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Contraction Quasi Semigroups and Their
Applications in Decomposing Hilbert Spaces

S. Sutrima∗, C.R. Indrati, L. Aryati

Abstract. This paper addresses the problem of implementations of a strongly continu-
ous quasi semigroup in analyzing non-autonomous Cauchy problems induced by dissipa-
tive operators. The implementations are closely related to contraction quasi semigroups.
Lumer-Phillips Theorem for the contraction quasi semigroups is proved. Relationships
between the contraction quasi semigroups and their cogenerator are also explored. Fur-
thermore, we show that the contraction quasi semigroups are applicable in decomposing
Hilbert spaces.
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1. Introduction

In this paper we focus on non-autonomous Cauchy problems (NCP) on a
Banach space X:

ẋ(t) = A(t)x(t), t ≥ 0

x(0) = x0, x0 ∈ X.
(1)

Here x is an unknown function from the real interval [0,∞) into X and A(t)
is a densely defined closed linear operator in X with domain D(A(t)) = D,
independent of t. The NCP (1) often appears in description of transport-reaction
phenomena arising in physical and biological systems, e.g. a heat conduction of a
material undergoing decay or radioactive damage [1], and Schrödinger operators
for particles in external electric fields [2]. In general, NCP (1) is divided into two
types, namely parabolic and hyperbolic types, see [3, 4, 5].

∗Corresponding author.

http://www.azjm.org 57 c© 2010 AZJM All rights reserved.



58 S. Sutrima, C. Indrati, L. Aryati

The well-posedness is a main problem of NCP (1). This is related to the ex-
istence and uniqueness of the solution. For t ∈ [0, τ ], where 0 < τ <∞, the well-
posedness of NCP (1) can be characterized by evolution operators {U(t, s)}t,s≥0, a
family of linear operators on X depending on t and s, with t ≥ s, see [3, 4, 5, 6, 7].
The assumptions for A(t) in order to NCP (1) admits a unique solution are given
by Kato [7] and Kato and Tanabe [8, 9]. These sufficient conditions are known as
Sobolevski-Tanabe and Kato’s theory. Unfortunately, this method requires that
both parabolic and hyperbolic types have a very strong sufficient condition to be
well-posed on [0, τ ]. Based on the evolution operators, evolution semigroups have
been constructed to investigate the well-posedness of NCP (1), see [10, 11, 12].
Recently, Schmid and Griesemer [13] have developed a quasi contractive strongly
continuous group from the evolution operators to investigate the well-posedness
of NCP (1) in uniformly convex spaces.

In autonomous case i.e. A(t) = A is independent of t, U(t, s) = T (t − s),
where {T (t)}t≥0 is a C0-semigroup of bounded linear operators on X with an
infinitesimal generator A. In many applications, operator A may be dissipative.
In this context, A is the infinitesimal generator of a C0-semigroup of contraction.
This operator plays an important role within both the abstract operator theory
and its more specialized applications in other fields, see [14, 15]. Actually, if A
is the infinitesimal generator A of contraction semigroup {T (t)}t≥0 on a Banach
space X, then A is maximal dissipative (m-dissipative). Conversely, if A is m-
dissipative, then A is the infinitesimal generator of a contraction semigroup on
X. This statement is known as Lumer-Phillips Theorem, see [16, 17, 18].

In the autonomous case, if A is the infinitesimal generator of a C0-semigroup
on a Banach space X, then NCP (1) admits a unique solution

x(t) = T (t)x0.

This means that the time evolution of {T (t)}t≥0 determines the qualitative prop-
erties of the solution x(t). This implies that the stability of C0-semigroup directly
affects the stability of the solution. Concerning this stability, Eisner [19] has de-
veloped some types of stabilities of C0-semigroups including a weak stability.
In particular, if X is a Hilbert space, the weak stability can be used to iden-
tify a classical theorem on decomposition of the space in contraction semigroup
term. In fact, Foguel [20] has decomposed a Hilbert space into weakly stable and
weakly unstable parts. Basically, the decomposition can use other ways, as done
by Nagy and Foiaş [21]. They have decomposed a Hilbert space into unitary and
completely non-unitary parts. The similar works have been done by Eisner [19].

