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Unified Approach to Fully Fourth Order Nonlinear
Problems

Q.A. Dang∗, T.H. Nguyen, H.H. Truong

Abstract. In this paper we propose a unified approach to investigate boundary value
problems for fully fourth order nonlinear differential equation. It is based on the re-
duction of the problems to operator equations for the nonlinear terms, but not for the
sought functions. By this approach we establish the existence, uniqueness, positivity
and convexity of solutions of the problems using different methods under the conditions
which are much simpler and weaker than those in known works. The theoretical results
are illustrated on examples.
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1. Introduction

In recent years the boundary value problems for fully fourth order nonlinear
differential equations

u(4)(x) = f(x, u(x), u′(x), u′′(x), u′′′(x)), 0 < x < 1, (1)

have attracted attention from many researchers. A number of works have been
dedicated to the existence of solutions of problems with different boundary con-
ditions. The methods employed in these works are the method of Leray-Schauder
degree theory [21]; the fixed point index theory in cones [14]; the method of lower
and upper solutions with the use of the Schauder fixed point theorem [1, 11, 12],
the degree theory [20] or new maximum principles [24]; Fourier analysis [15] and
the reproducing kernel theorem [10]. It should be emphasized that in all the
above works except for [10] there is an essential assumption that the function
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f : [0, 1] × R4 → R satisfies a Nagumo-type condition. Meanwhile the work [10]
requires the boundedness of the function f and its partial derivatives in [0, 1]×R4.

Very recently, in [3, 4, 5, 6] we proposed a new method for investigating si-
multaneously existence and uniqueness of a solution of the equation (1) with one
of the following sets of boundary conditions:

u(0) = u′(0) = u′′(1) = u′′′(1) = 0, (2)

u(0) = u′′(0) = u(1) = u′′(1) = 0 (3)

u(0) = 0, u′(1) = 0, au′′(0)− bu′′′(0) = 0, cu′′(1) + du′′′(1) = 0, (4)

where a, b, c, d ≥ 0. The idea of the method is to reduce the boundary value
problems to operator equations for the nonlinear term or the right-hand side of
the equation and to apply the contraction principle to the latter ones. There we
needed the Lipschitz condition for the function f(x, u, y, v, z) only in a bounded
domain. Note that the idea of the reduction of boundary value problems to
operator equations for the right-hand sides originated from our work [2] when
considering a boundary value problem for biharmonic type equation.

In this paper, we study the solvability and properties of solutions for the equa-
tion (1) with the more general boundary conditions, which include as particular
cases the boundary conditions (2), (3), (4) and the sets of the conditions

u(0) = u′(1) = u′′(0) = u′′′(1) = 0, (5)

u(0) = u′(1) = u′′(1) = u′′′(0) = 0, (6)

u(1) = u′(0) = u′′(0) = u′′′(1) = 0, (7)

u(1) = u′(0) = u′′(1) = u′′′(0) = 0, (8)

u(0) = u′(0) = u′′(0) = u′′′(1) = 0, (9)

u(0) = u′(0) = u′′(1) = u′′′(0) = 0, (10)

u(1) = u′(1) = u′′(0) = u′′′(1) = 0, (11)

u(1) = u′(1) = u′′(1) = u′′′(0) = 0 (12)

mentioned in [20]. The tools that we use are the Schauder fixed point theorem
for compact operators and the contraction mapping principle. The existence,
uniqueness, positivity and convexity of solutions are established under easily ver-
ified conditions. Many examples illustrate the obtained theoretical results.
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2. Solvability and properties of solution

For brevity we denote

ū =
(
u(0), u(1), u′(0), u′(1)

)
,

¯̄u =
(
u′′(0), u′′(1), u′′′(0), u′′′(1)

)
.

Consider the boundary value problem

u(4)(x) = f(x, u(x), u′(x), u′′(x), u′′′(x)), 0 < x < 1, (13)

B1(ū) = 0, B2(ū) = 0,

B3(¯̄u) = 0, B4(¯̄u) = 0,
(14)

where B1, B2, B3, B4 are linear combinations of the components of arguments.
We shall associate this problem with a fixed point problem as follows.
For functions ϕ(x) ∈ C[0, 1] consider the nonlinear operator defined by

(Aϕ)(x) = f(x, u(x), u′(x), u′′(x), u′′′(x)), (15)

where u(x) is a solution of the equation

u(4)(x) = ϕ(x), 0 < x < 1, (16)

satisfying the boundary conditions (14).
It is easy to verify the following

Proposition 1. If the function ϕ(x) is a fixed point of the operator A, i.e., ϕ(x)
is a solution of the operator equation

ϕ = Aϕ, (17)

then the function u(x) determined from the boundary value problem (16), (14)
solves the problem (13)-(14). Conversely, if u(x) is a solution of the boundary
value problem (13)-(14), then the function

ϕ(x) = f(x, u(x), u′(x), u′′(x), u′′′(x))

is a fixed point of the operator A defined above by (15), (16) and (14).

