∥f ′∥∥

1
+ ‖f‖∞

)(
1 +

2m+1∑
l=2

[µ]2−l ‖Pl‖1

)}
<∞.

Thus, the series
∞∑
k=1

|fk| |uk (x)| uniformly converges on G = [0, 1], i.e. the

series
∞∑
k=1

fkuk (x) absolutely and uniformly converges on G = [0, 1]. By the

completeness of the system {uk (x)}∞k=1 in L2 (G) and absolute continuity of the
function f (x), the equality

f (x) =

∞∑
k=1

fkuk (x) , x ∈ G, (23)

is valid.
Now estimate the difference Rν (x, f). Assume that ν ≥ γ. Then by equality

(25)
‖Rν (·, f)‖C[0,1] = ‖f − σν (·, f)‖C[0,1] =
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=

∥∥∥∥∥∑
µk>ν

fkuk (·)

∥∥∥∥∥
C[0,1]

≤ max
x∈G

I (ν, x) ≤

≤ const

C1 (f) να−2m +
∑
r=[ν]

r−1ω1

(
f ′, r−1

)
+

∞

+ν−1
(∥∥f ′∥∥

1
+ ‖f‖∞

)(
1 +

2m+1∑
l=2

ν2−l ‖Pl‖1

)}
.

Thus, the validity of the estimate (3) is proved. Theorem 1 is proved. J
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