The results in the autonomous cases urge a generalization to the non-auto-
nomous ones. It is natural to take over some assumptions on the infinitesimal
generator A into A(t) for each t. Leiva and Barcenas [22] have established a
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quasi semigroup theory, an alternative family of two-parameter operators which
is different from {U(t, s)}t,s≥0. By this approach, the sufficient condition in order
to NCP (1) admits a unique solution is the family {A(t)}t≥0 is the infinitesimal
generator of a C0-quasi semigroup, regardless of whether parabolic or hyperbolic.
The other advantage is that the domain of A(t) must not be a bounded interval
[0, τ ]. The properties of C0-quasi semigroups and their applications were dis-
cussed comprehensively in [22, 23, 24]. In general, C0-semigroups and C0-quasi
semigroups have different properties. For example, in the C0-quasi semigroups,
the infinitesimal generator must not be densely defined and closed. Neverthe-
less, Sutrima et al. [25] have generalized the various concept of stabilities of
C0-semigroups into C0-quasi semigroups including the weak stability.

In this paper, we deal with Lumer-Phillips Theorem for the contraction quasi
semigroups on Banach spaces and the decomposition theorem on Hilbert spaces.
This paper is structured as follows. In Section 2, we prove the Lummer-Phillips
Theorem for the contraction quasi semigroups and explore relationships between
the quasi semigroups and their cogenerator. Decomposition theorem for the con-
traction quasi semigroups is presented in Section 3. In the last section, we illus-
trate our results by two examples.

2. Contraction quasi semigroups

Before discussing the main results, we recall the definition of a strongly con-
tinuous quasi semigroup initiated by Leiva and Barcenas [22]. In this paper, we
rewrite the weaker definition, which follows the definition of C0-semigroup.

Definition 1. Let L(X) be the set of all bounded linear operators on a Banach
space X. A two-parameter commutative family {R(t, s)}s,t≥0 in L(X) is called a
strongly continuous quasi semigroup (C0-quasi semigroup, in short) on X, if:

(a) R(t, 0) = I, the identity operator on X,

(b) R(t, s+ r) = R(t+ r, s)R(t, r),

(c) lims→0+ ‖R(t, s)x− x‖ = 0,

(d) there is a continuous increasing function M : [0,∞)→ [0,∞) such that

‖R(t, s)‖ ≤M(t+ s),

for all r, s, t ≥ 0 and x ∈ X.
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Let D be the set of all x ∈ X such that the following limits exist:

lim
s→0+

R(0, s)x− x
s

and lim
s→0+

R(t, s)x− x
s

= lim
s→0+

R(t− s, s)x− x
s

, t > 0.

For t ≥ 0, we define an operator A(t) on D as

A(t)x = lim
s→0+

R(t, s)x− x
s

.

Next, the family {A(t)}t≥0 is called an infinitesimal generator of the C0-quasi
semigroup {R(t, s)}s,t≥0.

Condition (c) of Definition 1 means that for a fixed t ≥ 0, the mapping
s 7→ R(t, s) is strongly continuous at 0. This implies that the mapping is strongly
continuous in s. Conversely, for a fixed s ≥ 0, the mapping t 7→ R(t, s) is strongly
continuous in t. In fact, for any t0 ≥ 0, 0 ≤ t ≤ s, M is increasing, and for x ∈ X,
we obtain

‖R(t, s)x−R(t0, s)x‖ = ‖R(t, s− t)[R(s, t)x−R(t0, t)x]‖
≤M(s) [‖R(s, t)x− x‖+ ‖x−R(t0, t)x‖] .

Condition (c) of Definition 1 implies the assertion.

Definition 2. A C0-quasi semigroup {R(t, s)}s,t≥0 is said to be a contraction
on a Banach space X if condition (d) of Definition 1 is satisfied by the constant
function M = 1.

Following theory of C0-semigroups for the autonomous case, we can define a
cogenerator of a C0-quasi semigroup R(t, s) to investigate its characterizations.
Let A(t) be the infinitesimal generator of a C0-quasi semigroup R(t, s) on a
Banach space X such that 1 ∈ ρ(A(t)). We define a cogenerator of R(t, s) to be
a family {V (t)}t≥0 given by

V (t) := (A(t) + I)(A(t)− I)−1, (2)

where I is the identity operator on X. We obtain

V (t) = I − 2R(1, A(t)) and A(t) = I + 2(V (t)− I)−1,

where R(λ,A(t)) := (λI−A(t))−1 is the resolvent operator of A(t) with resolvent
set ρ(A(t)).

In the sequel, R(t, s), A(t), and V (t) denote the quasi semigroup {R(t, s)}s,t≥0,
the infinitesimal generator {A(t)}t≥0, and the cogenerator {V (t)}t≥0, respectively.
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We also denote by D the domain of A(t) for t ≥ 0. In this section, we deal with
the sufficient conditions for A(t) to be an infinitesimal generator of a contraction
quasi semigroup.

