
Azerbaijan Journal of Mathematics
V. 3, No 2, 2013, July
ISSN 2218-6816

Approximate Construction of the Jost Function by the

Collocation Method for Sturm-Liouville Boundary Value

Problem

A.R. Aliev ∗, S.G. Gasymova, D.G. Gasymova, N.D. Ahmadzadeh

Abstract. This work presents an approximate construction of the Jost function for Sturm-Liouville
boundary value problem by means of collocation method.

Key Words and Phrases: Sturm-Liouville problem, Jost function, collocation method, Lagrange
polynomial.

2010 Mathematics Subject Classifications: 34B24, 65L60

1. Introduction

Assume that q (x) is a real continuous function defined on the semi-axis [0,∞), and
the condition

∫

∞

0
x |q (x)| dx < ∞ (1)

is satisfied.
Consider the following boundary value problem in the space L2 [0,∞):

−y′′ + q (x) y = λ2y,
y (0) = 0.

}

(2)

It is known that this problem is a self-adjoint problem. It has a finite number of negative
eigenvalues λ2

1, ..., λ
2
k (see, [1]), the positive real axis λ2 > 0 is its continuous spectrum. It

is known that the numbers λ1, λ2, ..., λk are the roots of the Jost function on the upper
half-plane (see [2]). Therefore, it is required to find the Jost function.

If in problem (2) q (x) ≡ 0, then it is easy to find the Jost function. We consider the
case q (x) 6= 0. Since in this case it is very difficult to find the Jost function precisely, it is
important to construct it approximately.

The present paper is dedicated to the solution of this problem.
It is known that (see [2]) there is a function K (x, t) such that
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f (λ, x) = eiλx +

∫

∞

x

K (x, t) eiλtdt, (3)

where the function f (λ, x) is the solution of problem (2). Then the numbers λ1, λ2, ..., λk

are the roots of the function f (λ, 0), i.e. the solution of the equation f (λ, 0) = 0.

To construct the Jost function approximatly we proceed as follows.
1) It is known that (according to condition (1)) ∀ε > 0 there is a number N > 0 such

that

∫

∞

N

x |q (x)| dx < ε.

Then the Jost functions of the following new problem and of the previous problem (2),
and also their λk’s differ from each other by an infinitesimal quantity (see [3])

−y′′ + qN (x) y = λ2y,
y (0) = 0,

}

(4)

where

qN (x) =

{

q (x) ,
0,

x ≤ N,
x > N.

So, we have a boundary value problem (4) with a finite coefficient. It is known that, by
substitution, the segment [0, N ] may be reduced to [0, 1]. Therefore, for simplicity we can
take N = 1. Then instead of problem (4) we have the following boundary value problem:

−y′′ + q (x) y = λ2y,
y (0) = 0,

}

0 ≤ x ≤ 1. (5)

2) By the above mentioned relation (3), the Jost function of the problem (5) is as
follows:

f (λ, x) = eiλx +

∫ 2−x

x

K (x, t) eiλtdt, (6)

and since the function K (x, t) is unknown, the function f (λ, x) is also unknown. And
the main problem in the construction of the Jost function is to find K (x, t). The function
K (x, t) is found from some Volterra type integral equation by means of the collocation
method (see [4]).

To find the function K (x, t), the scheme of G.M.Vainikko’s paper on the solution of
multi-dimensional integral equation by the collocation method (see [5]) is used. In his
work G.M.Vainikko has given the solution of Fredholm type integral equations.

The present paper consists of introduction and four sections. The problem statement
and the work plan of the paper are given in introduction. The known properties of the
function K (x, t) is recalled in §2. In §3, lemmas to guarantee the convergence of the
Lagrange interpolation process in the space L2 (D) are proved. A theorem on approximate
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finding of the function K (x, t) and the convergence is proved in §4. In §5 the Jost function
f (λ, 0) is constructed.

2. The properties of the function K (x, t)

It is known that the function K (x, t) in expression (6) is the solution of the following
problem:

∂2K (x, t)

∂x2
− q (x)K (x, t) =

∂2K (x, t)

∂t2
, (7)

K (x, 2− x) = 0,

K (x, x) = 1
2

∫ 1
x
q (s) ds,

}

(8)

where (x, t) ∈ G, G =
{

(x, t)| 0 ≤ x ≤ 1; x ≤ t ≤ 2− x
}

. The latter is known as the
Goursat problem. The existence and uniqueness of the solution of the Goursat problem
are known (see [6]).

