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Invertibility of Multipliers in Hilbert C∗-modules

M. Rashidi-Kouchi, A. Rahimi∗

Abstract. Multipliers are operators which have important applications for signal pro-
cessing and acoustics. In this paper, we investigate invertibility of multipliers and Riesz
multipliers in Hilbert C∗-modules. We show that unlike Riesz multipliers in Hilbert
spaces, Riesz multipliers in Hilbert C∗-modules may not be invertible. In addition, using
the modular Riesz bases and uniqueness of dual, we prove that the Riesz multipliers of
those Riesz bases in Hilbert C∗-modules are invertible. Also, we obtain some necessary
conditions for invertibility of multipliers in Hilbert C∗-modules. Furthermore, we show
that the inverse of any invertible multiplier operator in Hilbert C∗-module is a multiplier
operator.
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1. Introduction

Frames for Hilbert spaces were first introduced in 1952 by Duffin and Schaeffer
[11] for study of nonharmonic Fourier series. They were reintroduced and further
developed in 1986 by Daubechies, Grossmann and Meyer [10], and popularized
from then on. For more complete treatment of frame theory we recommend the
excellent book of Christensen, see [9].

Hilbert C∗-modules form a wide category between Hilbert spaces and Banach
spaces. Their structure was first used by Kaplansky [18] in 1952. They are an
often used tool in operator theory and in operator algebra theory. They serve as
a major class of examples in operator C∗-module theory.

The notions of frames in Hilbert C∗-modules were introduced and investigated
in [12]. Frank and Larson [12, 13] defined the standard frames in Hilbert C∗-
modules in 1998 and got a series of results for standard frames in finitely or
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countably generated Hilbert C∗-modules over unital C∗-algebras. Extending the
results to this more general framework is not a routine generalization, as there
are essential differences between Hilbert C∗-modules and Hilbert spaces. For
example, any closed subspace in a Hilbert space has an orthogonal complement,
but this fails in Hilbert C∗-module. Also there is no explicit analogue of the
Riesz representation theorem of continuous functionals in Hilbert C∗-modules.
We refer the readers to [17] and [21] for more details on Hilbert C∗-modules and
to [13] and [27, 28, 29] for a discussion on basic properties of frame in Hilbert
C∗-modules and their generalizations.

Multipliers are operators which are defined based on two sequences with el-
ements from a Hilbert space and one scalar sequence. Several basic properties
of these operators were investigated in [3]. Multipliers are not only interesting
from a theoretical point of view, they are also used in applications, in particular
in the fields of audio and acoustics. In signal processing applications like wireless
communication or medical imaging, “time-invariant filters” , i.e. convolution op-
erators are used very often. Such operators are called “Fourier multipliers” [8].
In these applications, they are used for Gabor frames under the name “Gabor
filters” [22].

Recently, the concept of multipliers has been extended and introduced for con-
tinuous frames [4], fusion frames [2], p-Bessel sequences [24], generalized frames
[23], controlled frames [25], Banach frames [6, 7], Hilbert C∗-modules [20] and
etc.

From a theoretical point of view, it is very natural to investigate the invert-
ibility of multiplier and to represent the inverse of a Bessel, frame and Riesz
multiplier. In the series of papers [30, 31, 32] and [5], P. Balazs and D.T. Stoeva
have given a full and detailed characterization on the invertibility of multipliers
based on analysis, synthesis and symbol sequences.

In this paper, we investigate invertibility of multipliers and Riesz multipliers
in Hilbert C∗-modules. In Hilbert C∗-modules, a Riesz multiplier may not be
invertible unlike Riesz multipliers in Hilbert spaces. By using modular Riesz bases
and uniqueness of dual, we prove that the Riesz multipliers of those Riesz bases in
Hilbert C∗-modules are invertible. Also, we obtain some necessary conditions for
invertibility of multipliers in Hilbert C∗-modules and we show that the inverse of
any invertible multiplier operator in Hilbert C∗-module is a multiplier operator.