First, we generalize the Yosida approximation for the non-autonomous case.
For λ ∈ ρ(A(t)), t ≥ 0, the Yosida approximation is defined as

Aλ(t) = λA(t)R(λ,A(t)) = λ2R(λ,A(t))− λI ∈ L(X).

We note that

A(t)R(λ,A(t)) = λR(λ,A(t))− I and A(t)R(λ,A(t))x = R(λ,A(t))A(t)x,

for all x ∈ D.

Theorem 1. Let for t ≥ 0, A(t) be a closed and densely defined in a Banach space
X with domain D, [0,∞) ⊂ ρ(A(t)), and the mapping t 7→ A(t)y be continuous
from R+ to X for all y ∈ D. If R(λ,A(·)) is locally integrable and

‖R(λ,A(t))‖ ≤ 1

Reλ
,

for all λ ∈ C such that Reλ > 0, then A(t) generates a contraction quasi semi-
group.

Proof. For t ≥ 0, let An(t) be Yosida approximation of A(t),

An(t) := nA(t)R(n,A(t)) = n2R(n,A(t))− nI,

for all n > ω, n ∈ N for some ω > 0. Lemma 3.6 of [26] gives

lim
n→∞

An(t)y = A(t)y (3)

for all y ∈ D. From hypothesis, we can define

Gn(t) :=

∫ t

0
An(τ)dτ,

for all n ∈ N and t ≥ 0. Since Gn(t) ∈ L(X), we can construct a C0-quasi
semigroup

Rn(t, s)x := eGn(t+s)−Gn(t)x,

for all t, s ≥ 0 and x ∈ X. The infinitesimal generator of Rn(t, s) is An(t), and

‖Rn(t, s)‖ ≤ e−nse
∫ t+s
t n2‖R(n,A(τ))‖dτ
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= e−ns.ens = 1, (4)

for all t, s ≥ 0 and n ∈ N.
Next, we have Am(t)An(t) = An(t)Am(t) and An(t)Rm(t, s) = Rm(t, s)An(t),

for all m,n ∈ N and t, s ≥ 0. Hence, for x ∈ X,

Rm(t, s)x−Rn(t, s)x =

∫ s

0

∂

∂r
(Rm(t, r)Rn(t+ r, s− r)x) dr

=

∫ s

0
Rm(t, r)Rn(t+ r, s− r)(Am(t+ r)x−An(t+ r)x)dr.

Since the mapping r 7→ A(r)y is uniformly continuous on the compact interval
[0, s] for y ∈ D, by (3) for a fixed t ≥ 0 we obtain

lim
m,n→∞

sup
r∈[0,s]

‖Am(t+ r)y −An(t+ r)y‖ = 0. (5)

From (4) it follows that

‖Rm(t, s)y −Rn(t, s)y‖ ≤ s sup
r∈[0,s]

‖Am(t+ r)y −An(t+ r)y‖. (6)

for all y ∈ D. Hence, by (5) the right-hand side converges to 0 as m,n →
∞. Therefore, (Rn(t, s)y) is a Cauchy sequence in X for all t, s ≥ 0, and so it
converges in X. By (4) for each x ∈ X the set {Rn(t, s)x} is bounded. Since D
is dense in X, Theorem 18 of Chapter II of [27] guarantees that the convergence
can be extended for each x ∈ X. Therefore, we can define

R(t, s)x := lim
n→∞

Rn(t, s)x, (7)

for all s, t ≥ 0 and x ∈ X. We easily verify that R(t, s) satisfies the definition of
quasi semigroup. Moreover, we have

‖R(t, s)x‖ ≤ lim inf
n→∞

‖Rn(t, s)x‖ ≤ ‖x‖,

for all x ∈ X, i.e. ‖R(t, s)‖ ≤ 1 for all t, s ≥ 0. Taking limits in (6) as m → ∞,
we get that for y ∈ D

‖R(t, s)y −Rn(t, s)y‖ ≤ s sup
r∈[0,s]