It is obvious that to find the numbers λ1, λ2, ..., λk we have to find the solution K (0, t)
0 ≤ t ≤ 2 of the Goursat problem (7), (8).

Write the integral equation to which the Goursat problem (7), (8) is equivalent (see
[2]):

K (x, t) =
1

2

∫ 1

x+t
2

q (s) ds+

∫ 1

x+t
2

dα

∫ t−x
2

0
q (α− β)K (α− β, α+ β) dβ, (9)

where K (x, t) = 0 for x > t.

To reduce this integral equation we accept the following notation:

H (α, β) = K (α− β, α+ β) ,
x+ t = 2u,
t− x = 2v.







(10)

Then equation (9) takes the form

H (u, v) =
1

2

∫ 1

u

q (s) ds+

∫ 1

u

dα

∫ v

0
q (α− β)H (α, β) dβ, (11)
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since D =
{

(u, v) ; 0 ≤ v ≤ u ≤ 1
}

and H (u, v) = 0, v > u. We can write equation
(11) as follows:

H (u, v) =
1

2

∫ 1

u

q (s) ds+

∫∫

Du,v

q (α− β)H (α, β) dαdβ. (12)

It is clear that Du,v =
{

α, β : α ∈ [u, 1] , β ∈ [0, v] ; v ≤ u
}

; (u, v) ∈ D, Du,v ⊂ D.
Take the following auxiliary function Γ (u, v;α, β):

Γ (u, v;α, β) =

{

1,
0,

(α, β) ∈ Du,v,
(α, β) /∈ Du,v.

(13)

Using this auxiliary function Γ (u, v;α, β), we can replace integral equation (12) by the
following Fredholm type integral equation:

H (u, v) =
1

2

∫ 1

u

Γ (u, v;α, β) q (α) dα+

∫∫

Du,v

Γ (u, v;α, β) q (α− β)H (α, β) dαdβ. (14)

So, we reduced the finding of the solution of Goursat problem (7), (8) to the finding
of solution of the Fredholm type integral equation (14). Now we find the approximate
solution of integral equation (14) by using the collocation method.

For that we prove some lemmas on convergence of Lagrange interpolation process in
two-dimensional space.

3. Notation and auxiliary results

We will use the following notation throughout work.
Denote by D a bounded closed domain in R2 and by χD (u, v) the characteristic func-

tion, (R) integrated in this domain (in Riemannian sense), i.e.

χD (u, v) =

{

1,
0,

(u, v) ∈ D,
(u, v) /∈ D.

Ω denotes the square

Ω :
{

0 ≤ u ≤ 1; 0 ≤ v ≤ 1
}

containing the domain D.
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Let the nodal points

u0n, u1n, ..., unn, (15)

v0ν , v1ν , ..., vνν (16)

be the roots of polynomials rn+1 (u) and pν+1 (v), orthogonal with respect to non-negative,
summable weights g (u) and p (v), respectively, satisfying the conditions

∫ 1

0

du

g (u)
< ∞,

∫ 1

0

dv

p (v)
< ∞. (17)

The polynomials {rn (u)}∞n=0 and {pν (v)}∞ν=0 are of degrees n and ν, respectively. It is
known that (see [7]) nodal points (15), (16) are simple, real and lie in the interval (0,1)
(along the axes u and v, respectively). Write the Lagrange fundamental interpolation
polynomials corresponding to these roots:

lkn (u) =
ln (u)

l
′

n (ukn) (u− ukn)
(k = 0, 1, ... , n),

ωφν (v) =
ων (v)

ω′

ν (vφν) (v − vφν)
(φ = 0, 1, ... , ν),

where

ln (u) = (u− u0n) (u− u1n) · ... · (u− unn) ,

ων (v) = (v − v0ν) (v − v1ν) · ... · (v − vνν) .