The paper is organized as follows. In Section 2, we review the concepts Hilbert
C∗-modules, frames and Riesz bases in Hilbert C∗-modules. Also the analysis,
synthesis, frame operators and dual frames be reviewed. Section 3 deals with
invertibility of Riesz multipliers in Hilbert C∗-modules. In Section 4, we focus on
invertible operators and obtain necessary condition for invertibility of multipliers
in Hilbert C∗-modules.
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2. Frames, Riesz bases and multipliers in Hilbert C∗-modules

In this section, we collect the basic notations and some preliminary results on
frames in Hilbert C∗-modules.

Hilbert C∗-modules form a wide category between Hilbert spaces and Banach
spaces. Their structure was first used by Kaplansky [18] in 1952. They are an
often used tool in operator theory and in operator algebra theory. They serve as
a major class of examples in operator C∗-module theory.

Let A be a C∗-algebra with involution ∗. An inner product A-module (or pre
Hilbert A-module) is a complex linear space H which is a left A-module with an
inner product map 〈·, ·〉 : H×H → A which satisfies the following properties:

1. 〈αf + βg, h〉 = α〈f, h〉+ β〈g, h〉 for all f, g, h ∈ H and α, β ∈ C;

2. 〈af, g〉 = a〈f, g〉 for all f, g ∈ H and a ∈ A;

3. 〈f, g〉 = 〈g, f〉∗ for all f, g ∈ H;

4. 〈f, f〉 ≥ 0 for all f ∈ H and 〈f, f〉 = 0 iff f = 0.

For f ∈ H, we define a norm on H by ‖f‖H = ‖〈f, f〉‖1/2A . If H is complete
with this norm, it is called a (left) Hilbert C∗-module over A or a (left) Hilbert
A-module.

An element a of a C∗-algebra A is positive if a∗ = a and its spectrum is a
subset of positive real numbers. In this case, we write a ≥ 0. By condition (4)
in the definition 〈f, f〉 ≥ 0 for every f ∈ H, hence we define |f | = 〈f, f〉1/2. We
call Z(A) = {a ∈ A : ab = ba,∀b ∈ A} the center of A. If a ∈ Z(A), then
a∗ ∈ Z(A), and if a is an invertible element of Z(A), then a−1 ∈ Z(A), also if a

is a positive element of Z(A), then a
1
2 ∈ Z(A). Let HomA(M,N) denote the set

of all A-linear operators from M to N .
We are focusing on finitely and countably generated Hilbert C∗-modules over

unital C∗-algebra A. A Hilbert A-module H is finitely generated if there exists
a finite set {x1, x2, ..., xn} ⊆ H such that every x ∈ H can be expressed as
x =

∑n
i=1 aixi, ai ∈ A. A Hilbert A-module H is countably generated if there

exits a countable set of generators.
In Hilbert C∗-module, in contrast with Hilbert space, every bounded operator

is not adjointable. We denote the set of all adjointable maps from H to K by
End∗A(H,K). Let

`2(A) =

{aj} ⊆ A :
∑
j∈J

a∗jaj converges in‖.‖
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with inner product 〈{aj}, {bj}〉 =
∑

j∈J a
∗
jbj , {aj}, {bj} ∈ `2(A) and ‖{aj}‖ :=√

‖
∑
a∗jaj‖. It was shown that [33], `2(A) is a Hilbert A-module.

The notion of (standard) frames in Hilbert C∗-modules is first defined by
Frank and Larson [13]. Basic properties of frames in Hilbert C∗-modules are
discussed in [14, 15].

If H is a Hilbert C∗-module, and J a set which is finite or countable, a system
{fj}j∈J ⊆ H is called a frame for H if there exist constants C,D > 0 such that

C〈f, f〉 ≤
∑
j∈J
〈f, fj〉〈fj , f〉 ≤ D〈f, f〉 (1)

for all f ∈ H. The constants C and D are called the frame bounds. If C = D, it
is called a tight frame and in the case C = D = 1 it is called a Parseval frame.
It is called a Bessel sequence if the upper inequality in (1) holds.