‖A(t+ r)y −An(t+ r)y‖, (8)

for all t ≥ 0, s > 0, and n ∈ N.
Next, we show that the for a fixed t ≥ 0, limit in (7) is uniform on compact

interval for every x ∈ X. For x ∈ X and y ∈ D, we have

‖R(t, s)x−Rn(t, s)x‖ ≤ ‖R(t, s)(x−y)‖+‖R(t, s)y−Rn(t, s)y‖+‖Rn(t, s)(y−x)‖.
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For arbitrary ε > 0 and a fixed x, by choosing y ∈ D such that ‖x − y‖ < ε
3 ,

the first and the last term on the right-hand side above become less than ε
3 . For

every compact interval J ⊂ [0,∞), according to (8) there is N ∈ N such that
for s ∈ J and n ≥ N , the middle term on the right-hand side above become
less than ε

3 . Thus, for any compact interval J ⊂ [0,∞), there is N ∈ N such
that ‖R(t, s)y − Rn(t, s)y‖ < ε

3 for all s ∈ J and n ≥ N . Therefore, limit in
(7) is uniform on compact interval for every x ∈ X. This implies that for each
x ∈ X the mapping s→ R(t, s)x is continuous. In other words, R(t, s) is strongly
continuous.

Let B(t) be the infinitesimal generator of R(t, s). For s > 0 and y ∈ D, by
Theorem 2.1 (c) of [22] and Theorem 3.2 (d) of [25], we obtain

1

s
(R(t, s)y − y) = lim

n→∞

1

s
(Rn(t, s)y − y) =

1

s

∫ s

0
R(t, r)A(t+ r)ydr.

Taking s→ 0+, we obtain y ∈ D(B(t)) and B(t)y = A(t)y. Thus, D ⊆ D(B(t)).
Next, let y ∈ D(B(t)) and λ > 0. If x = (λI − A(t))−1(λy − B(t)y), then

x ∈ D ⊆ D(B(t)) and λx−B(t)x = λx−A(t)x = λy −B(t)y. Since λI −B(t) :
D(B(t)) → X is injective, we have y = x ∈ D. This shows that D(B(t)) ⊆ D.
Thus, D = D(B(t)) and B(t) = A(t). J

Theorem 1 gives the sufficiency for the infinitesimal generator of a contraction
quasi semigroup although the proof is quite crucial. Even in the case of relatively
simple problem, it is not easy to check all of the desired properties. For example,
estimating the norm of the resolvent operator is very difficult. The dissipativity
of A(t) gives the sufficient and necessary conditions of an infinitesimal generator
of a contraction quasi semigroup which is simpler condition.

We recall that a linear operator A on a Banach spaceX is said to be dissipative
if for every x ∈ D(A) there exists x′ ∈ J(x) such that

Rex′(Ax) ≤ 0,

where X ′ is a dual space of X and J(x) is the duality set defined by

J(x) = {x′ ∈ X ′ : x′(x) = ‖x‖2 = ‖x′‖2}.

In case X is a Hilbert space, the operator A is dissipative if and only if

Re〈Ax, x〉 ≤ 0,

for all x ∈ X, where 〈·, ·〉 denotes an inner product in X. A dissipative operator
A is said to be maximal dissipative (m-dissipative) if A does not have a proper
dissipative extension.
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Theorem 2. Let A(t), t ≥ 0, be a linear, closed and densely defined operator
on D in a Banach space X such that for λ ∈ C with Reλ > 0 R(λ,A(·)) is
locally integrable. Family A(t) is an infinitesimal generator of a contraction quasi
semigroup if and only if each A(t) is m-dissipative.

Proof. Let A(t) be the infinitesimal generator of a contraction quasi semigroup
R(t, s). The contractiveness of R(t, s) implies

Rex′(A(t)x) = lim
s→0+

Rex′
(
R(t, s)− I

s
x

)
= lim

s→0+

1

s

(
Rex′(R(t, s)x)− ‖x‖2

)
≤ lim sup

s→0+

1

s

(
‖x′‖.‖x‖ − ‖x‖2

)
= 0,

for all x ∈ D and x′ ∈ J(x). This means A(t) is dissipative.
Next, for every x ∈ D and λ > 0 we have

‖x‖‖λx−A(t)x‖ = ‖x′‖‖λx−A(t)x‖
≥ Rex′(λx−A(t)x)

= Reλx′(x)− Rex′(A(t)x) ≥ Reλ‖x‖2.

It follows that
‖λx−A(t)x‖ ≥ Reλ‖x‖, (9)

for all x ∈ D and λ ∈ C with Reλ > 0. Consequently, the operator λI − A(t) :
D → X is injective for all λ ∈ C with Reλ > 0. Moreover, by the closedness of
A(t), Lemma 3.1.4 of [18] gives that ran(λI −A(t)) is closed in X. Therefore, if
we set

∆ := {λ ∈ C : Reλ > 0, ran(λI −A(t)) = X},
then ∆ ⊂ ρ(A(t)). Thus, ran(λI − A(t)) = X for some λ ∈ ∆, i.e. A(t) is
m-dissipative.

