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Some Remarks on the Local Energy Decay for
Wave Equations in the Whole Space

Ryo Ikehata

Abstract. We first consider the Cauchy problem for wave equations in the whole space
Rn with n = 1, 2. For a special class of initial data, we derive uniform L2-bounds
of solutions. In the framework of compactly supported initial data, this L2-bound is
an essential ingredient to derive local energy decay estimates as shown in Morawetz
[11] in the exterior domain case. We do not assume such compactness of the support
of the initial data. Our results seem new in the low dimensional whole space cases
(n = 1, 2). Furthermore, we discuss local energy decay property for wave equations with
space dependent damping coefficient, which vanishes with some rate near spatial infinity.
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1. Introduction

We first consider the Cauchy problem for the wave equation in Rn (n = 1, 2)

utt(t, x)−∆u(t, x) = 0, (t, x) ∈ (0,∞)×Rn, (1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn, (2)

where (u0, u1) are initial data chosen as:

u0 ∈ H2(Rn), u1 ∈ H1(Rn), (3)

and

ut =
∂u

∂t
, utt =

∂2u

∂t2
, ∆ =

n∑
j=1

∂2

∂x2j
, x = (x1, · · · , xn).
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Note that solutions and/or functions considered in this paper are all real valued
except for several parts concerning the Fourier transform. Then, it is known that
the problem (1)-(2) has a unique strong solution

u ∈ C([0,∞);H2(Rn)) ∩ C1([0,∞);H1(Rn)) ∩ C2([0,∞);L2(Rn)) =: Cn2 .

The rather stronger assumption on the initial data (3) is used only to justify the
unique existence of solutions and the integration by parts in order to get the local
energy decay.

As is well known, the local energy decay estimates for the equation (1) are one
of the main questions in the scattering theory. About this problem, Morawetz’s
estimates in [11] are very famous as one of pioneering works, and she derived the
local energy decay estimate such that

ER(t) = O(t−1) (t→∞),

for each R > 0. The problem in [11] was considered in the exterior domain
Ω ⊂ Rn of a smooth bounded obstacle for n ≥ 3, and the Dirichlet null condi-
tion on the boundary was assumed. At that process of the proof, she assumed
the compactness of the support of initial data in order to use the finite speed
of propagation property (FSPP for short) of solutions. In this sense, her theory
fully depends on such FSPP. One of essential parts of proof in [11] is to get the
L2-bounds of solutions. To get such L2-bounds she prepared an auxiliary func-
tion as stated in Remark 4 below. We can also cite the paper [14] concerning
how to use the Morawetz method to obtain L2-bounds of solutions in the damped
wave equation case. So, a natural question arose in [4] and the references therein
whether the local energy decay estimates can be derived or not under the frame-
work of non-compact support condition on the initial data. In [3] it is shown that
L2-boundedness of solutions to the exterior mixed problem

utt(t, x)−∆u(t, x) = 0, (t, x) ∈ (0,∞)× Ω,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω

u(t, x) = 0, x ∈ ∂Ω

can be derived under the non-compact support conditions on the initial data. The
method used in [11] was modified in [3] by removing support compact conditions
assumed in [11]. Unfortunately, it was not sufficient only to get L2-bounds of
solutions in order to prove local energy decay under non-compact support con-
ditions on the initial data. We need additional estimates, which are completely
free from FSPP. After several papers published by Ikehata, by combining the
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additional weighted energy estimates and such L2-bounds, the local energy decay
estimates have been established in [4] in the final form. The weighted energy
estimates used in [4] is a modification of the method, which has its origin in
[15]. In [4], the so called Hardy-Sobolev inequality was effectively used to derive
L2-bounds, so one had to restrict the spatial dimension n ≥ 2. This is a result in
the exterior domain case. Therefore, if we apply the method of [4] to the whole
space case without FSPP, we have to restrict n ≥ 3, because of the unavailability
of Hardy-Sobolev inequality for n = 1, 2. We should emphasize that the previous
attempts to remove the support compact condition on the initial data have been
made in [13] and [18].