Let {fj : j ∈ J} be a frame in Hilbert A-module H over a unital C∗-algebra
A and {gj : j ∈ J} be a sequence of H. Then {gj}j∈J is called a dual sequence
of {fj}j∈J if

f =
∑
j∈J
〈f, gj〉fj

for all f ∈ H. The sequences {fj}j∈J and {gj}j∈J are called a dual frame pair
when {gj}j∈J is also a frame..

For the frame {fj : j ∈ J} in Hilbert A-module H over a unital C∗-algebra
A, the operator S defined by

Sf =
∑
j∈J
〈f, fj〉fj , f ∈ H

is called the frame operator. It is proved that [13], S is invertible, positive,
adjointable and self-adjoint.

Let f̃j = S−1fj . Then

f =
∑
j∈J
〈f, f̃j〉fj =

∑
j∈J
〈f, fj〉f̃j ,

for any f ∈ H. The sequence {f̃j : j ∈ J} is also a frame for H which is called
the canonical dual frame of {fj : j ∈ J}.

Like ordinary frames in Hilbert spaces, the notions of analysis and synthesis
operators can be defined as follows:

Let {fj}j∈J be a frame in Hilbert A-module H over a unital C∗-algebra A.
Then the related analysis operator U : H → `2(A) is defined by

Uf = {〈f, fj〉 : j ∈ J},
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for all f ∈ H. We define the synthesis operator T : `2(A)→ H by

T ({aj}) =
∑
j∈J

ajfj ,

for all {aj}j∈J ∈ `2(A).

Next theorem is a corollary from Theorem 3.4 in [1] on characterization of
dual frames in Hilbert C∗-modules.

Theorem 1. Let Φ = (φj) be a frame in Hilbert C∗-module H over a unital

C∗-algebra A with the canonical dual frame Φ̃ = (φ̃j). Then any dual frames of
Φ = (φj) are the sequences(

φ̃j + hj −
∞∑
n=1

〈φ̃j , φn〉hn

)∞
j=1

,

where (hj)
∞
j=1 is a Bessel sequence in Hilbert A-module H.

In Hilbert spaces every Riesz basis has a unique dual which is also a Riesz
basis. But in Hilbert C∗-modules, a Riesz basis may have many dual modular
frames and it may even admit two different dual modular frames both of which
are Riesz bases.

Definition 1. [13] A frame {fj}j∈J in Hilbert A-module H over a unital C∗-
algebra A is called a Riesz basis if it satisfies:

1. fj 6= 0 for any j ∈ J ;

2. if an A-linear combination
∑

j∈K ajfj is equal to zero, then every summand
ajfj is equal to zero, where {aj}j∈K ⊆ A and K ⊆ J .

A. Khosravi and B. Khosravi introduced modular Riesz bases in Hilbert C∗-
modules [19], which share many properties with Riesz bases in Hilbert spaces.

Definition 2. Let A be a unital C∗-algebra with identity 1A. A sequence {fj}j∈J
in Hilbert A-module H is called a modular Riesz basis for H if there exists an
invertible operator T ∈ End∗A(`2(A),H) such that Tej = fj for each j ∈ J , where
{ej}j∈J is the standard orthonormal basis of `2(A), i.e. ej = (δij1A)j∈J .

In Hilbert C∗-module setting, every modular Riesz basis is a Riesz basis, but
every Riesz basis is not a modular Riesz basis [26].
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3. Invertibility of Riesz multipliers in Hilbert C∗-modules

In this section, we study the concept of multiplier for Riesz bases and modular
Riesz bases in Hilbert C∗-modules and we show some of its properties.

Definition 3. Let A be a unital C∗-algebra, J be a finite or countable index set
and {fj}j∈J and {gj}j∈J be Hilbert C∗-modules Bessel sequences for H. For m =
{mj}j∈J ∈ `∞(A), where mj ∈ Z(A), for each j ∈ J , the operator Mm,{fj},{gj} :
H → H defined by

Mm,{fj},{gj}f :=
∑
j∈J

mj〈f, fj〉gj , f ∈ H

is called the multiplier operator of {fj}j∈J and {gj}j∈J . The sequence m = {mj}
is called the symbol of Mm,{fj},{gj}.

