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Quantum Cones and Quantum Balls

A. Dosi

Abstract. The present note is dedicated to description of quantum systems among the
quantum spaces. In the normed case we obtain a complete solution to the problem when
an operator space turns out to be an operator system. The min and max quantizations
of a local order are described in terms of the min and max envelopes of the related state
spaces.
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1. Introduction

A subspace of the operator space B (H) of all bounded linear operators on a
Hilbert space H is called a concrete operator space. The known result of Ruan
[8, 2.3] asserts that every abstract operator space can be realized as a concrete
operator space up to a matrix isometry. A unital self-adjoint subspace of B (H)
is known as an operator system. Operator spaces can be regarded as (Paulsen’s)
corners of operator systems. Abstract characterization of operator systems was
proposed by Choi and Effros in [1] (see also [14, Ch. 13]), which is described
in terms of the matrix-ordered ∗-vector spaces with their Archimedian matrix
order units or closed, separated, unital quantum cones. The operator systems
provide an alternative background to quantum functional analysis [8, 17, 11, 2].
Ruan’s result on abstract characterization of operator spaces mentioned above
can be driven from the duality of quantum cones (see [6]). An operator system
version of Effros-Webster-Winkler operator bipolar theorem (see [9, 10, 18]) was
obtained in [5, 6] (see also [7]) within the framework of duality of quantum cones.
A pioneering work on operator system structures of ordered spaces was carried out
in [16] and [15] by Paulsen, Todorov and Tomforde. It is all about quantizations
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of unital cones in a ∗-vector space. For the sake of completeness of this theory one
needs to have parallel developments of operator space constructions for operator
systems. Tensor products of operator systems were considered in [12]. For the
quotients, exactness and nuclearity in the operator system category see [13]. In
that concern the following problem is of great interest. Which operator space
structures on a unital ∗-vector space are indeed operator systems? A solution to
this problem would lead to the right outlines in the theory of operator systems
being operator spaces automatically.

The present note is dedicated to the solution of the above stated problem.
Basically, a possible operator system structure of an operator space generates a
matrix norm which is equivalent to the original matrix norm, that is, the related
quantum topologies coincide. A similar situation takes place in the general case
of quantum spaces. The quantum bornology (see [4] and [19]) in the topological
dual plays a central technical role in our approach and solves the problem for
quantum spaces.

2. Involution and quantum cones

By an involution on a vector space X we mean a ∗-linear mapping x 7→ x∗

on X such that x∗∗ = x for all x ∈ X. A vector space equipped with an in-
volution is called a ∗-vector space. The set of all hermitian elements (that is,
x∗ = x) is denoted by Xh, which is a real linear subspace in X. Now as-
sume that X is a ∗-vector space and (X,Y ) is a dual pair such that the in-
volution on X is σ (X,Y )-continuous. Then Y possesses the canonical involu-
tion y 7→ y∗, 〈x, y∗〉 = 〈x∗, y〉∗. In this case (X,Y ) is called a dual ∗-pair.
The given pairing 〈·, ·〉 defines a matrix pairing 〈〈·, ·〉〉 : M (X) ×M (Y ) → M ,
〈〈v, w〉〉 = [〈vij , wst〉](i,s),(j,t), and the weak topology σ (X,Y ) admits only one

quantization s (X,Y ) called the weak quantum topology of the dual pair (X,Y )
[3]. The involutions on X and Y are naturally extended to involutions over the
related matrix spaces such that 〈〈x, y∗〉〉 = 〈〈x∗, y〉〉∗ for all x ∈ M (X) and
y ∈M (Y ) [6]. Put M (X)h = {x ∈M (X) : x∗ = x}, and we have a well defined

real linear mapping hX : M (X)→M (X)h, h (x) =

[
0 x
x∗ 0

]
called (Paulsen’s)

hermitifier [6]. Note that hX (x) ∈M2n (X)h whenever x ∈Mn (X). A quantum
set C ⊆M (X)h is said to be a quantum cone on X if C + C ⊆ C and a∗Ca ⊆ C
for all a ∈ M . A quantum cone C on X is called a separated quantum cone
on X if C ∩ −C = {0}. If K is a quantum set on X then its quantum polar K�

in M (Y ) is defined as the quantum set K� = {y ∈M (Y )h : 〈〈K, y〉〉 ≥ 0}. The
latter is s (Y,X)-closed quantum cone on Y . If C is a s (X,Y )-closed, quantum
cone on X, then C = C�� [6]. Now let V be a vector space with its conjugate
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space V . Put PV =