Recall some properties of fundamental polynomials:

lkn (uin) =

{

0 , i 6= k
1 , i = k

(i, k = 0, 1, ... , n), (18)

∫ 1

0
g (u) lin (u) lkn (u) du = 0, i 6= k (i, k = 0, 1, ... , n), (19)

n
∑

k=0

∫ 1

0
g (u) l2kn (u) du =

∫ 1

0
g (u) du. (20)

Write these properties for the polynomial ωφν (v):

ωφν (vjν) =

{

0 , j 6= φ
1 , j = φ

(j, φ = 0, 1, ... , ν), (21)

∫ 1

0
p (v)ωjν (v)ωφν (v) dv = 0, j 6= φ (j, φ = 0, 1, ... , ν), (22)
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ν
∑

φ=0

∫ 1

0
p (v)ω2

φν (v) dv =

∫ 1

0
p (v) dv. (23)

Now construct the Lagrange interpolation polynomial for any function Z (u, v) defined
in the domain D:

Pn,νZ (u, v) =

n
∑

k=0

ν
∑

φ=0

Z (ukn, vφν) lkn (u)ωφν (v) , (ukn, vφν) ∈ D (24)

(summation is taken over the indices k and φ, which correspond to the points (ukn, vφν)
in the domain D).

Consider the space L2
gp (D) (Banach space) of the functions square-summable with

respect to the weight g (u) p (v) in the domain D:

‖Z‖L2
gp(D) =

[∫∫

D

g (u) p (v) |z (u, v)|2 dudv
]

1

2

. (25)

Prove the following lemmas.

Lemma 1. The relation

‖Z − Pn,νZ‖L2
gp(D) → 0, n, ν → ∞ (26)

is true for each function Z (u, v) (R)-integrable in the domain D.
Proof. Extend the function Z (u, v) to the square Ω in the following way:

Υ (u, v) =

{

Z (u, v) , (u, v) ∈ D,
0 , (u, v) ∈ Ω\D.

Then we get

Pn,νZ =

n
∑

k=0

ν
∑

φ=0

Υ(ukn, vφν) lkn (u)ωφν (v) = Qn,νΥ.

Indeed, Pn,νZ and the polynomial Qn,νΥ, being the interpolation polynomial of the func-
tion Υ, coincide along all the constructed nodal points, i.e. at the points (ukn, vφν)
(k = 0, 1, ... , n; φ = 0, 1, ... , ν). As the functions Z (u, v) and χD (u, v) are (R) –
integrable, the function Υ (u, v) also is (R)-integrable in the square Ω.

Now prove that for the function Υ (u, v) (R) – integrable in the square,

‖Υ−Qn,νΥ‖L2
gp(Ω) =

[∫∫

Ω
g (u) p (v) |Qn,νΥ−Υ|2 dudv

]
1

2

→ 0

as n, ν → ∞ (as in single variable function).

Denote by Υnν (u, v) best approximating to Υ (u, v) algebraic polynomial of order ≤ n
with respect to u, and of order ≤ ν with respect to v. Then it is known that the relations
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Qn,νΥnν (u, v) = Υnν (u, v) and (A+B)2 ≤ 2
(

A2 +B2
)

are true. The best approximation
is Enν (Υ). It is clear that

|Υ(u, v) −Υnν (u, v)| ≤ Enν (Υ) .

Taking into account what has been said, we have:

‖Υ−Qn,νΥ‖L2
gp(Ω) =

[
∫∫

Ω
g (u) p (v) |Qn,νΥ−Υ|2 dudv

] 1

2

=

=

{
∫∫

Ω
g (u) p (v) |[(Υ−Υnν) + (Qn,νΥnν −Qn,νΥ)]|2 dudv

} 1

2

≤

≤
{

2

∫∫

Ω
g (u) p (v)

[

|Υ−Υnν |2 + |Qn,νΥnν −Qn,νΥ|2
]

dudv

}
1

2

≤

≤
{

2

∫∫

Ω
g (u) p (v)

[

E2
nν (Υ)+

+





n
∑

k=0

ν
∑

φ=0

(Υnν (ukn, vφν)−Υ(ukn, vφν)) lkn (u)ωφν (v)





2

dudv







1

2

≤

≤







2

∫∫

Ω
g (u) p (v)



E2
nν (Υ) +





n
∑

k=0

ν
∑

φ=0

Enν (Υ) lkn (u)ωφν (v)





2

 dudv







1

2

=

=







2E2
nν (Υ)

∫∫

Ω
g (u) p (v)



1 +





n
∑

k=0

ν
∑

φ=0

lkn (u)ωφν (v)





2

 dudv







1

2

=

=

{

2E2
nν (Υ)

∫∫

Ω
g (u) p (v) (1 + 1) dudv

} 1

2

=

= 2Enν (Υ)

[∫ 1

0
g (u) du ·

∫ 1

0
p (v) dv

]

1

2

= 2Enν (Υ) ·M,

where

M =

[∫ 1

0
g (u) du ·

∫ 1

0
p (v) dv

]

1

2

.
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It is clear that Enν (Υ) → 0 as n, ν → ∞. Therefore, ‖Υ−Qn,νΥ‖
L2
gp(Ω) → 0 as n, ν → ∞.