The symbol of m has an important role in the study of multiplier operators.
In this paper m is always a sequence m = {mj}j∈J ∈ `∞(A) with mj ∈ Z(A), for
each j ∈ J .

One of the major questions in the study of multiplier is the invertibility of
multiplier operator. In the sequel, we list results of invertibility of Riesz multi-
pliers in Hilbert spaces.

Lemma 1. [3] Let (ψj) ⊂ H1 be a Bessel sequence with no zero elements, and
(φj) ⊂ H2 a Riesz sequence. Then the mapping m 7→ Mm,φj ,ψj

is injective from
`∞(A) into End∗A(H1,H2).

Proposition 1. [3] Let (ψj) be a Riesz basis with bounds C,D and (φj) be a
frame with bounds C

′
, D
′
. Then

√
CC ′‖m‖∞ ≤ ‖Mm,(φj),(ψj)‖Op ≤

√
DD′‖m‖∞.

The following theorem gives sufficient and necessary conditions for invertibil-
ity of multipliers for Riesz bases.

Theorem 2. [30] Let Φ be a Riesz basis for Hilbert H. Then the following hold.

1. If Ψ is a Riesz basis for H, then Mm,Φ,Ψ (resp. Mm,Ψ,Φ ) is invertible on
H if and only if m is semi-normalized, i.e. 0 < inf |mi| ≤ sup inf |mi| <∞.

2. If m is semi-normalized, then Mm,Φ,Ψ (resp. Mm,Ψ,Φ ) is invertible on H
if and only if Ψ is a Riesz basis for H.

But the above results don’t hold in Hilbert C∗-module. We show this by the
following example.
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Example 1. Let A = M2×2(C) be the C∗-algebra of all 2× 2 complex matrices.
Let H = A and for any A,B ∈ H define 〈A,B〉 = AB∗. Then H is a Hilbert
A-module. Let Ei,j be the matrix with 1 in the (i, j)’th entry and 0 elsewhere,
where 1 ≤ i, j ≤ 2. Then Φ = {E1,1, E2,2} is a Riesz basis of H. It is easy to
see Ψ = {E2,1, E1,2} is a tight frame and therefore a Bessel sequence in H. Let
M ∈ H be arbitrary. Then for any m = {m1,m2} ⊂ C we have

Mm,Φ,Ψ = m1〈M,E2,1〉E1,1 +m2〈M,E1,2〉E2,2 = 0.

Then Mm,Φ,Ψ is not invertible.

In the following, we characterize modular Riesz bases and obtain sufficient
conditions for invertibility of Riesz multipliers in Hilbert C∗-modules.

Theorem 3. Let Φ = {φj}j∈J be a Riesz basis in Hilbert C∗-module H. Then
the following statements are equivalent:

1. Φ = {φj}j∈J is a modular Riesz basis;

2. Φ = {φj}j∈J has a unique dual frame which is a modular Riesz basis;

3. the synthesis operator TΦ is invertible;

4. for the analysis operator UΦ, Rang(U) = `2(A);

5. if
∑

j∈J ajφj = 0 for some sequence {aj}j∈J ∈ `2(A), then aj = 0 for each
j ∈ J .

In case the equivalent conditions are satisfied, Riesz multiplier Mm,Φ,Φ is invert-
ible, where the symbol m = (mj) is invertible and |mj | has a lower positive bound
for each j ∈ J .

Proof. (1) ⇒ (2) By definition of modular Riesz basis (Definition 2) there
exists an invertible operator T ∈ End∗A(`2(A),H) such that Tej = fj for each
j ∈ J . For every f ∈ H, T−1(f) ∈ `2(A) , so

T−1(f) =
∑
j∈J
〈T−1f, ej〉ej =

∑
j∈J
〈f, (T−1)∗ej〉ej .

Therefore

f = T (T−1f) = U(
∑
j∈J
〈f, (T−1)∗ej〉ej)

=
∑
j∈J
〈f, (T−1)∗ej〉T (ej) =

∑
j∈J
〈f, (T−1)∗ej〉fj .
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Now (T−1)∗ : `2(A) → H is adjointable and invertible. The sequence {gj =
(T−1)∗(ej)}j∈J is a modular Riesz basis for H and for every f ∈ H, so we have

f =
∑
j∈J
〈f, gj〉fj .