{[
λ u
v∗ µ

]
: λ, µ ∈ C, u, v ∈ V

}
to be a ∗-vector space

with the involution

[
λ u
v∗ µ

]∗
=

[
λ∗ v
u∗ µ∗

]
called Paulsen power of V . If

(V,W ) is a dual pair, then so is (PV ,PW ) with the related canonical duality.
Actually, (PV ,PW ) is a dual ∗-pair and V is included into PV by means of the

canonical linear mapping ιV : V → PV , ιV (x) =

[
0 x
0 0

]
. For the hermitian el-

ements from M (PV ) we use the following notations: vab =

[
a v
v∗ b

]
and va,ε,b =

(a+ εI)−1/2 v (b+ εI)−1/2 ∈M (V ) whenever a, b ∈M+ and ε > 0. If B ⊆M (V )
is a quantum set, then we define a new hermitian quantum set CB on PV in the
following way: CB = {vab ∈M (PV )h : va,ε,b ∈ B, a, b ∈M+, ε > 0, v ∈M (V )}.
If B is an absolutely matrix convex set, then CB is a quantum cone on PV and
C�
B = CB� , where B� ⊆ M (W ) is the absolute quantum polar of B (see [9])

with respect to the matrix duality obtained from (V,W ). Moreover, CB− = C−B,
where B− is s (V,W )-closure of B and C−B is s (PV ,PW )-closure of CB. Finally,
CB is a separated quantum cone iff so is B in the sense of ∩ε>0εB = {0}.

3. Unital quantum cones and unital hulls

Let X be a ∗-vector space with its fixed hermitian element e. The quantum
set ({en}) on X is denoted by e, where en = e⊕n ∈Mn (X)h. The ∗-vector space

X = PV is unital with its unit e =

[
1 0
0 1

]
. A quantum cone C on the unital

space (X, e) is said to be a unital quantum cone if C− e is absorbent in M (X)h
(in this case, e ⊆ C (see [6])). The quantum set C− = ∩r>0r (C−e) is called the
algebraic closure of C. Note that C ⊆ C− if e ⊆ C. We say that C is a closed
(or an Archimedian) quantum cone if C = C−. Note that C− is smaller than
any topological closure of C with respect to any polynormed topology in M (X)
whenever e ⊆ C. For a unital quantum cone C we set Ĉ = h−1X (C− e). It is an
absorbent absolutely matrix convex set in M (X), which is separated whenever
so is C [6].

Now let (X, e) be a unital ∗-vector space and let (X,Y ) be a dual ∗-pair. Put
M (Y )e = {y ∈M (Y ) : 〈〈e, y〉〉 = I}, which is s (Y,X)-closed and matrix addi-
tive set in M (Y ). We also put M (Y )he = M (Y )h ∩M (Y )e. The unital bipolar

theorem proven in [7] asserts that C = S (C)� for a s (X,Y )-closed, unital quan-
tum cone C on X, where S (C) = C� ∩M (Y )e is the matricial state space of C.
If C =S� for a certain quantum subset S ⊆ S (C), then S is called a prematricial
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state space of C. Now let B be an absorbent, s (X,Y )-closed, absolutely matrix
convex set on X. Then CB is s (PX ,PY )-closed, unital quantum cone on PX ,
which can be treated as a cone on X. The s (X,Y )-closed, quantum cone on

X generated by CB is denoted by C̃B. Actually, C̃B = C��
B , where C�

B is the
quantum polar of the cone CB with respect to the dual ∗-pair (X,Y ).

Now let B be a quantum set on X. Put B̃ = (B� ∩M (Y )he)
�

called the

unital hull of B. Confirm that B̃ is s (X,Y )-closed, absolutely matrix convex

sets on X,
˜̃
B = B̃ and B ⊆ B�� ⊆ B̃. A quantum set B on X is said to be

unital if B̃ = B.