Conversely, by the dissipativity of A(t) we have (9). Therefore, we obtain

‖R(λ,A(t))‖ ≤ 1

Reλ
,

for all λ ∈ C such that Reλ > 0. Theorem 1 implies that A(t) is the infinitesimal
generator of a contraction quasi semigroup. J

We call Theorem 2 as a version of the Lummer-Phillips Theorem for contrac-
tion quasi semigroups. This is parallel with a version of the Lummer-Phillips
Theorem (Theorem 7.2.11) for contraction semigroups given by Buhler and Sala-
mon [28].
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Corollary 1. If A(t) is the infinitesimal generator of a contraction quasi semi-
group on a Banach space X, then for each x0 ∈ D the initial value problem

ẋ(t) = A(t)x(t), x(0) = x0 (10)

admits a unique solution.

Proof. Let A(t) be the infinitesimal generator of a contraction quasi semigroup
R(t, s). Proof follows from the proof of Theorem 2.2 of [22] with r = 0. J

Remark 1. The Lummer-Phillips theorem is an alternative sufficiency of the
Sobolevski-Tanabe and Kato’s theory for the non-autonomous abstract Cauchy
problems of dissipation, see [4]. The theorem also has the potential to be devel-
oped to investigate the well-posedness of other non-autonomous linear evolution
equations, see [2, 13].

In the rest of this section, we focus on the characterization of the contraction
quasi semigropus on Hilbert spaces using the cogenerator. This is also helpful in
decomposing the Hilbert spaces in the contraction quasi semigroup term.

Theorem 3. If R(t, s) is a contraction quasi semigroup on a Hilbert space X,
then its cogenerator is a family of contraction operators on X.

Proof. Let A(t) be the infinitesimal generator of R(t, s) and V (t) be its
cogenerator. Theorem 2 implies that each A(t) is a dissipative operator, and by
the polarization identity, we have

‖(A(t) + I)x‖2 − ‖(A(t)− I)x‖2 = 4Re 〈A(t)x, x〉 ≤ 0,

for all x ∈ X. This shows that

‖(A(t) + I)x‖ ≤ ‖(A(t)− I)x‖,

for all x ∈ X. Therefore,

‖V (t)x‖ = ‖(A(t) + I)(A(t)− I)−1x‖ ≤ ‖(A(t)− I)(A(t)− I)−1x‖ = ‖x‖,

for all x ∈ X. This means that V (t) is a contraction on X. J

There is a simple characterization of an operator to become the cogenerator
of a contraction quasi semigroup on a Hilbert space. This characterization follows
Theorem III.8.1 of [29].
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Theorem 4. For each t ≥ 0, V (t) is a contraction operator on a Hilbert space
X. The V (t) is the cogenerator of a contraction quasi semigroup on X if and
only if 1 /∈ σp(V (t)) for every t ≥ 0, where σp(V (t)) denotes the point spectrum
of V (t).

Proof. By assumptions and Lemma 2.2.6 of [18], for t ≥ 0 the operator I−V (t)
is invertible. We may define

A(t) := −(I + V (t))(I − V (t))−1,

on domain D := ran(I − V (t)). We just prove that A(t) is the infinitesimal
generator of a contraction quasi semigroup on X if and only if 1 ∈ ρ(A(t)) for
every t ≥ 0.

First, assume that A(t) is the infinitesimal generator of a contraction quasi
semigroup on X. From the definition of A(t) and Yosida approximation, we have
A(t) = I − 2(I − V (t))−1. Hence, (I −A(t))−1 = 1

2(I − V (t)) exists which shows
1 ∈ ρ(A(t)).

Conversely, assume that for each t ≥ 0, V (t) is a contraction operator on a
Hilbert space X and 1 ∈ ρ(A(t)). For x ∈ D and y = (V (t)− I)−1x, we have

〈A(t)x, x〉 =
〈
(I + V (t))(V (t)− I)−1x, x

〉
= 〈(I + V (t))y, (V (t)− I)y〉
= ‖V (t)y‖2 − ‖y‖2 + 2i. Im〈y, V (t)y〉,

where i and Imα denote the imaginary unit with i2 = −1 and the imagi-
nary part of a complex number α, respectively. Contractiveness of V (t) gives
Re 〈A(t)x, x〉 ≤ 0. This means that A(t) is dissipative.