Therefore {gj}j∈J is a dual frame of {fj}j∈J .
Let {hj}j∈J be any dual frame of {fj}j∈J . Then f =

∑
j∈J〈f, hj〉fj for all

f ∈ H. Hence ∑
j∈J
〈f, gj〉fj −

∑
j∈J
〈f, hj〉fj = 0,

i.e.
∑

j∈J〈f, gj − hj〉fj = 0 and so, gj = hj for all j ∈ J .

(2)⇒ (3) Since Φ is a Riesz basis, its synthesis operator TΦ is well defined and
surjective [16]. It is enough to show that the synthesis operator TΦ is injective
or equivalently, KerTΦ = {0}. Assume on the contrary that KerTΦ 6= {0}. Let
PΦ be the orthogonal projection from `2(A) onto KerTΦ and U an adjointable
operator from KerTΦ to H. Now, let {φ̃j}j∈J be the canonical dual of {φ̃j}j∈J
and set πj = φ̃j + UPΦej .

For any f ∈ H,∑
j∈J
〈f, UPΦej〉φj = TΦ

∑
j∈J
〈PΦU

∗f, ej〉ej = TΦPΦU
∗f = 0.

This yields f =
∑

j∈J〈f, πj〉φj for all f ∈ H. Therefore {φj}j∈J is a dual frame

of {φj}j∈J and is different from {φ̃j}j∈J , which contradicts the uniqueness of the
dual frame of {φj}j∈J .

(3)⇔ (4) By Theorem 15.3.8 in [33], we have

`2(A) = RangUΦ ⊕KerTΦ.

(3)⇔ (5) It is obvious.
(3)⇒ (1) As a corollary of Theorem 4.3 in [19].
In case the equivalent conditions are satisfied, with regard to Mm,Φ,Φ =

TΦDmUΦ U−1
Φ = T

Φ̃
and T−1

Φ = U
Φ̃

, therefore

M−1
m,Φ,Φ = U−1

Φ DmT
−1
Φ = T

Φ̃
Dm−1UΦ̃

= M
m−1,Φ̃,Φ̃

.

J

Remark 1. Suppose Φ and Ψ are Riesz bases in Hilbert C∗-module H. In case
the equivalent conditions in Theorem 3 are satisfied for Φ and Ψ, then by the
proof of the previous theorem Riesz multiplier Mm,Φ,Ψ is invertible and M−1

m,Φ,Ψ =
M
m−1,Ψ̃,Φ̃

.
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4. Necessary conditions for invertibility of multipliers in Hilbert
C∗-module

In this section, we obtain some necessary conditions for invertibility of multi-
pliers in Hilbert C∗-modules and show that the inverse of any invertible multiplier
operator in Hilbert C∗-module is a multiplier operator.

In the next theorem, we show that in the Hilbert A-module H for a given
frame, the union of all coefficients of its dual frame is dense in `2(A). Also a frame
is uniquely determined by the set of its dual frames. This is a generalization of
Theorem 1.2 in [5].

Theorem 4. Let Φ be a frame for Hilbert A-module H. Then the following
statements hold.

1. The closure of the union of all sets Rang(UΦd), where Φd runs through all
dual frames of Φ is `2(A), i.e.⋃

Φd

Rang(UΦd) = `2(A).

2. Let Ψ be a frame for Hilbert A-module H. If every dual frame Φd of Φ is a
dual frame of Ψ, then Ψ = Φ.

Proof.