Thus, the solution of the original problem (13)-(14) is reduced to the solution
of the operator equation (17). This is the technique used in our previous works
[3, 4, 5] for some particular cases of the problem (13)-(14) but not formulated as
a separate proposition.



Unified Approach to Fully Fourth Order Nonlinear Problems 117

Now in the problem (13)-(14) we set v(x) = u′′(x). Then it is decomposed
into two second order problems{

v′′(x) = ϕ(x), 0 < x < 1,
B3(v̄) = 0, B4(v̄) = 0,

(18)

{
u′′(x) = v(x), 0 < x < 1,
B1(ū) = 0, B2(ū) = 0,

where v̄ =
(
v(0), v(1), v′(0), v′(1)

)
. Suppose the Green functions of the problems

(16), (14) and (18) exist and are denoted by G(x, t) and Ĝ(x, t), respectively.
Then their solutions are represented in the forms

u(x) =

∫ 1

0
G(x, t)ϕ(t)dt, v(x) =

∫ 1

0
Ĝ(x, t)ϕ(t)dt. (19)

From the differentiability property of Green functions we have

u′(x) =

∫ 1

0
G1(x, t)ϕ(t)dt, v′(x) =

∫ 1

0
Ĝ1(x, t)ϕ(t)dt, (20)

where G1(x, t) = G′x(x, t) is a function continuous in the square [0, 1]2 and
Ĝ1(x, t) = Ĝ′x(x, t) is continuous in the square [0, 1]2 except for the line t = x.
Further, suppose that for any 0 ≤ x ≤ 1 there hold the estimates∫ 1

0
|G(x, t)|dt ≤M0,

∫ 1

0
|G1(x, t)|dt ≤M1,∫ 1

0
|Ĝ(x, t)|dt ≤M2,

∫ 1

0
|Ĝ1(x, t)|dt ≤M3,

(21)

where M0,M1,M2 and M3 are some constants.
Also, denote

y(x) = u′(x), z(x) = v′(x).

Then from (20) we have

y(x) =

∫ 1

0
G1(x, t)ϕ(t)dt, z(x) =

∫ 1

0
Ĝ1(x, t)ϕ(t)dt.

Next, for each real number M > 0 introduce the domain

DM = {(x, u, y, v, z)| 0 ≤ x ≤ 1, |u| ≤M0M, |y| ≤M1M,

|v| ≤M2M, |z| ≤M3M},
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and as usual, by B[O,M ] we denote

B[O,M ] = {ϕ ∈ C[0, 1]| ‖ϕ‖ ≤M},

where

‖ϕ‖ = max
0≤x≤1

|ϕ(x)|.

Theorem 1 (Existence of solutions). Suppose that there exists a number M > 0
such that the function f(x, u, y, v, z) is continuous and bounded by M in the
domain DM , i.e.,

|f(x, u, y, v, z)| ≤M, (22)

for any (x, u, y, v, z) ∈ DM .

Then, the problem (13)-(14) has a solution u(x) satisfying |u(x)| ≤ M0M,
|u′(x)| ≤M1M, |u′′(x)| ≤M2M, |u′′′(x)| ≤M3M for any 0 ≤ x ≤ 1.

Proof. By Proposition 1, the problem (13)-(14) is reduced to the operator
equation (17). Therefore, the existence of solution of the problem will be proved
if we show that this associated operator equation has a solution. For this purpose,
we first show that the operator A defined by (15), (16) and (14) maps any closed
ball B[O,M ] into itself.
Indeed, for any ϕ ∈ B[O,M ] from the representations of the solution u(x) of the
problem (13)-(14) and its derivatives u′(x), u′′(x) = v(x), u′′′(x) = v′(x) by the
formulas (19)-(20) and the estimates (21) we have

|u(x)| ≤M0M, |u′(x)| ≤M1M,

|u′′(x)| ≤M2M, |u′′′(x)| ≤M3M

for any 0 ≤ x ≤ 1. Therefore, for any 0 ≤ x ≤ 1 we have (x, u(x), u′(x), u′′(x),
u′′′(x)) ∈ DM , and consequently, by the assumption (22)

|Aϕ(x)| = |f(x, u(x), u′(x), u′′(x), u′′′(x))| ≤M.

It follows that ‖Aϕ‖ ≤ M and thus, the operator A maps the ball B[O,M ] into
itself.