Next, for each t ≥ 0, ‖V (t)n‖ ≤ 1 for all n ∈ N, so V (t) is mean ergodic.
But, since I − V (t) is injective (or ker(I − V (t)) = {0}) and X is reflexive,
Theorem 3.6.9 of [28] implies that D = ran(I − V (t)) = X. This shows that
A(t) is densely defined in X. Analogously, we prove ran(I −A(t)) = X. On the
other hand, since ρ(A(t)) is not empty, by Remark 2.2.4 of [18], A(t) is closed.
Consequently, Lemma 3.1.4 of [18] guarantees that ran(I−A(t)) = X. Therefore,
each A(t) is m-dissipative. Thus, Theorem 2 implies that A(t) is the infinitesimal
generator of a contraction quasi semigroup on X. J

3. Decomposition on Hilbert Spaces

In this section we prove the classical theorem on decomposition of the con-
traction quasi semigroups on a Hilbert space with respect to different qualitative
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behaviors. Technique of decomposing follows the approach developed by Eisner
[19], Foguel [20], and Nagy and Foiaş [21]. We begin with a weakly stable concept
of C0-quasi semigroups introduced by Sutrima et al. [25].

Definition 3. A C0-quasi semigroup R(t, s) on a Hilbert space X is said to be
weakly stable if lims→∞〈R(t, s)x, y〉 = 0 for every x, y ∈ X and t ≥ 0.

We recall that an operator T is unitary on a Hilbert space X if it satisfies
T ∗T = TT ∗ = I on X where T ∗ is the adjoint operator of T on X.

Theorem 5. Let R(t, s) be a contraction quasi semigroup on a Hilbert space
X. For every t ≥ 0 there exists two R(t, ·)−invariant and R∗(t, ·)−invariant
subspaces X1 and X2 such that X is an orthogonal sum of X1 and X2. Moreover,

(a) X1 is the maximal subspace on which the restriction of R(t, ·) is unitary;

(b) the restriction of R(t, ·) and R∗(t, ·) to X2 are weakly stable.

Proof. (a) For t ≥ 0 fixed, we define

X1 := {x ∈ X : ‖R(t, s)x‖ = ‖R∗(t, s)x‖ = ‖x‖ for all s ≥ 0}.

By this definition, R(t, s) and R∗(t, s) are operators from X1 onto X1. Moreover,
for any x ∈ X1 and s ≥ 0, we have

〈x, x〉 = 〈R(t, s)x,R(t, s)x〉 = 〈R∗(t, s)R(t, s)x, x〉.

This means that R∗(t, s)R(t, s)x = x for every x ∈ X1. Analogously, we can show
that R(t, s)R∗(t, s)x = x for every x ∈ X1. Hence, we can represent X1 as

X1 = {x ∈ X : R∗(t, s)R(t, s)x = R(t, s)R∗(t, s)x = x for all s ≥ 0}.

This means that X1 is the maximal closed subspace on which R(t, ·) is unitary.
The invariance of X1 under R(t, s) and R∗(t, s) follows from the definition of X1

and the equality R∗(t, s)R(t, s) = R(t, s)R∗(t, s) on X1.
(b) We take X2 := X⊥1 . Since X1 is invariant under R(t, s) and R∗(t, s), so is

X2. For x ∈ X2 and t ≥ 0 fixed, suppose that R(t, s)x does not converge weakly
to zero as s → ∞. Equivalently, there exist y ∈ X, ε > 0, and a sequence (sn)
such that |〈R(t, sn)x, y〉| ≥ ε for every n ∈ N.

Since every bounded set in a reflexive Banach space is weakly compact (Corol-
lary 8 V.4 of [27]) and weak compactness on Banach spaces coincides with weak
sequential compactness (Eberlein-Smulian Theorem V.6 of [27]), there is a weakly
converging subsequence of (R(t, sn)x). For simplicity, we assume that the sub-
sequence is (R(t, sn)x) itself and its limit is x0. The closedness and R(t, s)-
invariance of X2 imply that x0 ∈ X2.
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For s0 ≥ 0 fixed and a fact R(t+ s, s0)R(t, s) = R(t, s+ s0), we obtain

‖R∗(t+ s, s0)R(t+ s, s0)R(t, s)x−R(t, s)x‖2

≤ ‖R∗(t+ s, s0)R(t, s+ s0)x‖2 − 2〈R∗(t+ s, s0)R(t, s+ s0)x,R(t, s)x〉
+ ‖R(t, s)x‖2

≤ ‖R(t, s+ s0)x‖2 − 2〈R(t, s+ s0)x,R(t+ s, s0)R(t, s)x〉+ ‖R(t, s)x‖2

= ‖R(t, s+ s0)x‖2 − 2‖R(t, s+ s0)x‖2 + ‖R(t, s)x‖2

= ‖R(t, s)x‖2 − ‖R(t, s+ s0)x‖2.

