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Riemann Problem in Weighted Smirnov
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Abstract. Homogeneous Riemann problem of the theory of analytic functions with a
piecewise continuous coefficient in weighted Smirnov classes with a general weight is
considered. The conditions on the coefficient of the problem and on the weight function
are found, which ensure the construction of a general solution for the homogeneous
problem in the corresponding weighted Smirnov classes. Special cases of weight function
are considered.
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1. Introduction

Theory of Riemann problems has a long history. These problems probably
date back to B.Riemann’s [1]. Later D.Hilbert [2,3] also considered them and
stated a problem which is now referred to as Riemann-Hilbert problem. In the
context of applications to some problems of mechanics and mathematical physics,
this field has been significantly developed over the years by well-known mathe-
maticians (see, e.g., [4,5]) and the theory of these problems has been well covered
in the literature [6-13]. Note that the methods of this theory are also used in
other fields of mathematics such as approximation theory, spectral theory of
differential operators, etc. The idea of using Riemann-Hilbert problem in the
study of approximation properties of perturbed trigonometric systems belongs to
A.V.Bitsadze [26]. This method has been successfully used by S.M.Ponomarev
[27,28], E.I.Moiseev [29,30] to establish the basicity of linear phase trigonomet-
ric systems for Lebesgue spaces. Further development of this method, used in
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establishing basis properties of special function systems in Lebesgue spaces, is
due to B.T.Bilalov [31-36]. This method allowed B.T.Bilalov to find Riesz basic-
ity criterion for the well-known Kostyuchenko system (see [33,36]) in the space
L2 (0, π).

The Riemann-Hilbert problems are still of great interest. As the harmonic
analysis develops further and new function spaces arise, new statements of Rie-
mann problem appear. For example, in the context of applications to some
problems of mechanics and pure mathematics, since recently there arose great
interest in the non-standard spaces of functions such as Lebesgue space with
variable summability index, Morrey space, grand Lebesgue space, etc. (see, e.g.,
[14-16]). Various issues of mathematical analysis (such as boundedness of singular
integral operators, Riesz potentials, direct and inverse problems of approxima-
tion theory with respect to Faber polynomials [22], etc.) are being studied in
such spaces. Riemann-Hilbert problems also began to be studied in these spaces
in different statements (see, e.g., [17-21]), and many relevant issues still remain
unsolved.

Results relevant to the subject of this work can be found in [17-19]. In
[18], Riemann-Hilbert boundary value problem has been considered in weighted
Smirnov class in a simply connected bounded domain with piecewise smooth
boundary, where the weight function is analytically extended inside the domain
and has a unique degeneration point on the boundary. In [17], the same problem
has been considered in weighted Smirnov classes with the variable summability
index. In [19], Riemann problem has been considered in weighted Smirnov space
in a domain with piecewise smooth boundary, where the weight has a power form
and satisfies the Muckenhoupt condition. Note that the weighted Smirnov classes
of analytic functions, where the solutions to boundary value problems are sought,
are determined in the mentioned works (and in this work, too) in different ways.
Moreover, in [17; 18], the authors consider so-called Riemann-Hilbert problems

Re
[
(a (τ) + ib (τ)) Φ+ (τ)

]
= f (τ) , τ ∈ Γ,

which can be reduced to Riemann problem

Φ+ (τ) +G (τ) Φ− (τ) = f (τ) , τ ∈ Γ,

by means of conformal mapping (see, e.g., [7;12]). Besides, in this work we don’t
impose Muckenhoupt type condition on the weight function in case of homoge-
neous problem. Note that the techniques used in this work are different from
those used in above-mentioned works.

In this paper, homogeneous Riemann problem of the theory of analytic func-
tions with a piecewise continuous coefficient in weighted Smirnov classes with a
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general weight is considered. The conditions on the coefficient of the problem
and on the weight function are found, which ensure the construction of a gen-
eral solution of the homogeneous problem in the corresponding weighted Smirnov
classes. Special cases of weight function are considered.

2. Necessary information

In this section, we state some notations and facts to be used to obtain our
results. By Or (z0) we denote a circle of radius r centered at z0 on the complex
plane C, i.e. Or (z0) ≡ {z ∈ C : |z − z0| < r }. |M | means the Lebesgue (linear)
measure of the set M ⊂ Γ, where Γ ⊂ C is some rectifiable curve. Z−is the
set of integers. By k ∈ n : m we denote k ∈ {n, n+ 1, ...,m}. [x] means the
integer part of the number x. Notation f (x) ∼ g (x) , x ∈ M , means ∃δ > 0 :

0 < δ ≤
∣∣∣f(x)
g(x)

∣∣∣ ≤ δ−1, ∀x ∈M .