Next, we prove that the operator A is compact one in the space C[0, 1].
According to [13, Sec. 31] (see APPENDIX) the integral operators (19),(20)
which put each function ϕ ∈ C[0, 1] in correspondence to the functions u, u′, u′′, u′′′,
respectively, are compact operators. Therefore, in view of the continuity of the
function f(x, u, y, v, z) it is easy to see that the operator A defined by (15) is a
compact operator in the space C[0, 1]. Thus, the operator A is a compact one
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mapping the closed ball B[O,M ]) into itself. By the Schauder Fixed Point The-
orem [22], the operator equation (17) has a solution. The theorem is proved.
J

Now suppose that one or more of the Green functions G(x, t), Ĝ(x, t) and their
derivatives G1(x, t), Ĝ1(x, t) are of constant signs in the square [0, 1]2. In order
to investigate the existence and properties of positive solutions of the problem
(13)-(14) we introduce the notation

SM = {ϕ ∈ C[0, 1]| 0 ≤ ϕ ≤M}.

Theorem 2 (Existence of positive solutions). Suppose we are given the Green
function G(x, t) ≥ 0 in the square Q = [0, 1]2 and there exists a number M > 0
such that the function f(x, u, y, v, z) is continuous and

0 ≤ f(x, u, y, v, z) ≤M

for any (x, u, y, v, z) ∈ Du+

M , where

Du+

M = {(x, u, y, v, z)| 0 ≤ x ≤ 1, 0 ≤ u ≤M0M,

|y| ≤M1M, |v| ≤M2M, |z| ≤M3M}.

Besides, suppose that f(x, 0, 0, 0, 0) 6≡ 0. Then, the problem (13)-(14) has a
positive solution u(x) satisfying

0 ≤ u(x) ≤M0M, |u′(x)| ≤M1M,

|u′′(x)| ≤M2M, |u′′′(x)| ≤M3M

for 0 ≤ x ≤ 1.

Proof. Similarly to the proof of Theorem 1, where instead of DM and B[O,M ]
there stand Du+

M and SM , we conclude that the problem (13)-(14) has a nonne-
gative solution. Due to the condition f(x, 0, 0, 0, 0) 6≡ 0, this solution must be
positive. J

In a similar way it is easy to prove the following results.

Theorem 3 (Existence of positive monotone solutions). Suppose that G(x, t) ≥
0, G1(x, t) ≥ 0 (G1(x, t) ≤ 0) in the square Q = [0, 1]2. Further, suppose that
there exists a number M > 0 such that the function f(x, u, y, v, z) is continuous
and

0 ≤ f(x, u, y, v, z) ≤M
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for any (x, u, y, v, z) ∈ Du+y+

M (Du+y−

M ), where

Du+y+

M = {(x, u, y, v, z)| 0 ≤ x ≤ 1, 0 ≤ u ≤M0M,

0 ≤ y ≤M1M, |v| ≤M2M, |z| ≤M3M},

Du+y−

M = {(x, u, y, v, z)| 0 ≤ x ≤ 1, 0 ≤ u ≤M0M,

−M1M ≤ y ≤ 0, |v| ≤M2M, |z| ≤M3M}.

Besides, suppose that f(x, 0, 0, 0, 0) 6≡ 0. Then, the problem (13)-(14) has a
positive, increasing (decreasing) solution u(x) satisfying

0 ≤ u(x) ≤M0M, 0 ≤ u′(x) ≤M1M, (−M1M ≤ u′(x) ≤ 0)

|u′′(x)| ≤M2M, |u′′′(x)| ≤M3M

for 0 ≤ x ≤ 1.

Theorem 4 (Existence of positive convex solutions). Suppose that G(x, t) ≥ 0,
Ĝ(x, t) ≥ 0 (Ĝ(x, t) ≤ 0) in the square Q = [0, 1]2. Further, suppose that there
exists a number M > 0 such that the function f(x, u, y, v, z) is continuous and

0 ≤ f(x, u, y, v, z) ≤M

for any (x, u, y, v, z) ∈ Du+v+

M (Du+v−
M ), where

Du+v+

M = {(x, u, y, v, z)| 0 ≤ x ≤ 1, 0 ≤ u ≤M0M,

|y| ≤M1M, 0 ≤ v ≤M2M, |z| ≤M3M},

Du+v−
M = {(x, u, y, v, z)| 0 ≤ x ≤ 1, 0 ≤ u ≤M0M,

|y| ≤M1M, −M2M ≤ v ≤ 0, |z| ≤M3M}.