1. Let the sequence a = (aj) ∈ `2(A) and a ⊥ Rang(UΦd) for every dual frame
Φd of Φ. Then

TΦda =
∑

ajφ
d
j = 0, (2)

for every dual frame Φd of Φ. Then by Theorem 1, the dual frames of Φ
are precisely the sequences(

φ̃j + hj −
∞∑
n=1

〈φ̃j , φn〉hn

)∞
j=1

,

where (hj)
∞
j=1 is a Bessel sequence in Hilbert A-module H. Therefore

∞∑
j=1

aj(φ̃j + hj −
∞∑
n=1

〈φ̃j , φn〉hn) = 0
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for every Bessel sequence (hj)
∞
j=1 in Hilbert A-module H. By (2), we have

Tφ̃a = 0, which implies that

∞∑
j=1

aj(hj −
∞∑
n=1

〈φ̃j , φn〉hn) = 0 (3)

for every Bessel sequence (hj)
∞
j=1 in Hilbert A-module H. Using (3) with

the Bessel sequence (hj)
∞
j=1 = (e1, 0, 0, ...), we obtain

a1e1 −
∞∑
j=1

aj〈φ̃j , φ1〉e1 = 0.

By (2)
∑∞

j=1 ajφ̃j = 0, it follows that a1 = 0. Similarly, using (3) for
the Bessel sequence (hn)∞n=1 = (0, ..., 0, en, 0, ...), where en is at the n’th
position, we obtain an = 0 for every n ≥ 2. Therefore, a = (0), which
completes the proof. J

2. Assume that all dual frames Φd of Φ are dual frame of Ψ. Then TΦUΦd =
IdH = TΨUΦd , which by (1) implies that TΦ = TΨ and hence Φ = Ψ.

Next theorem says that in Hilbert C∗-module any invertible frame multiplier
with an inverse symbol can always be represented as a multiplier with the inverse
symbol and dual frames of the given ones, where one of these dual frames is
uniquely determined and the other one can be arbitrarily chosen. This is a
generalization of Theorem 1.1 of [5].

Theorem 5. Let Φ and Ψ be frames for Hilbert A-module H, the symbol m =
(mj) ∈ `∞(Z(A)) be invertible and |mj | have a lower positive bound for each
j ∈ J . Assume that Mm,Φ,Ψ is invertible. Then there exists a unique dual frame
Φ+(Ψ+) of Φ(Ψ) such that for any dual frame Ψd(Φd) of Ψ(Φ)

M−1
m,Φ,Ψ = Mm−1,Ψd,Φ+ and (M−1

m,Φ,Ψ = Mm−1,Ψ+,Φd).

Proof. Denote M := Mm,Φ,Ψ and Ψ+ = (M−1(mjφj))
∞
j=1. First observe that

Ψ+ is a dual frame of Ψ. Therefore, M−1TΦδj = TΨ+Dm−1δj , j ∈ N. Now the
boundedness of this operator implies that M−1TΦ = TΨ+Dm−1 on `2(A). Using
any dual frame Φd of Φ we get M−1 = TΨ+Dm−1UΦd on Hilbert A-module H.
Similarly, it follows that Φ+ = ((M−1)∗(m∗jψj))

∞
j=1 is a dual frame of Φ and hence

(M−1)∗Tψ = TΦ+Dm∗−1 on `2(A). Therefore

M−1 = TΨdDm−1UΨ+ = Mm−1,Ψd,Φ+ .

J
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Corollary 1. With the assumptions of Theorem 5, we have the additional prop-
erties:

1. If F = (fn) is a Bessel sequence in Hilbert C∗-module H such that M−1
m,Φ,Ψ =

Mm−1,F,Φ+ (resp. M−1
m,Φ,Ψ = Mm−1,Ψ+,F ), then F must be a dual frame of

Ψ (resp.Φ).

2. Ψ+ is the only Bessel sequence in Hilbert C∗-module H which satisfies
M−1
m,Φ,Ψ = Mm−1,Ψ+,Φd for all dual frames Φd of Φ.

3. Φ+ is the only Bessel sequence in Hilbert C∗-module H which satisfies
M−1
m,Φ,Ψ = Mm−1,Ψd,Φ+ for all dual frames Ψd of Ψ.

Proof.

1. Let F = (fn) be a Bessel sequence in Hilbert C∗-module H which satisfies
M−1
m,Φ,Ψ = Mm−1,F,Φ+ . Regarding the proof of Theorem 5, it follows that

TΨUF = M∗TΦ+Dm∗−1UF = M∗(M−1)∗ = IdH,

which implies that F is a dual frame of Ψ.
In a similar way, every Bessel sequence F in Hilbert C∗-module H which
satisfies M−1

m,Φ,Ψ = Mm−1,Ψ+,F must be a dual frame of Φ.