Our aim in this paper is to derive L2-bounds of solutions without FSPP to
problem (1)-(2) considered in the whole space Rn with n = 1, 2. The main
difficulty comes from a lack of an effective Hardy-Sobolev type inequality. For
this we prepare some inequality in Proposition 1 without proof, which plays a
role alternative to that of Hardy-Sobolev one.

Before stating our main results, we set

Xn
1,γ :=

{
f ∈ L1,γ(Rn)|

∫
Rn

f(x)dx = 0

}
,

where

Lp,γ(Rn) :=

{
f ∈ Lp(Rn)| ‖f‖p,γ :=

∫
Rn

(1 + |x|γ)|f(x)|pdx < +∞
}
.

Here are our main results.

Theorem 1. Let n = 2 and γ ∈ (0, 1]. If [u0, u1] ∈ H2(Rn)× (H1(Rn) ∩Xn
1,γ),

then the unique solution u ∈ Cn2 to problem (1)-(2) satisfies

‖u(t, ·)‖ ≤ C(‖u0‖+ ‖u1‖+ ‖u1‖1,γ),

with some constant C > 0.

Theorem 2. Let n = 1 and γ ∈ (
1

2
, 1]. If [u0, u1] ∈ H2(Rn)× (H1(Rn) ∩Xn

1,γ),

then the unique solution u ∈ Cn2 to problem (1)-(2) satisfies

‖u(t, ·)‖ ≤ C(‖u0‖+ ‖u1‖+ ‖u1‖1,γ),

with some constant C > 0.

Remark 1. We still assume rather a stronger assumption on the initial velocity

u1(x) such that

∫
Rn

u1(x)dx = 0. Even if the results above are derived under
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the special type of initial data, the obtained results seem to be new in the low
dimensional case. In the Navier-Stokes equation case, as stated in [17], this
vanishing moment condition is not so special. Anyway, it is still open to get the
same results as in Theorems 1 and 2 without such vanishing moment condition.

Remark 2. We can also get the similar L2-boundedness of the solutions to the
wave equations with variable damping coefficient such as

utt(t, x)−∆u(t, x) + a(x)ut(t, x) = 0, t > 0, x ∈ Rn.

For this case, we refer the reader to [5].

This paper is organized as follows. In Section 2 we shall prove Theorems 1
and 2 by relying on a modified method of [3], and in Section 3, we apply it to the
local energy decay property of the problem (1)-(2), and generalize the results to
another evolution equations with fractional Laplacian. Section 4 is dedicated to
the study of local energy decay for wave equations with non-effective damping.

Notation. Throughout this paper, ‖ · ‖q stands for the usual Lq(Rn)-norm.
For simplicity of notation, we use ‖ · ‖ instead of ‖ · ‖2. Furthermore, we denote
‖·‖H1 as the usual H1-norm. The local energy ER(t) on the area |x| ≤ R (R > 0)
corresponding to the solution u(t, x) of (1) is defined by

ER(t) :=
1

2

∫
|x|≤R

(|ut(t, x)|2 + |∇u(t, x)|2)dx.

where

|∇f(x)|2 :=
n∑
j=1

|∂f(x)

∂xj
|2.

On the other hand, we denote the Fourier transform of f(x) by

F(f)(ξ) := f̂(ξ) := (
1

2π
)
n
2

∫
Rn

e−ix·ξf(x)dx

as usual with i :=
√
−1, and the fractional Laplacian is defined by

(−∆)θf(x) := F−1(|ξ|2θf̂(ξ))(x),

where F−1 denotes the usual inverse Fourier transform of F . For later use, we
set additionally

H1
1 (Rn) :=

{
f ∈ H1(Rn)| |∇f | ∈ L2,1(Rn)

}
,

BC(Rn) := {f ∈ C(Rn) | sup
x∈Rn

|f(x)| < +∞}.
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2. Proof of Theorems 1 and 2

In the course of the proof, the following inequality concerning the Fourier
image of the Riesz potential plays a crucial role. This comes from [2, (ii) of
Proposition 2.1].