Besides, suppose that f(x, 0, 0, 0, 0) 6≡ 0. Then, the problem (13)-(14) has a
positive, convex (concave) solution u(x) satisfying

0 ≤ u(x) ≤M0M, |u′(x)| ≤M1M,

0 ≤ u′′(x) ≤M2M (−M2M ≤ u′′(x) ≤ 0), |u′′′(x)| ≤M3M

for 0 ≤ x ≤ 1.

Theorem 5 (Uniqueness of solution). Suppose that the function f(x, u, y, v, z)
satisfies the Lipschitz condition in variables u, y, v, z. Namely, there exist numbers
c0, c1, c2, c3 ≥ 0 such that



Unified Approach to Fully Fourth Order Nonlinear Problems 121

|f(x, u2, y2, v2, z2)− f(x, u1, y1, v1, z1)| ≤
c0|u2 − u1|+ c1|y2 − y1|+ c2|v2 − v1|+ c3|z2 − z1| (23)

for any (x, ui, yi, vi, zi) ∈ [0, 1]× R4 (i = 1, 2) and

q := c0M0 + c1M1 + c2M2 + c3M3 < 1. (24)

Then the solution of the problem (13)-(14) is unique if it exists.

Proof. Suppose the problem has two solutions u1(x) and u2(x). Set

vi = u′′i , yi = u′i, zi = v′i, ϕi = f(x, ui, yi, vi, zi) (i = 1, 2).

Then, using the representations of the types (19), (20) for ui, yi, vi, zi and the
estimates (21) we obtain

‖u2 − u1‖ ≤M0‖ϕ2 − ϕ1‖, ‖y2 − y1‖ ≤M1‖ϕ2 − ϕ1‖,
‖v2 − v1‖ ≤M2‖ϕ2 − ϕ1‖, ‖z2 − z1‖ ≤M3‖ϕ2 − ϕ1‖.

(25)

From (23) and the above estimates we have

|ϕ2 − ϕ1| = |f(x, u2, y2, v2, z2)− f(x, u1, y1, v1, z1)|
≤ c0|u2 − u1|+ c1|y2 − y1|+ c2|v2 − v1|+ c3|z2 − z1|
≤ (c0M0 + c1M1 + c2M2 + c3M3)‖ϕ2 − ϕ1‖.

It follows that

‖ϕ2 − ϕ1‖ ≤ q‖ϕ2 − ϕ1‖

with q defined by (24). Since q < 1, the above inequality occurs only in the case
ϕ2 = ϕ1. This implies u2 = u1 due to (25). The theorem is proved. J

Theorem 6 (Existence and uniqueness of solution). Assume that there exist
numbers M, c0, c1, c2, c3 ≥ 0 such that

|f(x, u, y, v, z)| ≤M, (26)

|f(x, u2, y2, v2, z2, )− f(x, u1, y1, v1, z1)| ≤
c0|u2 − u1|+ c1|y2 − y1|+ c2|v2 − v1|+ c3|z2 − z1| (27)

for any (x, u, y, v, z), (x, ui, yi, vi, zi) ∈ DM (i = 1, 2) and

q := c0M0 + c1M1 + c2M2 + c3M3 < 1.

Then, the problem (13)-(14) has a unique solution u(x) such that |u(x)| ≤M0M,
|u′(x)| ≤M1M, |u′′(x)| ≤M2M, |u′′′(x)| ≤M3M for any 0 ≤ x ≤ 1.
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Proof. Under the assumption (26), as proven in Theorem 1, the operator A,
defined by (15), maps the closed ball B[O,M ] into itself. Besides, for ϕ1, ϕ2 ∈
B[O,M ], as shown in the same theorem, (x, ui(x), u′i(x), u′′i (x), u′′′i (x)) ∈ DM ,
where ui(x) is the solution of the problem (16), (14) with ϕ = ϕi (i = 1, 2).
Therefore, using the Lipschitz condition (27) in DM , as in Theorem 5, we obtain

|(Aϕ2)(x)− (Aϕ1)(x)| = |f(x, u2, y2, v2, z2)− f(x, u1, y1, v1, z1)| ≤ q‖ϕ2 − ϕ1‖

for all x ∈ [0, 1]. This implies that ‖Aϕ2 − Aϕ1‖ ≤ q‖ϕ2 − ϕ1‖. So, with the
assumption q < 1, A is a contraction mapping in B[O,M ]. By the contraction
principle, the operator A has a unique fixed point in B[O,M ], which corresponds
to the unique solution u(x) of the problem (13)-(14).
The estimations for u(x) and its derivatives are obtained as in Theorem 1. Thus,
Theorem 6 is proved. J

Remark 1. In Theorem 5 the Lipschitz condition is required to be satisfied in
[0, 1]×R4, while in Theorem 6 under the condition (26) it is required only in DM .