Since the function t 7→ ‖R(t, s)x‖ is monotone decreasing on R+, the right-hand
side converges to zero as s→∞. Therefore, we obtain

‖R∗(t+ s, s0)R(t+ s, s0)R(t, s)x−R(t, s)x‖ → 0 as s→∞.

By assumption, R(t, sn)x→ x0 weakly as n→∞. This implies that

R∗(t+ s, s0)R(t+ s, s0)R(t, sn)x→ R∗(t+ s, s0)R(t+ s, s0)x0 as n→∞.

On the other hand, we have

R∗(t+ s, s0)R(t+ s, s0)R(t, sn)x→ x0 as n→∞.

By the uniqueness of limit we have R∗(t+ s, s0)R(t+ s, s0)x0 = x0. Analogously,
we obtain R(t + s, s0)R

∗(t + s, s0)x0 = x0. These imply that x0 ∈ X1. Since
X1 ∩ X2 = {0}, it follows that x0 = 0. This contradicts the assumption that
R(t, s)x does not converge weakly to zero.

Analogously we can show that the restriction of R∗(t, s)x to X2 converges
weakly to zero as well. J

Indeed, due to Foguel [20], we can decompose a Hilbert space into weakly
stable and weakly unstable parts. The following theorem is a generalization of
the Foguel’s result for the contraction quasi semigroups.

Theorem 6. Let R(t, s) be a contraction quasi semigroup on a Hilbert space X.
If for any t ≥ 0 we define

W =
{
x ∈ X : lim

s→∞
〈R(t, s)x, x〉 = 0

}
,

then

W =
{
x ∈ X : lim

s→∞
R(t, s)x = 0 weakly

}
=
{
x ∈ X : lim

s→∞
R∗(t, s)x = 0 weakly

}
,

W is a closed R(t, s)−invariant and R∗(t, s)−invariant subspace of X and also
the restriction of R(t, s) to W⊥ is unitary.
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Proof. For any t ≥ 0 fixed, we have to show that R(t, s)x → 0 weakly as
s → ∞ for all x ∈ W . For x ∈ W , by Theorem 5 we may assume x ∈ X1. If
we take Z := span {R(t, s)x : s ≥ 0}, then by the decomposition X = Z ⊕ Z⊥,
it is enough to show that 〈R(t, s)x, y〉 → 0 as s → ∞ for all y ∈ Z. We set
y := R(t, s0)x for some s0 ≥ 0. Since the restriction of R(t, s) to X1 is unitary,
for s ≥ s0 we have

〈R(t, s)x, y〉 = 〈R∗(t, s0)R(t, s0)R(t+ s0, s− s0)x, x〉
= 〈R(t+ s0, s− s0)x, x〉 → 0 as s→∞.

By the density of span {R(t, s)x : s ≥ 0} in Z we have that 〈R(t, s)x, y〉 → 0 as
s → ∞ for all y ∈ Z. Hence R(t, s)x → 0 weakly as s → ∞. Analogously,
R∗(t, s)x → 0 weakly as s → ∞. The converse of implication, closedness and
invariance of W are clear. Theorem 5 implies directly that the restriction of
R(t, s) to W⊥ is unitary. J

Remark 2. It is easily understood that one of the components in Theorem 5 or
Theorem 6 may be absent. In this context, the corresponding subspace may reduce
to {0}. Moreover, the set W in Theorem 6 is a closed subspace of X containing
X2 which is defined in Theorem 5.

4. Applications

In this section, we consider some examples of application of the contraction
quasi semigroups in solving the non-autonomous Cauchy problems and in decom-
posing a Hilbert space.

Example 1. Consider the boundary value problem of the heat conduction of a
material undergoing decay or radioactive damage

∂x

∂t
(t, ξ) = a(t)

∂2x

∂ξ2
(t, ξ), 0 < ξ < 1, t ≥ 0 (11)

x(t, 0) = x(t, 1) = 0,

where a is the time-dependent thermal diffusivity, a continuous function with
a(t) > 0 for t ≥ 0.