Proposition 1. Let [n, γ, θ] satisfy n ≥ 1, γ ∈ [0, 1] and θ ∈ [0, γ +
n

2
). Then,

for all f ∈ L2(Rn) ∩Xn
1,γ the following inequality is true:∫
Rn

|f̂(ξ)|2

|ξ|2θ
dξ ≤ C(‖f‖21,γ + ‖f‖2)

with some constant C = Cn,θ,γ > 0.

Proof of Theorems 1 and 2. Let us prove Theorems 1 and 2 at a stroke. By
applying the spatial Fourier transform to the both sides of the equation (1), the
problem (1)-(2) can be reduced to ODE with the parameter ξ:

ûtt(t, ξ) + |ξ|2û(t, ξ) = 0, (t, ξ) ∈ (0,∞)×Rn
ξ , (4)

û(0, ξ) = û0(ξ), ût(0, ξ) = û1(ξ), ξ ∈ Rn
ξ . (5)

For the solution û(t, ξ) to problem (4)-(5), one introduces an auxiliary function

ŵ(t, ξ) :=

∫ t

0
û(s, ξ)ds.

Then ŵ(t, ξ) satisfies

ŵtt(t, ξ) + |ξ|2ŵ(t, ξ) = û1(ξ), (t, ξ) ∈ (0,∞)×Rn
ξ , (6)

ŵ(0, ξ) = 0, ŵt(0, ξ) = û0(ξ), ξ ∈ Rn
ξ . (7)

Now, we introduce an alternative function v̂(t, ξ) defined on Rn
ξ \ {0} as follows:

v̂(t, ξ) = ŵ(t, ξ)− û1(ξ)

|ξ|2
, ξ ∈ Rn

ξ \ {0}. (8)

Note that v̂(t, ξ) includes in its definition the so called Riesz potential of the
measurable function u1(x). Then, the function v̂(t, ξ) satisfies

v̂tt(t, ξ) + |ξ|2v̂(t, ξ) = 0, t > 0, ξ ∈ Rn
ξ \ {0}, (9)

v̂(0, ξ) = − û1(ξ)
|ξ|2

, v̂t(0, ξ) = û0(ξ), ξ ∈ Rn
ξ \ {0}. (10)
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By multiplying both sided of (9) by v̂t(t, ξ), integrating it over {|ξ| ≥ δ} with
small δ > 0, and taking real parts of the resulted equality one can get

d

dt

∫
|ξ|≥δ

(|v̂t(t, ξ)|2 + |ξ|2|v̂(t, ξ)|2)dξ = 0,

so that by integrating it over [0, t] one has∫
|ξ|≥δ

(|v̂t(t, ξ)|2 + |ξ|2|v̂(t, ξ)|2)dξ

=

∫
|ξ|≥δ

(|û0(ξ)|2 +
|û1(ξ)|2

|ξ|2
)dξ,

where we have just used (10). Since v̂t(t, ξ) = ŵt(t, ξ) = û(t, ξ), one can arrive at∫
|ξ|≥δ
|û(t, ξ)|2 ≤

∫
Rn
ξ

|û0(ξ)|2dξ +

∫
|ξ|≥δ

|û1(ξ)|2

|ξ|2
dξ. (11)

By applying Proposition 1 (for n = 2, 1) to the final term on the right-hand side
of (11) one can get ∫

|ξ|≥δ

|û1(ξ)|2

|ξ|2
dξ ≤

∫
Rn
ξ

|û1(ξ)|2

|ξ|2
dξ

≤ C(‖u1‖21,γ + ‖u1‖2), (12)

so one has ∫
|ξ|≥δ
|û(t, ξ)|2dξ ≤ C(‖u0‖2 + ‖u1‖21,γ + ‖u1‖2). (13)

Since the right-hand side of (13) is independent from any δ > 0, by letting δ ↓ 0,
and by relying on the Plancherel theorem one has the desired estimate. J

Remark 3. It is known (see [17]) that if u1 ∈ Xn
1,1, then |û1(ξ)| ≤ K|ξ| with

some constant K > 0. Unfortunately, this property pointed out in [17] can not
be well applied to control the estimate (12). Proposition 1 is meaningful.