Combining Theorems 2, 3 and 4 with Theorem 5, we obtain the following
theorem.

Theorem 7 (Existence of unique solution and its properties). Suppose that the
Lipshitz condition (23)-(24) is satisfied in corresponding domains together with
the conditions of Theorem 2/ Theorem 3/Theorem 4. Then the problem (13)-(14)
has a unique positive solution/ a unique positive monotone solution/ a unique
positive convex (concave) solution, which satisfies the corresponding estimates as
in Theorems 2, 3 and 4.

3. Some particular cases

3.1. The problem (1), (2)

Consider the equation (1) with the boundary conditions (2). In [14], the
existence of a positive solution of this problem was established under many con-
ditions posed on the positive function f(x, u, y, v, z), including a growth condition
on u, y, v, z at infinity and a Nagumo-type condition on v and z. In 2017, Zhou
[23] also studied the problem (1)-(2) by using the method of order reduction and
the fixed point index. He established the existence of positive solutions under
some conditions which are difficult to verify. Maybe, this is the reason that no
examples are shown for illustration of theoretical results. Also in 2017, Wei and Li
in [24] using the lower and upper solutions method and a new maximum principle
established the existence and uniqueness of positive solution. In a recent work
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[4], freeing all growth conditions but requiring the Lipschitz condition only in a
bounded domain we established the existence and uniqueness of a nonnegative
solution.

As was shown in [4]

G(x, t) =


− t3

6
+
t2x

2
, 0 ≤ t ≤ x ≤ 1

− x3

6
+
x2t

2
, 0 ≤ x ≤ t ≤ 1.

Ĝ(x, t) =

{
0, 0 ≤ t ≤ x ≤ 1,

t− x, 0 ≤ x ≤ t ≤ 1.

G1(x, t) = G′x(x, t), Ĝ1(x, t) = Ĝ′x(x, t),

M0 =
1

8
, M1 =

1

6
, M2 =

1

2
, M3 = 1.

It is easy to verify that G(x, t), Ĝ(x, t), G1(x, t) ≥ 0 and Ĝ1(x, t) ≤ 0 for 0 ≤
x, t ≤ 1.

Example 1. (Example 4.1 in [4]) Consider the problem u(4)(x) = −3u′u′′′

1152
+

(u′′)2

576
+
x

4
+

95

4
, 0 < x < 1,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

It is easy to verify that for this problem all conditions of Theorem 7 are satisfied
with M = 25. Therefore, the problem has a unique positive, increasing and convex
solution. This solution is u(x) = x4 − 4x3 + 6x2 with the above properties.

Example 2. Consider the boundary value problem{
u(4)(x) = u2 + |u′|

1
2 + |u′′|

1
2 + |u′′′|

1
2 + 1, 0 < x < 1,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

In this example f(x, u, y, v, z) = u2 + |y|
1
2 + |v|

1
2 + |z|

1
2 + 1. It is possible to

verify that for M = 9 all the conditions of Theorem 2 are satisfied. Therefore,
the problem has a positive solution. Note that neither the condition F1 of [14,
Theorem 3.1] nor the condition F4 of [14, Theorem 3.2] is satisfied, so the results
of Li [14] cannot ensure the existence of positive solutions.
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Example 3. (Example 1 in [24]) Consider the boundary value problem{
u(4)(x) = 1

3 sinx.u(x) + 1
3 cosx.u′(x) + 1

2e
x, 0 < x < 1,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

In [24] the authors obtained the result that the problem has a unique solution u(x)
which satisfies 0 ≤ u(x) ≤ ex, 0 ≤ u′(x) ≤ ex.

It is easy to verify that for M =
36

65
= 1.5055 all the conditions of Theorem

3 and Theorem 6 are satisfied with q < 7
72 . Therefore, the problem has a unique

positive increasing solution satisfying 0 ≤ u(x) ≤ M
8 = 0.1882, 0 ≤ u′(x) ≤ M

6 =
0.2509. Clearly, this result is much better than that in [24].