Let’s give a definition for Carleson curve.

Definition 1. Jordan rectifiable curve Γ on the complex plane is called Carleson
curve or regular curve if

sup
z∈Γ
|Γ ∩Or (z)| ≤ cr , ∀r > 0 ,

where c is a constant independent of r.

For more information about this concept see, e.g., [23-25].

Let Γ be some Jordan rectifiable curve and ω (·) be a weight function on Γ,
i.e. ω (ξ) > 0 for a.e. ξ ∈ Γ.

Definition 2. We will say that the weight function ω : Γ → R+ = (0,+∞)
belongs to the Muckenhoupt class Ap (Γ) (p > 1), if

sup
z∈Γ

sup
r>0

(
1

r

∫
Γ∩Or(z)

ω (ξ) |dξ|

) (
1

r

∫
Γ∩Or(z)

|ω (ξ)|−
1
p−1 |dξ|

)p−1

< +∞.

We will need some facts about the weights ω (·), which satisfy the Mucken-
houpt condition Ap (Γ), 1 ≤ p ≤ +∞, on the rectifiable curve Γ. The following
statement is true:

Statement 1. i) If ω ∈ Ap (Γ), 1 ≤ p < +∞, then ω ∈ Aq (Γ), for q > p; ii)

ω ∈ Ap (Γ), 1 < p < +∞, if and only if ω
− 1
p−1 ∈ Ap′ (Γ) , 1

p + 1
p′ = 1; iii) if

ω ∈ Ap (Γ), 1 < p < +∞, then ω ∈ Aq (Γ), for some q : 1 < q < p.
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For more information about this statement see, e.g., [24].

We will also use the following statement by R.R. Coifman, C. Fefferman [23].

Statement 2. If the function ω (·) > 0 satisfies the Muckenhoupt condition
Ap (Γ),1 < p < +∞, then for sufficiently small δ > 0 the “inverse Hölder in-
equality”(

1

r

∫
Γ∩Or(z)

|ω (ξ)| 1+δ |dξ|

) 1
1+δ

≤ c

(
1

r

∫
Γ∩Or(z)

ω (ξ) |dξ|

)
, ∀r > 0 , ∀z ∈ Γ,

holds, where c = c (δ) is a constant independent of r and z ∈ Γ.

As usual, by Lp (Γ; ω) we denote the weighted Lebesgue space of functions
endowed with the norm ‖·‖p,ω:

‖f‖Lp(Γ;ω) =

(∫
Γ
|f (ξ)|p ω (ξ) |dξ|

) 1
p

.

3. General assumptions. Weighted Smirnov classes

Let G (ξ) = |G (ξ)| eiθ(ξ) be complex-valued functions on the curve Γ. We
make the following basic assumptions on the coefficient G (·) of the considered
boundary value problem and Γ:

(i) |G (·)|±1 ∈ L∞ (Γ);

(ii) θ (·) is piecewise continuous on Γ, and
{
ξk , k = 1, r

}
⊂ Γ are disconti-

nuity points of the function θ (·):
We impose the following condition on the curve Γ.

(iii) Γ is either Lyapunov or Radon curve (i.e. it is a limited rotation curve)
with no cusps. Direction along Γ will be considered as positive, i.e. when moving
along this direction the domain D stays on the left side. Let a ∈ Γ be an initial
(and also a final) point of the curve Γ. We will assume that ξ ∈ Γ follows the
point τ ∈ Γ, i.e. τ ≺ ξ, if ξ follows τ when moving along a positive direction on
Γ\a, where a ∈ Γ represents two stuck points a+ = a−, with a+ a beginning, and
a− an end of the curve Γ.