2. Let F = (fn) be a Bessel sequence in Hilbert C∗-module H which satisfies
Mm−1,F,Φd = Mm−1,Ψ+,Φd for all dual frames Φd of Φ, which by Theorem 4
(1) implies that TFDm−1 = TΨ+Dm−1 . Since m is invertible (so, Dm−1 is
invertible on `2(A)) it follows that TF = TΨ+ and hence F = Ψ+.

3. The proof follows in a similar way as (2). J

The next proposition determines some classes of multipliers in Hilbert C∗-
modules which are invertible and it is a generalization of Proposition 4.3 in [5].

Proposition 2. Let Φ and Ψ be frames for Hilbert C∗-module H and (mj) = (a),
where a is an invertible constant in A. Then the following assertions hold.

1. If Rang(UΦ) ⊆ Rang(UΨ), then M
a−1,Ψ̃,Φ̃

is a bounded right inverse of
M(a),Φ,Ψ.

2. If Rang(UΨ) ⊆ Rang(UΦ), then M
a−1,Ψ̃,Φ̃

is a bounded left inverse of
M(a),Φ,Ψ.
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3. If Rang(UΦ) = Rang(UΨ), then M(a),Φ,Ψ is invertible and M−1
(a),Φ,Ψ =

M
a−1,Ψ̃,Φ̃

.

4. If Rang(UΦ)  Rang(UΨ), then M(a),Φ,Ψ is not invertible.

5. If Rang(UΨ)  Rang(UΦ), then M(a),Φ,Ψ is not invertible.

Proof.

1. Assume that Rang(UΦ) ⊆ Rang(UΨ). For every h ∈ H, the element
UΦS

−1
Φ h can be written as UΨg

h for some gh ∈ H and

M(a),Φ,ΨMa−1,Ψ̃,Φ̃
h = TΦUΨS

−1
Ψ TΨUΦS

−1
Φ h = TΦUΨg

h = h.

2. Can be proved in a similar way as (1).

3. Follows from (1) and (2).

4. Assume that Rang(UΦ) ⊆ Rang(UΨ) with Rang(UΦ) 6= Rang(UΨ). By
(1), the operator M

a−1,Ψ̃,Φ̃
is a bounded right inverse of M(a),Φ,Ψ. We

will prove that M
a−1,Ψ̃,Φ̃

is not a left inverse of M(a),Φ,Ψ, which will imply
that M(a),Φ,Ψ cannot be invertible. Consider an arbitrary element g ∈
Rang(UΨ), g /∈ Rang(UΦ). Write g = UΨh for some h ∈ H. Since `2(A) =
Rang(UΦ)

⊕
Ker(TΦ), we can also write g = UΦf + d for some f ∈ H and

some d ∈ Ker(TΦ), d 6= 0. Since d = g − UΦf ∈ Rang(UΨ), it follows that
d /∈ KerTΨ, which implies that S−1

Ψ TΨd 6= 0. Then

M
a−1,Ψ̃,Φ̃

M(a),Φ,Ψh =S−1
Ψ TΨUΦS

−1
Φ TΦUΨh

=S−1
Ψ TΨUΦS

−1
Φ TΦ(UΦf + d)

=S−1
Ψ TΨ(UΨh− d)

=h− S−1
Ψ TΨd 6= h,

which implies that M
a−1,Ψ̃,Φ̃

is not a left inverse of M(a),Φ,Ψ.

5. In a similar way as in (4). J

The following theorem is a generalization of Theorem 4.6 in [5].

Theorem 6. Let Φ and Ψ be frames for H. The following statements are equiv-
alent.
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1. M(a),Φ,Ψ is invertible and M−1
(a),Φ,Ψ = M

a−1,Ψ̃,Φ̃
.

2. Φ and Ψ are equivalent frames.