Theorem 1. Let (X,Y ) be a dual ∗-pair. The correspondence B 7−→C̃B is a
bijection between the set of all s (X,Y )-closed, unital, absorbent, absolutely matrix
convex sets on X, and the set of all s (X,Y )-closed, unital, quantum cones on X.

Moreover, C̃B is a separated quantum cone iff B is a separated absolutely matrix
convex set.

Corollary 1. If C is a s (X,Y )-closed, unital, quantum cone on X, then Ĉ =
S (C)�. If B is an absorbent, s (X,Y )-closed, absolutely matrix convex set on X,

then S
(
C̃B

)
= B� ∩M (Y )he.

Corollary 2. Let C be a s (X,Y )-closed, unital, quantum cone on X and let S be
a quantum subset of S (C). Then S is a prematricial state space of C iff Ĉ = S�.

4. Quantum order and quantum ∗-topology compatible with a
∗-duality

Let X be a unital ∗-vector space with its unit e, and let F be a filter base
of quantum cones in M (X)h. We say that F is a quantum order if it consists
of closed, unital, quantum cones such that ∩F is a separated quantum cone. In
this case, (X,F) is called a quantum system [7]. Any separated, closed, unital,
quantum cone C on a unital ∗-vector space X defines the quantum order {C}, and
(X,C) is an (abstract) operator system. A linear mapping ϕ : (X,F)→ (X ′,F ′)
between quantum systems is called a quantum (or local matrix ) positive if F ′ �
ϕ(∞) (F) for the filter bases in M (X ′), where ϕ(∞) : M (X) → M (X ′) is the

canonical extension of ϕ. If (X,F) is a quantum system, then F̂ =
{
Ĉ : C ∈F

}
is a filter base of absorbent absolutely matrix convex sets in M (X), which in
turn defines a Hausdorff quantum topology in M (X) whose neighborhood filter

base is
{
rĈ : C ∈F , r > 0

}
. We use the same notation F̂ for the latter quantum

topology. In particular, we have the dual pair (X,Y ) with the topological dual
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Y = X ′. Actually, it is a ∗-dual pair, and each C ∈F turns out to be F̂-closed
quantum cone [7], which is s (X,Y )-closed by Mazur’s theorem. Thus F is a
quantum order of s (X,Y )-closed, unital quantum cones called s (X,Y )-quantum
order on X. In the case of a given dual ∗-pair (X,Y ) with the unital ∗-vector
space (X, e), and a s (X,Y )-quantum order F on X, we say that F is compatible
with the duality (X,Y ) if the relevant quantum topology F̂ is compatible with the
duality (X,Y ). Recall that a quantum topology t on X is said to be compatible
with the duality (X,Y ) if (X, t|X)′ = Y . In this case, t has a neighborhood filter
base of the origin, which consists of s (X,Y )-closed, absorbent, absolutely matrix
convex sets in M (X). Moreover, s (X,Y ) � t � r (X,Y ) [2, Lemma 5.1], where
r (X,Y ) = maxκ (X,Y ) and κ (X,Y ) is the Mackey topology of the dual pair
(X,Y ).

If t is a filter base defining a quantum topology on X compatible with the
duality (X,Y ), then we define its unitization to be a quantum topology deter-

mined by the filter base t̃ =
{
B̃: B ∈ t

}
. Since 〈〈e,M (Y )he〉〉 = I, it follows that

e ∈ (B� ∩M (Y )he)
�

= B̃ for all B ∈ t. Moreover, t̃ is a filter base of s (X,Y )-
closed, absorbent, absolutely matrix convex sets on X, which in turn defines a
(weaker) quantum topology t̃. If t = ‖·‖ is a normed quantum topology deter-

mined by a matrix norm ‖·‖, then t = {B} and t̃ =
{
B̃
}

, where B = ball ‖·‖.
It follows that t̃ = ‖·‖e is a seminormed quantum topology determined by a new
matrix seminorm ‖·‖e. Actually it is a matrix norm as follows from the following
result.

Lemma 1. If (X,Y ) is a dual ∗-pair and t is a quantum topology on X compatible
with the duality (X,Y ), then t̃ is a Hausdorff quantum topology on X compat-
ible with the duality (X,Y ). In particular, s̃ (X,Y ) = s (X,Y ) and r̃ (X,Y ) �
r (X,Y ).