So, without loss of generality, we will assume that a+ ≺ ξ1 ≺ ... ≺ ξr ≺ b =
a−. Denote one-sided limits limξ→ξ0±0

ξ∈Γ
g (ξ) of the function g (ξ) at the point ξ0 ∈

Γ generated by this order by g (ξ0 ± 0), respectively. The jumps of the function
θ (ξ) at the points ξk , k = 1, r, are denoted by hk: hk = θ (ξk + 0) − θ (ξk − 0),
k = 1, r.
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Let D+ ⊂ C be a bounded domain with the boundary Γ = ∂D+, which
satisfies the condition iii). Denote by Ep (D+) , 1 < p < ∞, a Smirnov Banach
space of analytic functions in D+ with the norm ‖ · ‖Ep(D+):

‖f‖Ep(D+) = :
∥∥f+

∥∥
Lp(Γ)

, ∀f ∈ Ep
(
D+
)
, (1)

where f+ = f/Γ are non-tangential boundary values of the function f on Γ.
Based on the norm (1), we define the weighted Smirnov class. Let ρ ∈ L1 (Γ)

be some weight function. Define weighted Smirnov class Ep,ρ (D+):

Ep,ρ
(
D+
)
≡
{
f ∈ E1

(
D+
)

:
∥∥f+

∥∥
Lp,ρ(Γ)

< +∞
}
,

and let
‖f‖Ep,ρ(D+) =

∥∥f+
∥∥
Lp,ρ(Γ)

. (2)

Similarly we define the Smirnov classes in unbounded domain. Let D− ⊂
C be an unbounded domain containing infinitely remote point (∞). Denote
by mE1 (D−) a class of functions from E1 (D−) which are analytic in D− and
have an order k ≤ m at infinity, i.e. the function f ∈ E1 (D−) has a Laurent
decomposition f (z) =

∑m
k=−∞ akz

k in the vicinity of the infinitely remote point
z =∞, where m is some integer.

For a given weight function ρ ∈ L1 (Γ), the weighted class mEp,ρ (D−) is
defined as follows:

mEp,ρ
(
D−
)
≡
{
f ∈m E1

(
D−
)

:
∥∥f−∥∥

Lp,ρ(Γ)

}
,

with
‖f‖

mEp,ρ(D−) =
∥∥f−∥∥

Lp,ρ(Γ)
, (3)

where f− are non-tangential boundary values of the function f on Γ.
The following lemma is true.

Lemma 1. Let ρ
− q
p ∈ L1 (Γ). Then the classes Ep,ρ (D+) and mEp,ρ (D−) are

Banach spaces with respect to the norms (2) and (3), respectively, where 1 ≤ p <
+∞, 1

p + 1
q = 1.

4. The general solution of the homogeneous problem

Consider the following homogeneous Riemann problem in weighted Smirnov
classes

F+ (ξ) +G (ξ)F− (ξ) = 0, , a.e. ξ ∈ Γ. (4)
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By the solution of the problem (4) we mean a pair of analytic functions(
F+;F−

)
∈ Ep,ρ

(
D+
)
×m Ep,ρ

(
D−
)
,

whose non-tangential boundary values F± (ξ) satisfy the equality (4) a.e. on Γ.
In weightless case, this problem has been well enough studied in the monograph
by I.I.Danilyuk [8].

In construction of general solution to homogeneous Riemann problem, an
important role is played by the following lemma of uniqueness of the solution for
a simplest homogeneous problem.

Lemma C [8]. Assume that D+ is an arbitrary domain bounded by the
rectifiable curve Γ. Homogeneous problem

Φ+ (ξ)− Φ− (ξ) = 0, ξ ∈ Γ,

in a class of functions Φ (·), belonging to Smirnov classes E1 (D±)
(
D− = C\D̄+

)
and having a finite order k at infinity, admits only trivial solutions in the form
of polynomials, whose degree does not exceed k.

Let S be a length of the curve Γ and z = z (s) , 0 ≤ s ≤ S, be a parametric
representation of Γ with respect to the length of the arc s. Rewrite the problem
(4) as follows

F+ [z (s)] +G (z (s))F− [z (s)] = 0, a.e. s ∈ [0, S] , (5)

Let Ω (s) ≡ θ (z (s)) , 0 ≤ s ≤ S, and suppose

hk = Ω (sk + 0)− Ω (sk − 0) , k = 1, r;h0 = Ω (+0)− Ω (S − 0) ,

where ξk = z (sk) , 0 < sk < S , a = z (0) = z (S), are discontinuity points of the
argument Ω (·). Consider the following piecewise holomorphic functions

Z(1) (z) = exp

{
1

2πi

∫
Γ

ln |G (z (s))| dz (s)

z (s)− z

}
,

Z̃θ (z) = exp

{
1

2π

∫
Γ

Ω (s)
dz (s)

z (s)− z

}
= exp

{
1

2π

∫
Γ
θ (z (s))

dz (s)

z (s)− z

}
, z /∈ Γ.