3. M(a),Φ,Ψ is invertible and the unique frame Ψ+ in Theorem 5 is Ψ̃.

4. M(a),Φ,Ψ is invertible and the unique frame Φ+ in Theorem 5 is Φ̃.

5. M(a),Φ,Ψ is invertible and M−1
(a),Φ,Ψ = M

a−1,Ψ̃,Φd for all dual frames Φd of Φ.

6. M(a),Φ,Ψ is invertible and M−1
(a),Φ,Ψ = M

a−1,Ψd,Φ̃
for all dual frames Ψd of

Ψ.

Proof. Without loss of generality, we may consider a = 1. For a closed
subspace U of `2(A), we denote the orthogonal projection on U by PU .
(1)⇒ (2) By (1), we have T

Ψ̃
U

Φ̃
TΦUΨ = IdH and hence, UΨTΨ̃

U
Φ̃
TΦUΨTΨ̃

=
UΨTΨ̃

. Then PRang(UΨ)PRang(U
Φ̃

)PRang(UΨ) = PRang(UΨ) which implies that
Rang(UΨ) ⊆ Rang(U

Φ̃
).

Similarly it follows that Rang(U
Φ̃

) ⊆ Rang(UΨ). Therefore Rang(U
Φ̃

) =
Rang(UΨ). This implies that Φ and Ψ are equivalent.
(2)⇒ (3) and (4) Since Ψ+

n = M−1(Φn), n ∈ N, it follows that Ψ+ is equivalent
to Ψ. Therefore, Ψ+ = Ψ̃. The validity of (4) follows in a similar way.
(3)⇒(5) and (4)⇒ (6) Use Theorem 5.
(5)⇒(1) and (6)⇒ (1) Clear. J

Proposition 3. Let Φ and Ψ be frames for Hilbert C∗-module H and let the
symbol m = (mj) be invertible and |mj | have a lower positive bound for each
j ∈ J . Assume that Mm,Φ,Ψ is invertible. If Ψ is equivalent to (mjΦj) or Φ is
equivalent to (m∗jΨj), then

M−1
m,Φ,Ψ = M

m−1,Ψ̃,Φ̃
.

The next proposition which generalizes Proposition 3.1 in [30] shows that if
one of the sequences is Bessel, the invertibility of M(1),Φ,Ψ implies that the other
one must satisfy the lower frame condition.

Proposition 4. Let Mm,Φ,Ψ be invertible on Hilbert C∗-module H.
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1. If Ψ (resp. Φ) is a Bessel sequence for H with bound B, then mΦ (resp.
mΨ) satisfies the lower frame condition for H with bound 1

B‖M−1
m,Φ,Ψ‖2

.

2. If Ψ (resp. Φ) and mΦ (resp. mΨ) are Bessel sequences for H, then they
are frames for H.

3. If Ψ (resp. Φ) is a Bessel sequence for H and m ∈ `∞(A), then Φ (resp.
Ψ) satisfies the lower frame condition for H.

4. If Φ and Ψ are Bessel sequences for H and m ∈ `∞(A), then Ψ, Φ, mΦ
and mΨ are frames for H.

Proof. Denote M := Mm,Φ,Ψ.
First step: For m = 1. Assume that Ψ is a Bessel sequence for H with bound
BΨ. For those g ∈ H, for which

∑
|〈g,Φj〉|2 = ∞ or g = 0, clearly the lower

frame condition holds. Now let g ∈ H be such that
∑
|〈g,Φj〉|2 < ∞ or g 6= 0.

For every f ∈ H

|〈Mf, g〉| ≤
√
BΨ‖f‖

(∑
|〈Φj , g〉|2

) 1
2
.

For f = M−1g, it follows that

‖g‖ ≤
√
BΨ‖f‖

(∑
|〈Φj , g〉|2

) 1
2
.

Therefore, Φ satisfies the lower frame condition with bound 1
B‖M−1‖2 .

The case where Φ is a Bessel sequence can be proved in a similar way.
Second Step: For general m. Apply the first step to the multiplier M(1),mΦ,Ψ

(resp. M(1),Φ,m∗Ψ).
(2)-(4) follow now easily. J
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