Remark 4. The introduction of (8) is an important idea to get L2-bound of
solutions. This is a modification of that of Morawetz [11], which introduced an
auxiliary function defined by

v(t, x) :=

∫ t

0
u(s, x)ds+ h(x),
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where the function h ∈ H2
loc(R

n) is a unique solution to the Poisson equation

∆h(x) = u1(x), x ∈ Rn,

h(x) = O(|x|−(n−2)) as |x| → ∞. (14)

The condition (14) can be justified (for example) when the support of the function
u1(x) is compact in Rn. We do not assume such compactness of the support of
initial data, and we can treat the low dimensional case n = 1, 2 as well as n ≥ 3,
which has already been done in [3].

3. Application to related problems

In this section, we first consider the Cauchy problem (1)-(2) again in order to
apply Theorems 1 and 2 to the local energy decay property. By modifying the
results of Ikehata-Nishihara [4], and applying Theorems 1 and 2, one can get the
following results in the low dimensional whole space case.

Theorem 3. Let n = 2 and γ ∈ (0, 1]. If [u0, u1] ∈ (H2(Rn) ∩ H1
1 (Rn)) ×

(H1(Rn) ∩ Xn
1,γ ∩ L2,1(Rn)), then for each R > 0 the local energy ER(t) to

problem (1)-(2) satisfies

ER(t) = O(t−1) (t→∞).

Theorem 4. Let n = 1 and γ ∈ (
1

2
, 1]. If [u0, u1] ∈ (H2(Rn) ∩ H1

1 (Rn)) ×
(H1(Rn) ∩ Xn

1,γ ∩ L2,1(Rn)), then for each R > 0 the local energy ER(t) to
problem (1)-(2) satisfies

ER(t) = O(t−1) (t→∞).

Remark 5. The results corresponding to Theorems 3 and 4 have already been
obtained in [4] in the exterior domain case Ω ⊂ Rn with n ≥ 2. In the exterior
domain case, the so called Hardy-Sobolev inequality played an important role in
[4]. So, n ≥ 2 is crucial. However, in the whole space case, such Hardy-Sobolev
inequality does not hold, unfortunately. Proposition 1 plays a role alternative to
that of the Hardy-Sobolev inequality in the low dimensional case n = 1, 2.

Remark 6. The novelty in Theorem 3 and 4 is that they do not assume any
compactness of the support of initial data, and the results can be derived in the
low dimensional whole space case.
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Outlines of the proofs of Theorems 3 and 4. We can use Theorems 1 and 2 in
place of [4, Lemma 2.2] in order to get the L2-boundedness of solutions. The other
parts of proofs are the same as in [4]. Note that the conditions u0 ∈ H1

1 (Rn) and
u1 ∈ L2,1(Rn) can be used to prove another important weighted energy estimate
[4, Lemma 2.3] such as∫

Rn

ψ(t, x)(|ut(t, x)|2 + |∇u(t, x)|2)dx ≤
∫
Rn

(1 + |x|)(|u1(x)|2 + |∇u0(x)|2)dx

with some weight function ψ(t, x) satisfying the so called Eikonal equation of (1)

ψt(t, x) < 0, |ψt(t, x)|2 − |∇ψ(t, x)|2 = 0 t > 0, x ∈ Rn. J

Next, we consider the Cauchy problem for the following generalized evolution
equations with the fractional Laplacian in Rn:

utt(t, x) + (−∆)θu(t, x) = 0, (t, x) ∈ (0,∞)×Rn, (15)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn, (16)

where θ ≥ 1. θ = 2 corresponds to the so called beam (plate) equation. It is
well known that for the initial data [u0, u1] ∈ H2θ(Rn) ×Hθ(Rn), the problem
(15)-(16) admits a unique solution

u ∈ C([0,∞);H2θ(Rn)) ∩ C1([0,∞);Hθ(Rn)) ∩ C2([0,∞);L2(Rn)).

Now, for simplicity, we choose γ = 1, and then by repeating the same pro-
cedure as in the proofs of Theorems 1 and 2 one can get the following a priori
estimate.