As the argument θ (·) is defined ambiguously, it is clear that the value of the
function Z̃θ (·) depends on the chosen argument. Denote the product of these
functions by

Zθ : Zθ (z) ≡ Z(1) (z) Z̃θ (z) , z ∈ C\Γ.

Hereinafter, the function Zθ (·) will be called a canonical solution of the prob-
lem (4) corresponding to the argument θ (·).

The following lemma is true for the first multiplier Z(1) (z).
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Lemma 2. [8] Let the conditions i)-iii) be satisfied for the coefficient G (·) and
the curve Γ. Then the functions Z(1) (z) ; Z−1

(1) (z) are bounded in each of the

domains D±.

To proceed further, we represent the function Ω (s) in the following form

Ω (s) = Ω0 (s) + Ω1 (s) , 0 ≤ s ≤ S,

where Ω0(s) is a continuous part, and Ω1(s) is a jump function defined by

Ω1 (0) = 0,

Ω1 (s) = [Ω (+0)− Ω (0)] +
∑

0<sk<s

hk + [Ω (s)− Ω (s− 0)] , 0 < s < S.

Denote

h
(0)
0 = Ω0 (S)− Ω0 (0) , h

(1)
0 = Ω1 (+0)− Ω1 (S − 0) .

Let

Z(2) (z) = exp

{
1

2π

∫
Γ

Ω0 (s)
dz (s)

z (s)− z

}
,

and

Z(3) (z) = exp

{
1

2π

∫
Γ

Ω1 (s)
dz (s)

z (s)− z

}
.

It was proved in [8] that the following inclusion is true

Z̃±1
(2) (s) = |z (s)− z (0)|±

h
(0)
0
2π

∣∣∣Z±(2) [z (s)]
∣∣∣±1
∈ Lq (Γ) , ∀q ∈ (0,+∞) . (6)

The modulus of boundary values of the function Z(3) (·) can be represented as
follows [8]:

∣∣∣Z+
(3) [z (σ)]

∣∣∣ ≡ |z (0)− z (σ)|−
h
(1)
0
2π

∏
0<sk<S

|z (sk)− z (σ)|−
hk
2π , (7)

which follows directly from the lemma below.

Lemma 3. [8] Let the curve Γ satisfy the condition iii) and Ω1(s) be an arbitrary

jump function with the jumps h
(1)
0 = Ω1 (+0)−Ω1 (S − 0) at the point z (0). Then

the modulus of boundary values of the function Z(3) (·) can be represented by the
formula (7) for a.e. σ ∈ [0, S].
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Before stating our main result, let us introduce the following weight function

σ (s) ≡ |z (0)− z (s)|−
h0
2π

∏
0<sk<S

|z (sk)− z (s)|−
hk
2π . (8)

Let ρ : Γ→ (0,+∞) be some weight function. Assume that ∃p1; p2 ∈ (1,+∞),
such that the following conditions hold∫ S

0
σpp1 (s) ρp1 (z (s)) ds < +∞, (9)

∫ S

0
σ−qp2 (s) ρ

− q
p
p2 (z (s)) ds < +∞. (10)

So, the following main theorem is true.

Theorem 1. Let the conditions i)-iii) hold for complex-valued functions G (·)
and the curve Γ. Assume that the conditions (9) and (10) are satisfied for the
weight function ρ (·). Then the general solution of homogeneous problem (4) in
the classes Ep,ρ (D+)×m Ep,ρ (D−) has a representation

F (z) = Zθ (z)Pm (z) , (11)

where Zθ (·) is a canonical solution corresponding to the argument θ (·), and Pm (·)
is an arbitrary polynomial of degree k ≤ m (for m ≤ −1 we assume Pm (z) ≡ 0).

Proof. Introduce the following piecewise analytic function

Φ (z) ≡ F (z)

Zθ (z)
, (12)

where F (·) is a solution of homogeneous problem (4) in the classes Ep,ρ (D+) ×
mEp,ρ (D−). It is not difficult to see that the following relation holds

Φ+ (τ) = Φ− (τ) , a.e. τ ∈ Γ.