The problem (1) is taken from [1]. Therein the author focuses on determining
unknown time-dependent thermal diffusivity a from overspecified data. Let X
be a Hilbert space L2(0, 1) and the operator A : D(A)→ X given by

Ax :=
d2x

dξ2
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and

D(A) =
{
x ∈ X : x, dxdξ are absolutely continuous, d

2x
dξ2
∈ X, x(0) = x(1) = 0

}
.

The equation (11) can be rewritten as

ẋ(t) = a(t)Ax(t) t ≥ 0. (12)

Obviously, A is self-adjoint and −A ≥ 0 on D(A). Proposition 3.3.5 of [18] implies
that A is m-dissipative. Therefore, A(t) = a(t)A is the infinitesimal generator of
a contraction quasi semigroup R(t, s) given by

R(t, s)x =

∞∑
n=1

e−λn(g(t+s)−g(t))〈φn, x〉φn,

where λn = n2π2, φn(ξ) = sin(nπξ), and g(t) =
∫ t
0 a(s)ds. In this case, D = D(A)

is dense in X. According to Corollary 1, for each x0 ∈ D the problem (12) admits
a unique solution

x(t) = R(0, t)x0, x(0) = x0.

Hence, the problem (11) has a unique solution

x(t, ξ) = R(0, t)x0(ξ).

Example 2. Let X be a Hilbert space L2(R+, Y ) where Y is a Hilbert space.
Define a contraction quasi semigroup R(t, s) on X by

R(t, s)x(ξ) =

{
x(ξ − (s2 + 2st)), ξ ≥ s2 + 2st
0, 0 ≤ ξ < s2 + 2st,

(13)

for all t, s ≥ 0. We shall examine the decomposition of X due to R(t, s).

It is obvious that R(t, s) is isometric on X. Moreover, the adjoint of R(t, s)
is given by

R∗(t, s)x(ξ) = x(s2 + 2st+ ξ),

for all t, s ≥ 0, x ∈ X, and ξ ≥ 0. Hence, we have

‖R(t, s)x‖2 =

∫ ∞
s2+2st

‖x(τ)‖2Y dτ → 0 as s→∞.

This shows that R(t, s) is weakly stable on X. Analogously, R∗(t, s) is also
weakly stable on X. Direct calculation shows that the infinitesimal generator
A(t) of R(t, s) is

A(t)x(ξ) = −2t
dx

dξ
(ξ),
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with domain D = {x ∈ X : x is absolutely continuous, dx
dξ ∈ X}.

Let V (t) := (A(t) + I)(A(t)− I)−1 be a cogenerator of R(t, s) defined by (2)
with adjoint V ∗(t). A simple calculation gives

V (t)x(ξ) = x(ξ)− e−ξ/2t

t

∫ ξ

0
eτ/2tx(τ)dτ

and

V ∗(t)x(ξ) = x(ξ)− eξ/2t

t

∫ ∞
ξ

e−τ/2tx(τ)dτ,

respectively. If we define

X1 = {x ∈ X : x = V (t)z, z ∈ X }
X2 = {x ∈ X : V ∗(t)x = 0 },

then X = X1 ⊕X2. By solving the equation V ∗(t)x = 0 we have X2 = {x ∈ X :
x(ξ) = e−ξ/2t}. Moreover, for every x ∈ X we verify that V ∗(t)V (t)x = x. For
any x ∈ X1, x = V (t)y for some y ∈ X, we have

V (t)V ∗(t)x(ξ) = V ∗(t)x(ξ)− e−ξ/2t

t

∫ ξ

0
eτ/2tV ∗(t)x(τ)dτ

= V ∗(t)V (t)y(ξ)− e−ξ/2t

t

∫ ξ

0
eτ/2tV ∗(t)V (t)y(τ)dτ

= y(ξ)− e−ξ/2t

t

∫ ξ

0
eτ/2ty(τ)dτ

= V (t)y(ξ) = x(ξ).

This shows that the operator V (t) is unitary on X1. Stone’s Theorem (Theorem
13.38 of [30]) implies that the quasi semigroup R(t, s) is also unitary on X1.
Actually, we can directly verify that R(t, s) is also unitary on X1.

For t = 0 we have X1 = X and X2 = {0} in which R(0, s) and R∗(0, s) satisfy
the conclusion of Theorem 5. Thus, we have confirmed Theorem 5 by the quasi
semigroup R(t, s).
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