Theorem 5. Let θ ≥ 1 and n > 2(θ−1). If [u0, u1] ∈ H2θ(Rn)×(Hθ(Rn)∩Xn
1,1),

then for the solution u(t, x) to problem (15)-(16)

‖u(t, ·)‖ ≤ C(‖u0‖+ ‖u1‖+ ‖u1‖1,1),

with some constant C > 0.

Outline of proof of Theorem 5. If we use

v̂(t, ξ) = ŵ(t, ξ)− û1(ξ)

|ξ|2θ
, ξ ∈ Rn

ξ \ {0},

in place of (8), and apply the multiplier method as in the proof of Theorems 1
and 2, we can get∫

|ξ|≥δ
|û(t, ξ)|2 ≤

∫
Rn
ξ

|û0(ξ)|2dξ +

∫
|ξ|≥δ

|û1(ξ)|2

|ξ|2θ
dξ. (17)

By applying Proposition 1 to the last term of (17), one can get the desired
estimate. J
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Remark 7. If θ = 2 (plate equation case), then one can get the L2-bound for
n = 3, 4. This is one of the merits of Theorem 5, because people usually have to
restrict the spatial dimension to n ≥ 5 in the plate equation case (see [1], [7] and
the references therein).

4. Wave equation with decaying damping

We next consider the Cauchy problem for damped wave equation in Rn

utt(t, x)−∆u(t, x) + V (x)ut(t, x) = 0, (t, x) ∈ (0,∞)×Rn, (18)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn, (19)

where (u0, u1) are initial data chosen as (for simplicity):

u0 ∈ C∞0 (Rn), u1 ∈ C∞0 (Rn). (20)

Here, V ∈ BC(Rn) satisfies

(A− 1) :
V0

< x >α
≤ V (x),

where V0 > 0, α ≥ 0, and < x >:=
√

1 + |x|2. Under these conditions, the
problem (18)-(19) has a unique strong solution u ∈ Cn2 (see page 1).

It is well-known that the equation (18) has a diffusive aspect as t→∞ in the
case of α ∈ [0, 1], and in fact, the case for α ∈ [0, 1) was studied in [16] and [19],
and the case for α = 1 was investigated by [6]. While, in the case when α > 1,
and V (x) satisfies

V0
< x >α

≥ V (x) ≥ 0, (21)

it is well-known that the solution u(t, x) to problem (18)-(19) is asymptotically
free as t→∞, and the total energy Eu(t) defined by

Eu(t) :=
1

2

∫
Rn

(|ut(t, x)|2 + |∇u(t, x)|2)dx

does not go to 0 as t → ∞, in general. This pioneering work was done in [9] in
1976. This observation implies a hyperbolic structure of the equation (1) under
the condition (21). But, it seems still unknown that whether the local energy
decays or not (as t → ∞) under such a non-effective damping condition (21).
Note that there are overlap parts between (A-1) and (21). In connection with
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the above results, Mochizuki and Nakazawa [10] investigated decay/non-decay
properties of the energy, that is, if V (x) satisfies

V0(e+ |x|)−1{log(e+ |x|)}−1 ≤ V (x),

then the total energy decays with some rate, while in the case when V (x) satisfies

0 ≤ V (x) ≤ V0(e+ |x|)−1{log(e+ |x|)}−1−δ,

with δ > 0, the corresponding total energy does not decay, in general, and the
corresponding solution is asymptotically free as t → ∞. This implies that a
threshold on V (x) between decay and non-decay of the total energy seems to be
more delicate. However, until now one has known nothing about the decay of the
”local” energy in the latter case.

Now, our final aim is to obtain the following partial answer for the (non-
uniform) local energy decay estimate.

Theorem 6. Let n ≥ 2, α ∈ [0, n− 2], and assume (A-1). Then, for any R > 0

lim
t→∞

∫
|x|≤R

(|ut(t, x)|2 + |∇u(t, x)|2)dx = 0.

Remark 8. In the case where n = 2, 3, we have α ∈ [0, 1], so in this case the
results are not new, and are included in [16] and [6]. But, in case of n ≥ 4 we
can choose α > 1, so these cases are essentially new, and the local energy decay
property for such cases was not discussed in [9].