Let’s show that the function Φ satisfies all the conditions of Lemma C. So, Zθ (z)
has neither zeros nor poles when z /∈ Γ. Therefore, the functions Φ (z) and F (z)
have the same order at infinity. By definition of solution, we have F ∈ E1 (D+).
From the results of I.I.Danilyuk [8] (see, e.g., Lemma 16.5, p. 148) it follows that
the function Zθ (z) belongs to the classes Eδ (D±) for sufficiently small δ > 0, if
conditions i)-iii) hold. Then from (12) we obtain that the function Φ (z) belongs to
the classes Eµ (D±) for sufficiently small µ > 0. Thus, it follows from the Smirnov
theorem [8] that if Φ+ ∈ L1 (Γ), then clearly Φ ∈ E1 (D+). As Φ+ (τ) = Φ− (τ)
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a.e. τ ∈ Γ, then it suffices to prove that Φ− (τ) belongs to the space L1 (Γ). We
have ∣∣Φ− (τ)

∣∣ =
∣∣F− (τ)

∣∣ ∣∣Z−θ (τ)
∣∣−1

, a.e. τ ∈ Γ.

By definition of solution, we have the inclusion |F−| ∈ Lp,ρ (Γ). Therefore,

if
∣∣Z−θ ∣∣−1 ∈ Lq,ρ̃ (Γ), then Φ− ∈ L1 (Γ), where ρ̃ (·) = ρ

− q
p (·), which follows

directly from Hölder’s inequality∫
Γ

∣∣Φ− (τ)
∣∣ |dτ | ≤ (∫

Γ

∣∣F− (τ)
∣∣p ρ (τ) |dτ |

)
1
p

(∫
Γ

∣∣Z−θ (τ)
∣∣−q ρ− qp (τ) |dτ |

)
1
q .

Then, by Smirnov theorem [8] we obtain that the function Φ (z) belongs to the
class E1 (D±). As Φ+ (τ) = Φ− (τ) a.e. τ ∈ Γ, it follows from the uniqueness
theorem (i.e. from Lemma C) that Φ (z) is a polynomial of degree k ≤ m, i.e.
Φ (z) ≡ Pm (z), where Pm(z) is a polynomial of degree k ≤ m. So we obtain the
representation

F (z) = Zθ (z)Pm (z) .

Now we have to find out whether the function F (z) belongs to the re-
quired classes. It is absolutely clear that if Z+

θ (·) ∈ Lp,ρ (Γ), then F+ (·) ∈
Lp,ρ (Γ). As a result, by definition of weighted Smirnov classes, we obtain that
F (·) ∈Ep,ρ (D+)×m Ep,ρ (D−).

The modulus of boundary values
∣∣Z+

θ (z (s))
∣∣ can be represented as follows∣∣Z+

θ (z (s))
∣∣ ≡ ∣∣∣Z+

(1) (z (s))
∣∣∣ ∣∣∣Z̃(2) (s)

∣∣∣σ (s) .

From Lemma 2 we have∣∣Z+
θ (z (s))

∣∣ ∼ σ (s)
∣∣∣Z̃(2) (s)

∣∣∣ , s ∈ [0, S] . (13)

Applying Hölder’s inequality we get∫
Γ

∣∣Z+
θ (z (s))

∣∣ |dz (s)| ∼
(∫

Γ
|σ (s)|p0 |dz (s)|

) 1
p0

(∫
Γ

∣∣∣Z̃2 (s)
∣∣∣p′0 |dz (s)|

) 1
p′0
,

(14)
where 1

p0
+ 1

p′0
= 1. As is known (see, e.g., I.I.Danilyuk [8]),∣∣∣∣dzds

∣∣∣∣ = 1, a.e. ∈ [0, S] ,

moreover, as the curve Γ has no cusp, we have ∃δ0; k0 > 0 :

k0 |s− σ| ≤ |z (s)− z (σ)| ≤ |s− σ| , ∀s, σ : |s− σ| ≤ δ0. (15)
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Taking into account these relations and using the inclusion (6), from (14) we
obtain Z+

θ ∈ L1 (Γ), and, as a result, F+ ∈ L1 (Γ). Then it follows from Smirnov
theorem that the function F (z) belongs to Smirnov class E1 (D+). It is absolutely
clear that the boundary values F± of the function F on Γ satisfy (4). From the
condition i) it follows that |D|±1 ∈ L∞, therefore we clearly have∣∣Z+

θ (z (s))
∣∣ ∼ ∣∣Z−θ (z (s))

∣∣ , s ∈ (0, S) .