If t̃ = t (as the filter bases), then we say that t is a unital quantum topology.
A quantum topology t on X compatible with the duality (X,Y ) is said to be a
quantum ∗-topology if its neighborhood filter base consists of hermitian quantum
sets, that is, B∗ = B and e ∈ B for all B ∈ t.

Theorem 2. Let (X,Y ) be a dual ∗-pair, and let t be a quantum topology on X
compatible with the duality (X,Y ). Then t is a quantum ∗-topology on X if and
only if t is unital. In particular, r̃ (X,Y ) is a quantum ∗-topology, and all unital
quantum topologies compatible with the duality (X,Y ) are exactly arranged into
the ∗ -scale s (X,Y ) � t � r̃ (X,Y ) of all quantum ∗-topologies.

Using Theorem 1, we conclude that a quantum ∗-topology t on X being a
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unital one generates a quantum order C̃t =
{
C̃B : B ∈ t

}
on X. For brevity we

put Ct = C̃t.

Theorem 3. Let (X,Y ) be a dual ∗-pair. The correspondence t 7−→ Ct is a
bijection from the ∗ -scale s (X,Y ) � t �r̃ (X,Y ) of quantum ∗-topologies onto
the scale of all s (X,Y )-quantum orders on X compatible with the duality (X,Y ).

5. The matrix normed case

A normed quantum ∗-topology t on X is given by the Minkowski functional
‖·‖ such that ‖x∗‖ = ‖x‖ and ‖e‖ = 1 for all x ∈M (X).

Proposition 1. Let (X,Y ) be a dual ∗-pair, t = ‖·‖ a normed quantum ∗-topology
on X compatible with the duality (X,Y ), and let B be the related unit ball, which
is an hermitian quantum set in M (X). Then X is an operator system such
that M (X)+ = S�, where S = (3B�) ∩M (Y )he is a prematricial state space.
Moreover, t = ‖·‖e with ‖x‖e = sup ‖〈〈x,S〉〉‖, and 3−1 ‖x‖e ≤ ‖x‖ ≤ 10 ‖x‖e for
all x ∈M (X).

Confirm that the prematricial state space S is far from being unique, it de-
pends on a particular choice of the matrix norm on X. It can be much smaller
than (3B�) ∩M (Y )he. For example, it can be B� ∩M (Y )he.

6. Quantizations of unital cones

Let (X,Y ) be a dual ∗-pair with the unital space (X, e), and let t be a poly-
normed topology in X compatible with the duality. If t has a neighborhood filter
base of hermitian sets (that is, e ∈ b and b∗ = b for all b ∈t), then we say that t
is a ∗-topology.

Theorem 4. Let (X,Y ) be a dual ∗-pair and let t be ∗-topology in X compatible
with the duality (X,Y ). Then min t and max t are quantum ∗-topologies on X
compatible with (X,Y ). In particular, there are unique s (X,Y )-quantum orders

Cmin t =
{

(b◦ ∩ Yhe)� : b ∈t
}

and Cmax t =

{(
((b◦ ∩ Yhe)◦)� ∩M (Y )he

)�
: b ∈t

}
on X compatible with (X,Y ) that correspond to min t and max t, respectively.

The couples (X,Cmin t) and (X,Cmax t) are called the minimal and maximal
quantum systems associated with the ∗-topology t in X.
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7. Quantizations of a local order within
Paulsen-Todorov-Tomforde framework

Let (X, e) be a unital ∗-vector space. By a local order in X we mean a filter
base f of closed, unital cones in X such that ∩f is a separated cone in X. For
every c ∈ f we have the state space S (c) to be the set of all unital c-positive
functionals y : X → C. The filter base f̂ = {S (c)◦ : c ∈ f} of absolutely convex
subsets in X generates the related polynormed Hausdorff topology. The set of
all f̂-continuous functionals on X is denoted by Y . Thus (X,Y ) is a dual ∗-pair,
and ∪{S (c) : c ∈ f} ⊆ Yhe. By a quantization of f we mean a quantum order F
on X such that F|X = f. For every c ∈ f we define its maximal envelope c to be
the quantum polar S (c)� on X, and put min f = {c : c ∈ f}, which is a filter base
of s (X,Y )-closed, quantum cones on X.