Remark 9. By density argument, one can choose the initial data from a more
general class such as [u0, u1] ∈ H2(Rn) × H1(Rn). This argument is standard
because the equation (18) is just linear.

Now, let us prove Theorem 6. We first prove the integrability of the local
energy.

Lemma 1. Under the same assumptions as in Theorem 6, for any R > 0, there
exist a constant C, which depends on R > 0, and α such that∫ ∞

0

∫
|x|≤R

(|ut(t, x)|2 + |∇u(t, x)|2)dxdt ≤ C(‖u0‖2H1 + ‖u1‖2).

Proof. We use the multiplier technique borrowed from [6]. In the course of
computation below, one can assume u(t, x) is smooth enough in x and t, and
vanishes for large |x| for each t. This allows to use the integration by parts.
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Now, we define an auxiliary function

W (x) :=
V0
2
< x >−α .

Then, it is easy to see that

−∆W (x) =
V0
2
< x >−(α+2) αn+ α(n− α− 2)|x|2

1 + |x|2
> 0 (x ∈ Rn). (22)

Next, let us multiply both sides of (18) by 2ut+W (x)u. Then, it follows that

d

dt

∫
Rn

(
|ut(t, x)|2 + |∇u(t, x)|2 + ut(t, x)u(t, x)W (x)

)
)dx−

∫
Rn

|ut(t, x)|2W (x)dx

+2

∫
Rn

V (x)|ut(t, x)|2dx+

∫
Rn

(∇W (x) · ∇u(t, x))u(t, x)) dx

+

∫
Rn

W (x)|∇u(t, x)|2dx+
1

2

d

dt

∫
Rn

V (x)W (x)|u(t, x)|2dx = 0,

where one has just used the fact that

∆u(t, x)W (x)u(t, x)

= ∇ · (W (x)u(t, x)∇u(t, x))− (∇W (x) · ∇u(t, x))u(t, x)−W (x)|∇u(t, x)|2.

Since

(∇W (x) · ∇u(t, x))u(t, x) =
1

2
∇ · (|u(t, x)|2∇W (x))− 1

2
|u(t, x)|2∆W (x),

one has the equality

d

dt
G(t) +

∫
Rn

{
(2V (x)−W (x))|ut(t, x)|2 +W (x)|∇u(t, x)|2+

+
1

2
(−∆W (x))|u(t, x)|2

}
dx = 0, (23)

where we set

G(t) :=

∫
Rn

(
|ut(t, x)|2 + |∇u(t, x)|2+

+ut(t, x)u(t, x)W (x) +
1

2
V (x)W (x)|u(t, x)|2dx

)
dx.
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Integrating both sides of (23) over [0, t], one has

G(0)−G(t)

=

∫ t

0

∫
Rn

{
(2V (x)−W (x))|us(s, x)|2 +W (x)|∇u(s, x)|2+

+
1

2
(−∆W (x))|u(s, x)|2

}
dxds. (24)

Since

2V (x)−W (x) ≥ 3V0
2

< x >−α,

by using (22) one can get

G(t) +
V0
2

∫ t

0

∫
Rn

< x >−α (|us(s, x)|2 + |∇u(s, x)|2)dxds ≤ G(0). (25)

On the other hand, in order to check G(t) > 0, for any ε > 0 we use the following
inequality

|W (x)ut(t, x)u(t, x)| ≤ ε

2
|ut(t, x)|2 +

1

2ε
W (x)2|u(t, x)|2

≤ ε

2
|ut(t, x)|2 +

1

2ε
V (x)W (x)|u(t, x)|2. (26)

By choosing ε := 3/2 in (26) it follows that

G(t) ≥
∫
Rn

(
1

4
|ut(t, x)|2 + |∇u(t, x)|2 +

1

6
V (x)W (x)|u(t, x)|2

)
dx > 0,

which implies the positivity of the function G(t). Thus, from (25) one has

V0
2

∫ t

0

∫
Rn

< x >−α (|us(s, x)|2 + |∇u(s, x)|2)dxds ≤ G(0).