3.2. The problem (1), (3)

Now we consider the equation (1) with the boundary conditions (3).
The existence of a solution for this problem was studied by Li and Liang in
[15] by the Fourier analysis method and Leray-Schauder fixed point theorem.
A growth condition and the Lipschitz condition on the function f(x, u, y, v, z)
are imposed. Very recently, in [5], following the method used for the equation
u(4)(x) = f(x, u(x), u′′(x)), we obtained the results for existence and uniqueness
of a solution and the convergence of an iterative method. But in that work,
disusing the first representation in (19), we obtained the estimate ‖u‖ ≤ 1

64‖ϕ‖.
Here, applying the general methodology presented in the previous section to the
problem (1), (3), we obtain a somewhat better estimate: ‖u‖ ≤ 5

384‖ϕ‖.
For this problem

G(x, t) =
1

6

{
x(t− 1)(t2 + x2 − 2t), 0 ≤ x ≤ t ≤ 1,
t(x− 1)(t2 + x2 − 2x), 0 ≤ t ≤ x ≤ 1,

Ĝ(x, t) =

{
x(t− 1), 0 ≤ x ≤ t ≤ 1,
t(x− 1), 0 ≤ t ≤ x ≤ 1,

G1(x, t) = G′x(x, t), Ĝ1(x, t) = Ĝ′x(x, t).

It is easy to verify that G(x, t) ≥ 0 and Ĝ(x, t) ≤ 0 for 0 ≤ x, t ≤ 1 and

M0 =
5

384
, M1 =

1

24
, M2 =

1

8
, M3 =

1

2
.

Therefore, with a suitable selection of M > 0 Theorem 4 guarantees the exis-
tence of a positive concave solution of the problem (1), (3) without the Lipschitz
condition and any growth conditions on f at infinity.
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Example 4. Consider the problem (see [16])

u(4) = um − 1

π10
(u′′)5 + sinπx, m ≥ 1

In this example f(x, u, y, v, z) = um − 1

π10
v5 + sinπx. In order to satisfy the

conditions of Theorem 4 for all m ≥ 1, we can take M = 1.1. Hence, we conclude
that the problem has a unique positive concave solution. It should be noted that
in [16] the authors only conclude that this example has at least one solution, with
no judgement about its uniqueness.

Example 5. Consider the problem (see [5, Example 4.6]){
u(4)(x) = π|u|

1
2 + π|u′|

1
2 + |u′′|

1
2 + |u′′′|

1
2 + 1, 0 < x < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0.

In this example f(x, u, y, v, z) = π|u|
1
2 + π|y|

1
2 + |v|

1
2 + |z|

1
2 + 1. It is easy to

verify that for M = 2.5 all the conditions of Theorem 4 are satisfied. Therefore,
by this theorem the problem has a positive concave solution. Note that in [5]
we could not conclude the existence of solutions, but by an iterative method we
found a positive, concave solution. Besides, the results of [16] do not apply to
this problem.

Example 6. Consider the problem (see [17, Remark 3.3]{
u(4)(x) = −3u+ u3 + 4u′′ + sinx, 0 < x < 1,
u(0) = u(1) = u′′(0) = u′′(1) = 0.

In [17] by the method of lower and upper solutions the authors showed that the
problem has a solution u satisfying −1 ≤ u(x) ≤ 1, x ∈ [0, 1]. Below, using the
theoretical results in the previous section we shall obtain better results.

Indeed, for this function we have f(x, u, y, v, z) = −3u + u3 + 4v + sinx. It
is easy to verify that for M = 2.5 all the conditions of Theorem 6 are satisfied.
Therefore, the problem has a unique solution satisfying the estimates

|u(x)| ≤ 0.0326, |u′(x)| ≤ 0.1042, |u′′(x)| ≤ 0.3125, |u′′′(x)| ≤ 1.25.

Clearly, these results are better than the result in [17].

3.3. The problem (1), (4)

Consider now the equation (1) with the boundary conditions (4).
In [12], by using the upper and lower solutions method, the authors established
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the existence and uniqueness of solution of this problem. In this work, the nonlin-
ear function f(x, u, y, v, z) was assumed to satisfy a Nagumo-type condition with
respect to α′′, β′′ (where α, β are the upper and lower solutions of the problem
such that α′′ ≤ β′′) and to be decreasing in x, y and strictly increasing in z.

For this problem we have (see [6])

G(x, t) =
1

6ρ


x(ac(1− t)(3t− x2) + ad(6t− x2 − 3t2)
+bc(1− t)(3 + 3t− 3x) + bd(6− 3x)), 0 ≤ x ≤ t ≤ 1,
ac(3xt− 3x2t+ x3t− t3) + ad(6xt− 3x2t− t3)
+bc(3x− 3x2 + x3 − t3) + bd(6x− 3x2), 0 ≤ t ≤ x ≤ 1,

Ĝ(x, t) =
1

ρ

{
(ct− c− d)(b+ ax), 0 ≤ x ≤ t ≤ 1,
(b+ at)(cx− c− d), 0 ≤ t ≤ x ≤ 1,

(28)

G1(x, t) = G′x(x, t) =
1

2ρ


ac(1− t)(t− x2) + ad(2t− x2 − t2)