Proposition 2. The filter base min f is a s (X,Y )-quantum order on X, which

is a quantization of f. Moreover, m̂in f|X = f̂ and the quantum topology m̂in f is
given by the family of matrix seminorms pc (x) = sup ‖〈〈x, S (c)〉〉‖, x ∈M (X).

Fix again c ∈ f and define its minimal envelope c to be the algebraic closure
of the quantum cone in M (X)h generated by c (see [15]). Put max f = {c : c ∈ f},
which is a filter base of closed, unital, quantum cones on X. Since c is closed
(being topologically closed), it follows that c ⊆ c. In particular, ∩max f ⊆∩min f
and ∩max f is a closed, separated, unital, quantum cone by Proposition 2. Hence

max f is a quantum order on X. Using [7, Theorem 5.1], we conclude that m̂ax f
is a Hausdorff quantum ∗-topology on X such that max f consists of topologically
closed quantum cones. For a while we put Ymax to be the topological dual of(
X, m̂ax f

)
. Since m̂ax f is stronger than m̂in f in the quantum topology scale, it

follows that Y ⊆ Ymax.

Lemma 2. Let f be a local order in X. Then m̂ax f|X = m̂in f|X = f̂ and
Y = Ymax.

Based on Lemma 2 and Proposition 2, one can prove the following result.

Theorem 5. Let f be a local order in X. Then max f is a s (X,Y )-quantum order
on X, which is a quantization of f. Thus c = c�� for every c ∈ f with respect to
the dual ∗-pair (X,Y ). Moreover, for every quantization F of f on X we have

min f �F �max f. In particular,F̂ |X = f̂, m̂in f = min f̂ and m̂ax f = max f̂.

8. The entanglement breaking maps

Let (X, e) be a unital ∗-vector space with a local order f in X. Based on
Theorem 5, we can assume f is σ (X,Y )-local order and all quantizations F
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of f are s (X,Y )-quantizations for a certain Y (= Ymax) such that (X,Y ) is a
dual ∗-pair. Let (X ′, Y ′) be another dual ∗-pair equipped with a s (X ′, Y ′)-
quantum order F ′. If ϕ : (X,F) → (X ′,F ′) is a quantum positive mapping,

then ϕ :
(
X, F̂

)
→
(
X ′, F̂ ′

)
is a quantum continuous mapping [7, Corollary

6.2], which in turn implies that ϕ∗ (Y ′) ⊆ Y , where ϕ∗ is the algebraic dual
mapping to ϕ. Moreover, for every K ∈F ′ there corresponds C ∈F such that
(ϕ∗)(∞) (S (K)) ⊆ R+S (C), where S (K) is the state space of the quantum cone
K and R+S (C) indicates to the quantum set of all C-positive functionals on the
matrix spaces.

A linear mapping ϕ : (X, f) → (X ′,F ′) of a local ordered system (X, f) to a
quantum system (X ′,F ′) is called an entanglement breaking mapping if for each

K ∈F ′ there corresponds c ∈ f such that (ϕ∗)(∞) (S (K)) ⊆ R+S (C) for every
quantization C of c. An entanglement breaking mapping ϕ : (X, f)→ (X ′,F ′) is

continuous automatically being a mapping from
(
X, f̂

)
to
(
X ′, F̂ ′|X ′

)
. Thus ϕ∗

in the definition of an entanglement breaking mapping is the topological dual.

Proposition 3. Let (X, f) be a local ordered space, (X ′,F ′) a quantum system,
and let ϕ : (X, f) → (X ′,F ′) be a linear mapping. The following conditions are
equivalent: (i) ϕ is an entanglement breaking mapping; (ii) for each K ∈F ′ there

corresponds c ∈ f such that (ϕ∗)(∞) (S (K)) ⊆ R+S⊗S (c); (iii) ϕ : (X,min f) →
(X ′,F ′) is quantum positive, where S⊗S (c) is the space of all w∗-limits of sepa-
rable c-positive functionals.

Concluding remarks. Based on the central result Theorem 3, we derive
that there is no operator column and row Hilbert systems as well as Haagerup
tensor product of operator systems in their direct proper senses. Nonetheless
the operator Hilbert space of Pisier turns out to be an operator system, and the
projective tensor product of operator systems admits interesting quantizations
that have not been seen before in [12].
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