At the points (u, v) ∈ D, Z (u, v) = Υ (u, v) and Pn,νZ (u, v) = Qn,νΥ(u, v). There-
fore, ‖Z − Pn,νZ‖L2

gp(D) ≤ ‖Υ−Qn,νΥ‖L2
gp(Ω) → 0 as n, ν → ∞. Thus, we get that

‖Z − Pn,νZ‖
L2
gp(D) → 0 if n, ν → ∞. The lemma is proved.J

This lemma is the analog of the Erdesh-Turan theorem on mean quadratic convergence
of Lagrange interpolation process for one-variable functions (see [8]).

Lemma 2. For any polynomial Znν (u, v) of the form

Znν (u, v) =

n
∑

k=0

ν
∑

φ=0

Ykφlkn (u)ωφν (v) , (ukn, vφν) ∈ D,

the estimation

‖Znν‖L2
gp(D) ≤ ‖Znν‖L2

gp(Ω) ≤ Cgp max
0 ≤ k ≤ n; 0 ≤ φ ≤ ν

(ukn, vφν) ∈ D

|Ykφ|

is true, where

Cgp =

[∫ 1

0
g (u) du ·

∫ 1

0
p (v) dv

]

1

2

. (27)

Proof. We have

‖Znν‖L2
gp(Ω) =

[∫∫

Ω
g (u) p (v) |Znν (u, v)|2 dudv

]
1

2

=

=





∫∫

Ω
g (u) p (v)

∣

∣

∣

∣

∣

∣

n
∑

k=0

ν
∑

φ=0

Ykφlkn (u)ωφν (v)

∣

∣

∣

∣

∣

∣

2

dudv





1

2

≤

≤





∫∫

Ω
g (u) p (v)





n
∑

k=0

ν
∑

φ=0

|Ykφlkn (u)ωφν (v)|





2

dudv





1

2

≤

≤





∫∫

Ω
g (u) p (v)





n
∑

k=0

ν
∑

φ=0

max
k, φ

|Ykφ| · |lkn (u)| · |ωφν (v)|





2

dudv





1

2

≤

≤

























max
k, φ

(ukn, vφν) ∈ D

|Ykφ|













2

∫∫

Ω
g (u) p (v)

n
∑

k=0

|lkn (u)|2
ν

∑

φ=0

|ωφν (v)|2 dudv













1

2

≤
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≤ max
k, φ

(ukn, vφν) ∈ D

|Ykφ| ·
[
∫ 1

0
g (u) du ·

∫ 1

0
p (v) dv

]

1

2

=

= Cgp max
k, φ

(ukn, vφν) ∈ D

|Ykφ| .

It is clear that ‖Znν‖L2
gp(D) ≤ ‖Znν‖L2

gp(Ω). Lemma 2 is proved.J

(24) and Lemma 2 yield

‖Pn,ν‖C(D)→L2
gp(D) ≤ Cgp, (28)

where C (D) is a Banach space of continuous functions on D with the norm

‖Z‖C(D) = max
(u,v)∈D

|Z (u, v)| .

Lemma 3. If D is a quadratic domain (i.e. if D = Ω), then for any function Z (u, v)
continuous on D the estimation

‖Z − Pn,νZ‖L2
gp(D) ≤ 2CgpEnν (Z) (29)

is true, where

Cgp =

[∫ 1

0
g (u) du ·

∫ 1

0
p (v) dv

]

1

2

,

Enν (Z) = inf
Ykφ

max
(u, v)∈D

∣

∣

∣

∣

∣

∣

Z (u, v)−
n
∑

k=0

ν
∑

φ=0

Ykφu
kvφ

∣

∣

∣

∣

∣

∣

is the best approximation of polynomials Znν (u, v) to Z (u, v) of degree ≤ n with respect
to u, and of degree ≤ ν with respect to v.

Proof. First we note that the continuous function posseses the best approximation (by
the Haar theorem).