+bc(1− t)(1 + t− 2x) + bd(2− 2x),
0 ≤ x ≤ t ≤ 1,

act(1− x)2 + ad(2t− 2tx) + bc(1− x)2

+bd(2− 2x), 0 ≤ t ≤ x ≤ 1,

(29)

Ĝ1(x, t) = Ĝ′x(x, t) =
1

ρ

{
a(ct− c− d), 0 ≤ x ≤ t ≤ 1,
c(b+ at), 0 ≤ t ≤ x ≤ 1,

(30)

It is easy to verify that G(x, t), G1(x, t) ≥ 0 and Ĝ(x, t) ≤ 0 for 0 ≤ x, t ≤ 1 and

M0 =
1

24
+

2ad+ bc+ 6bd

12ρ
, M1 =

1

12
+
ad+ bc+ 4bd

4ρ
, (31)

M2 =
1

2

(a(d+ c/2)

ρ

)2
+
b(d+ c/2)

ρ
, M3 =

1

ρ

(ac
2

+ max(ad, bc)
)
. (32)

Therefore, if a suitable M > 0 is selected, the above Theorems 3, 4 guarantee
the existence of a positive, increasing and concave solution of the problem (1),
(4) without the Lipschitz condition and any growth conditions on f at infinity.

Example 7. Consider the problem (Example 2 in [6]) u(4)(x) =
u2(x)

4
+
u′(x)

10
− u′′(x) +

sinu′′′(x)

10
+

x

10
+ 0.1, 0 < x < 1,

u(0) = 0, u′(1) = 0, 2u′′(0)− u′′′(0) = 0, u′′(1) + u′′′(1) = 0.

In this example a = 2, b = 1, c = 1, d = 1 and

f(x, u, y, v, z) = −u
2

4
+

y

10
− v +

sin z

10
+

x

10
+ 0.1.
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It is possible to verify that with M = 2 all the conditions of Theorem 7 are
satisfied. Therefore, the problem has a unique positive, increasing and concave
solution. The numerical solution found by an iterative method in [6] possesses
the above properties.

Remark 2. In [20], the existence of a solution of the problems for the equa-
tion (1) with one of the boundary conditions (5)-(12) were studied by Minhós,
Gyulov and Santos by using a a priori estimation, lower and upper solutions
method and degree theory. In that work, many conditions of the nonlinear func-
tion f(x, u, y, v, z) were required, including a growth condition v, z at infinity and
a Nagumo-type condition on z.

3.4. The problems (1), (5) and (1), (6)

The problem (1), (5) and the problem (1), (6) are particular cases of the
problem (1), (4) when b = c = 0 and a = d = 0.

3.5. The problems (1) with one of the boundary conditions (7)-(12)

Consider the more general problems:{
u(4)(x) = f(x, u(x), u′(x), u′′(x), u′′′(x)), 0 < x < 1,
u(1) = 0, u′(0) = 0, au′′(0)− bu′′′(0) = 0, cu′′(1) + du′′′(1) = 0,

(33){
u(4)(x) = f(x, u(x), u′(x), u′′(x), u′′′(x)), 0 < x < 1,
u(0) = 0, u′(0) = 0, au′′(0)− bu′′′(0) = 0, cu′′(1) + du′′′(1) = 0,

(34){
u(4)(x) = f(x, u(x), u′(x), u′′(x), u′′′(x)), 0 < x < 1,
u(1) = 0, u′(1) = 0, au′′(0)− bu′′′(0) = 0, cu′′(1) + du′′′(1) = 0,

(35)

where a, b, c, d ≥ 0, ρ := ad+ bc+ ac > 0.
We will apply the general methodology presented in the previous section to the
above problems. To find the Green functions of the above boundary value prob-
lems, we follow the method in [18]. As a result, for the problem (33) we obtain

G(x, t) =
1

6ρ


ac(1− t)(2t− t2 − x3) + ad(t3 − x3 + 3t− 3t2)
+bc(1− t)(2 + 2t− t2 − 3x2) + bd(3− 3x2), 0 ≤ x ≤ t ≤ 1,

(1− x)
(
ac(2t+ 2xt− 3t2 − x2t) + ad(3t+ 3xt− 3t2)

+bc(2 + 2x− 3t2 − x2) + bd(3 + 3x)
)
, 0 ≤ t ≤ x ≤ 1,

G1(x, t) = G′x(x, t) =
1

2ρ


acx2(t− 1)− adx2 + 2bcx(t− 1)− 2bdx,

0 ≤ x ≤ t ≤ 1,
ac(t2 + x2t− 2xt) + ad(t2 − 2xt)
+bc(x2 + t2 − 2x)− 2bdx, 0 ≤ t ≤ x ≤ 1.