Here, by assumption on the initial data we can check

G(0) =

∫
Rn

(|u1(x)|2 + |∇u0(x)|2 +W (x)u0(x)u1(x) +
1

2
V (x)W (x)|u0(x)|2)dx

≤
∫
Rn

(|u1(x)|2 + |∇u0(x)|2 + V0|u0(x)u1(x)|+ V 2
0 |u0(x)|2)dx < +∞.

This implies the desired estimate∫ t

0

∫
Rn

< x >−α (|us(s, x)|2 + |∇u(s, x)|2)dxds ≤ C(‖u0‖2H1 + ‖u1‖2) (27)

with some constant C > 0. J
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Remark 10. The essential part of the statement of Lemma 1 is in the estimate

(27). However, the boundedness of the part of (27) defined by

∫ t

0

∫
Rn

< x >−α

|us(s, x)|2dxds is trivial because of (A-1) and the energy identity for (18)-(19):

Eu(t) +

∫ t

0

∫
Rn

V (x)|us(s, x)|2dxds = Eu(0).

Now, since the function v(t, x) := ut(t, x) satisfies

vtt(t, x)−∆v(t, x) + V (x)vt(t, x) = 0, (t, x) ∈ (0,∞)×Rn, (28)

v(0, x) = u1(x), vt(0, x) = ∆u0(x)− u1(x), x ∈ Rn, (29)

by applying Lemma 1 to problem (28)-(29) one can get the following result, which
means the local decay of the second local energy of the equation (18). Note that
it may be sufficient only to assume [u0, u1] ∈ H2(Rn)×H1(Rn) to get the result
below.

Lemma 2. Under the same assumptions as in Theorem 6, for any R > 0, there
exist a constant C, which depends on R > 0, and α such that∫ ∞

0

∫
|x|≤R

(|utt(t, x)|2 + |∇ut(t, x)|2)dxdt ≤ C(‖u0‖2H2 + ‖u1‖2H1).

Using Lemmas 1 and 2, we now prove Theorem 6.
Proof of Theorem 6. We borrow the idea from [12] (see also [8, section 4]).

Let 0 < t1 < t. Then, first of all, one has

(t− t1)ER(t) =

∫ t

t1

d

ds
(s− t1ER(s))ds

=

∫ t

t1

ER(s)ds+

∫ t

t1

(s− t1)
∫
|x|≤R

(us(s, x)uss(s, x) +∇u(s, x) · ∇us(s, x)) dxds.

For fixed t > 1, by choosing t1 := t− 1 one has

ER(t) ≤
∫ t

t−1
ER(s)ds+

∫ t

t−1

∫
|x|≤R

(|us(s, x)||uss(s, x)|+

+|∇u(s, x)||∇us(s, x)|) dxds

≤
∫ t

t−1
ER(s)ds+

1

2

∫ t

t−1

∫
|x|≤R

(
|us(s, x)|2 + |uss(s, x)|2 + |∇u(s, x)|2+
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+|∇us(s, x)|2
)
dxds

≤ 2

∫ ∞
t−1

ER(s)ds+
1

2

∫ ∞
t−1

∫
|x|≤R

(
|uss(s, x)|2 + |∇us(s, x)|2

)
dxds,

where one has just used the fact that s− (t−1) ≤ 1 for s ∈ [t−1, t]. By Lemmas
1 and 2, one can get

lim
t→∞

∫ ∞
t−1

ER(s)ds = 0,

and

lim
t→∞

∫ ∞
t−1

∫
|x|≤R

(
|uss(s, x)|2 + |∇us(s, x)|2

)
dxds = 0

for each R > 0. This completes the proof of Theorem 6. J

Example 1. In the case of n = 4 and V (x) := V0 < x >−2, due to the result
of [9], the corresponding Cauchy problem (18)-(19) has a non-diffusive structure,
and in general, one has the non-decay nature of the total energy: lim

t→∞
Eu(t) > 0

(in spite of the monotone decreasing property of the mapping t 7→ Eu(t)). From
Theorem 6 we can additionally see that the local energy necessarily decays. This
observation seems new.
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