Using this relation, it is easy to conclude that F− ∈ L1 (Γ), and, as a result,
F ∈m E1 (D−). Let’s find the conditions under which the boundary values F±

belong to the space Lp,ρ (Γ). It is absolutely clear that if Z+
θ ∈ Lp,ρ (Γ), then

F± ∈ Lp,ρ (Γ).
Then, considering (14), we obtain∫ S

0

∣∣Z+
θ (z (s))

∣∣p ρ (z (s)) ds ≤

≤M
(∫ S

0
σpp1 (s) ρp1 (z (s)) ds

) 1
p1
(∫ S

0

∣∣∣Z̃(2) (s)
∣∣∣q1 ds) 1

q1

,

where M is some constant and 1
p1

+ 1
q1

= 1.
Again, by paying attention to condition (10), from (13) we directly get the

inclusion
∣∣Z−θ (·)

∣∣−1 ∈ Lp;ρ̃ , where ρ̃ = ρ
− q
p . Summing up the obtained results

we finish the proof of theorem. J

This theorem has a following direct corollary.

Corollary 1. Let all the conditions of Theorem 1 be satisfied. Then, if F (∞) =
0, the problem (4) has only a trivial solution in the classes Ep,ρ (D+)×mEp,ρ (D−),
i.e. when m ≤ −1, the problem (4) has only a trivial solution in the classes
Ep,ρ (D+)×m Ep,ρ (D−).

In fact, as ∃ lim
z→∞

Zθ (z) 6= 0, it is clear that the function Zθ (·) does not influ-

ence the order of the function F (·) at infinitely remote point. Then it follows
from the representation F (z) = Zθ (z)Pm (z) that for m ≤ −1 the homogeneous
problem has only a trivial solution.

Let’s consider some special cases of the weight function ρ (·).

Example 1. Let ρ (·) have the following power form

ρ (s) = ρ (z (s)) =

m0∏
k=0

|z (s)− z (tk)|αk , (16)
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where {tk}m1 ⊂ [0, S) are different points, and {αk}m0
0 ⊂ [0, S) are some numbers.

Denote the union of sets {sk}r0 and {tk}m0
0 by {σk}l0 : {σk}l1 ≡ {sk}

r
0

⋃
{tk}m0

0 . Let
χA (·) be a characteristic function of the set A. Denote one-point sets {σk} , k =
0, l, by Tk : Tk ≡ {σk} , k = 0, l. Let

βk = − p

2π

r∑
i=0

hiχTk (si) +

m0∑
i=0

αiχTk (ti) , k = 0, l. (17)

Assume that the following inequalities hold

−1 < βk <
p

q
, k = 0, l. (18)

It is not difficult to show that if the inequalities (18) hold, then so do the
relations (9), (10) and, as a result, Theorem 1 is true. Then we have the following

Corollary 2. Let the function G (·) and the curve Γ satisfy the conditions i)-iii),
and the weight function ρ (·) have the form (16). Assume that the inequalities
(18) hold, where βk’s are defined by (17). Then the general solution of the problem
(4) in the classes Ep,ρ (D+)×m Ep,ρ (D−) has a representation (11).

Example 2. Consider (16) as a weight function ρ (·) again, but now assume that
{sk}r0

⋂
{tk}m0

0 = ∅. Then the following corollary is true.

Corollary 3. Let all the conditions of Corollary 2 be fulfilled and {sk}r0
⋂
{tk}m0

0 =
∅. If the inequalities

−1

q
<
hk
2π

<
1

p
, k = 0, r;−1 < αi <

q

p
, i = 0,m0,

hold, then the general solution of the problem (4) in the classes Ep,ρ (D+) ×m
Ep,ρ (D−) has a representation (11).

Note that the weight (16) belongs to the Muckenhoupt class Ap (Γ) , 1 < p <
+∞, if and only if the degeneration orders satisfy the inequalities

−1 < αi <
q

p
, i = 0,m0.

Remark 1. It is easy to see that if the weight function ν (s) = σ (s) ρ
1
p (z (s)) , s ∈

[0, S], belongs to the Muckenhoupt class Ap (0, S) , then the conditions (9), (10)
are fulfilled.
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