From D = Ω it follows that for any polynomial of the given form Pn,νZnν (u, v) =
Znν (u, v). Therefore,

Z − Pn,νZ = (Z − Znν)− Pn,ν (Z − Znν)

is true and then

‖Z − Pn,νZ‖L2
gp(D) ≤

{

[∫ 1

0
g (u) du ·

∫ 1

0
p (v) dv

]

1

2

+
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+ ‖Pn,ν‖C(D)→L2
gp(D)

}

· max
(u, v)∈D

|Z (u, v) − Znν (u, v)| .

Using (28), and taking into account the arbitrariness of the polynomial Znν we get the
validity of the lemma. J

As far as we know, there is no propriate estimate for ‖Z − Pn,νZ‖
L2
gp(D) in case when

the domain D is of arbitrary form.

4. Finding the function K (x, t) by the collocation method

Denote

f (u) =
1

2

∫ 1

0
Γ (u, v; α, β) q (α) dα (30)

and

T (u, v; α, β) = Γ (u, v; α, β) q (α− β) . (31)

Then we can write the integral equation (14) in the following form:

H (u, v) = f (u) +

∫∫

D

T (u, v; α, β)H (α, β) dαdβ. (32)

We solve integral equation (32) by the collocation method. For that, we take the function
lkn (u) ·ωφν (v) as a linearly independent system and look for the solution of equation (32)
in the following form:

Hnν (u, v) =
n
∑

k=0

ν
∑

φ=0

ckφlkn (u)ωφν (v) , (ukn, vφν) ∈ D. (33)

If we substitute expression (33) into (32) and assume that the equation is satisfied, then
we have:

Hnν (u, v)− f (u)−
∫∫

D

T (u, v; α, β)Hnν (α, β) dαdβ = 0. (34)

To find the unknown coefficients ckφ, we take {(uin, vjν)} ∈ D (i = 0, 1, ... , n; j =
0, 1, ... , ν) as collocation (nodal) points. Then

{

Hnν (u, v)−
∫∫

D

T (u, v; α, β)Hnν (α, β) dαdβ − f (u)

}∣

∣

∣

∣ u = uin
v = vjν

= 0, (35)

where, i = 0, 1, ... , n; j = 0, 1, ... , ν, (uin, vjν) ∈ D. From this system of linear algebraic
equations we can determine ckφ. By (33), from system (35) we get the following linear
algebraic equation for the vector c(n, ν) = {ckφ}:
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c(n, ν) = Anνc
(n, ν) + Pnf, (36)

where

Pnf = {f (uin)} (37)

is the vector of f (u) at the nodal points uin and Anν is the matrix

Anν = {ai,j;k,φ} (38)

with

ai,j;k,φ =

∫∫

D

T (uin, vjν ; α, β) lkn (α) · ωφν (β) dαdβ (39)

(i, k = 0, 1, ... , n; j, φ = 0, 1, ... , ν) ((ukn, vφν) ∈ D, (uin, vjν) ∈ D).

Show that c(n, ν) = {ckφ} are uniquely found from linear algebraic equation (36).
Consider the integral equation (32) as a linear operator equation in L2

gp (D), i.e.

H = AH + f.

As the operator Pn,ν is an operator projecting the function of two variables in domain D
to the Lagrange polynomial, we can write the system of linear algebraic equations (35) as
follows:

Pn,ν (Hnν −AHnν − f) = 0, (40)

where

AH =

∫∫

D

T (u, v; α, β)H (α, β) dαdβ.

The polynomial Hnν is an algebraic polynomial of degree ≤ n with respect to u and of
degree ≤ ν with respect to v. Therefore, Pn,νHnν = Hnν .

So, we can write the system (40) as follows:

Hnν − Pn,νAHnν = Pn,νf. (41)

By lemma 1, the Lagrange polynomial of any continuous function of two variables con-
verges to that function in the Banach space L2

gp (D)

‖Pn,ν − J‖
C(D)→L2

gp(D) → 0, as n, ν → ∞.

Then, by the Banach-Steinhaus theorem, the norm of the sequence of operators Pn,ν is
bounded, i.e.

‖Pn,ν‖C(D)→L2
gp(D) ≤ M.
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It is known that the operator A is a completely continuous operator from the space
L2
gp (D) to the space C (D). Indeed, two conditions of compactness, i.e. the conditions of

regular boundedness and equicontinuity, are satisfied in. It is known that

AH =

∫∫

D

T (u, v; α, β)H (α, β) dαdβ =

∫∫

Du,v

q (α− β)H (α, β) dαdβ.