(36)
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The functions Ĝ(x, t), Ĝ1(x, t) are defined by (28), (30), respectively,

M0 =
1

24
+
ad+ 2bc+ 6bd

12ρ
,

and M1,M2,M3 are given in (31), (32), respectively.

For the problem (34) we have

G(x, t) =
1

6ρ


x2
(
acx(t− 1)− adx+ 3bc(t− 1)− 3bd

)
, 0 ≤ x ≤ t ≤ 1,

ac(3xt2 + x3t− t3 − 3x2t) + ad(3xt2 − 3x2t− t3)
+bc(3xt2 − t3 − 3x2 + x3)− 3bdx2, 0 ≤ t ≤ x ≤ 1,

G1(x, t), Ĝ(x, t), Ĝ1(x, t) are defined by (36), (28), (30), respectively,

M0 =
1

24
+
ad+ 2bc+ 6bd

12ρ
,

and M1,M2,M3 are given by (31), (32), respectively.

For the problem (35),

G(x, t) =
1

6ρ



ac(t− 1)(t2 + t+ x3 − 3xt) + ad(t3 − 3xt2 − 3t+ 6xt− x3)
+bc(t− 1)(t2 + t+ 1 + 3x2 − 3x− 3xt)− 3bd(x− 1)2,

0 ≤ x ≤ t ≤ 1,

(x− 1)2
(
act(x− 1)− 3adt+ bc(x− 1)− 3bd

)
,

0 ≤ t ≤ x ≤ 1,

G1(x, t), Ĝ(x, t), Ĝ1(x, t) are defined in (29), (28), (30), respectively,

M0 =
1

24
+

2ad+ bc+ 6bd

12ρ

and M1,M2,M3 are defined in (31), (32), respectively.

It is easy to see that without the Lipschitz condition and any growth con-
ditions on f at infinity the above Theorem 1 can guarantee the existence of a
solution of the problem (33)-(35).

Note that the problems (1), (7); (1), (9); (1), (11) are particular cases of the
problems (33), (34), (35), respectively (when b = c = 0) and the problems (1),
(8); (1), (10); (1), (12) are also particular cases of the problems (33), (34), (35),
respectively (when a = d = 0). Therefore, following the method used for the
problems (33)-(35), we obtain also the existence of a solution of the problems (1)
with one of the boundary conditions (7)-(12).
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4. Concluding remarks

In this paper we have proposed an efficient unified method for investigating
the existence and properties of solutions such as uniqueness, positivity, monotony
and convexity for boundary value problems of fully fourth order equation. Many
of the considered problems were investigated by other authors using different
methods. It should be emphasized that those authors obtained the existence
results under many strong assumptions on the nonlinear term f(x, u, u′, u′′, u′′′)
including the Nagumo-type conditions and the growth at infinity. These assump-
tions, in general, are not easy to verify. In addition, the proof of the existence
of solutions is often very complicated. Differently from those authors, to study
the boundary value problems for fully fourth order equation we reduced them
to operator equations for the nonlinear terms, but not for the sought functions.
Due to this approach, we have established the existence, uniqueness, positivity,
monotony and convexity of solutions of the boundary value problems under some
easily verified conditions in bounded domains. The proof of the results, as seen
from Section 2, is simple. Many examples illustrated the effectiveness of the
proposed method.

It should be noted that in the considered problems the nonlinear terms are
local. Very recently, in [7], we also successfully applied the above method to a
boundary value problem for nonlinear nonlocal fourth order equation, namely,
the Kirchhoff type equation. The approach of reducing BVPs for nonlinear ODE
and PDE to operator equations for nonlinear terms is also used by ourselves to
treat a sixth order nonlinear BVP in [8] and nonlocal biharmonic equation in [9].

The proposed method can be applied to some other problems for ordinary
and partial differential equations of higher order, including even and odd orders.
This is the direction of our research in the future. Besides, we will apply this
method to the systems of coupled beam equations with various boundary condi-
tions including the case of simply supported ends considered in [19].

APPENDIX

In the space C[a, b], consider the operator y = Ax defined by the formula

y(t) =

∫ b

a
K(t, s)x(s)ds.

Theorem 8. (see [13, Sec. 31]) The above formula defines a compact operator
in the space C[a, b] if the function K(t, s) is bounded on the square a ≤ t ≤ b, a ≤
s ≤ b and all points of discontinuity of the function K(s, t) lie on a finite number
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of curves
s = ϕk(t), k = 1, 2...., n,

where ϕk(t) are continuous functions.
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