1. Show the regular boundedness:

‖AH‖C(D) =

∥

∥

∥

∥

∥

∫∫

Du,v

q (α− β)H (α, β) dαdβ

∥

∥

∥

∥

∥

C(D)

=

=

∥

∥

∥

∥

∥

∫∫

Du,v

[g (α) p (β)]
1

2

[g (α) p (β)]
1

2

q (α− β)H (α, β) dαdβ

∥

∥

∥

∥

∥

C(D)

≤

≤
∥

∥

∥

∥

∥

1

2

∫∫

Du,v

{

[g (α) p (β)]
1

2 H (α, β)
}2

dαdβ

∥

∥

∥

∥

∥

C(D)

+

+

∥

∥

∥

∥

∥

∥

1

2

∫∫

Du,v

{

q (α− β)

[g (α) p (β)]
1

2

}2

dαdβ

∥

∥

∥

∥

∥

∥

C(D)

=

=

∥

∥

∥

∥

∥

1

2

∫∫

Du,v

g (α) p (β) |H (α, β)|2 dαdβ
∥

∥

∥

∥

∥

C(D)

+

+

∥

∥

∥

∥

∥

1

2

∫∫

Du,v

|q (α− β)|2
g (α) p (β)

dαdβ

∥

∥

∥

∥

∥

C(D)

≤

≤
∣

∣

∣

∣

1

2
M1

∣

∣

∣

∣

+
1

2

∥

∥

∥

∥

∥

∫∫

Du,v

|q (α− β)|2
g (α) p (β)

dαdβ

∥

∥

∥

∥

∥

C(D)

=

=
1

2
|M1|+

1

2
sup

(u, v)∈D

∣

∣

∣

∣

∣

∫∫

Du,v

|q (α− β)|2
g (α) p (β)

dαdβ

∣

∣

∣

∣

∣

,

where

M1 =
{

‖H (α, β)‖L2
gp(D)

}2
=

∫∫

Du,v

g (α) p (β) |H (α, β)|2 dαdβ.
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Assume that the conditions
∫ 1
0 g (α) dα < ∞,

∫ 1
0 p (β) dβ < ∞ are satisfied. Then

for ∀ (u, v) ∈ D

sup

∣

∣

∣

∣

∣

∫∫

Du,v

|q (α− β)|2
g (α) p (β)

dαdβ

∣

∣

∣

∣

∣

≤ M2,

i.e. for ∀ (u, v) ∈ D

‖AH‖C(D) ≤ M.

2. Now we show the equicontinuity. Take ∀ ε > 0. Find ∃ δ for ∀ (u1, v1) ∈ D and
∀ (u2, v2) ∈ D for that for |u1 − u2| < δ, |v1 − v2| < δ

∥

∥

∥(AH)(u1, v1)
− (AH)(u2, v2)

∥

∥

∥

C(D)
≤ ε.

For simplicity we take u1 < u2, v1 < v2.

∣

∣

∣
(AH)(u1, v1)

− (AH)(u2, v2)

∣

∣

∣
=

=

∣

∣

∣

∣

∣

∫∫

Du1,v1

q (α− β)H (α, β) dαdβ −
∫∫

Du2,v2

q (α− β)H (α, β) dαdβ

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∫ u2

u1

dα

∫ v1

0
q (α− β)H (α, β) dβ −

∫ 1

u2

dα

∫ v2

v1

q (α− β)H (α, β) dβ

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∣

[∫ u2

u1

dα

∫ v1

0
g (α) p (β) |H (α, β)|2 dβ

]
1

2

·
[

∫ u2

u1

dα

∫ v1

0

|q (α− β)|2
g (α) p (β)

dβ

]
1

2

−

−
[
∫ 1

u2

dα

∫ v2

v1

g (α) p (β) |H (α, β)|2 dβ
]

1

2

·
[

∫ 1

u2

dα

∫ v2

v1

|q (α− β)|2
g (α) p (β)

dβ

]
1

2

∣

∣

∣

∣

∣

∣

≤

≤
∣

∣

∣

∣

∣

[∫ u2

u1

v1N1dα

]
1

2

·
[∫ u2

u1

v1N2dα

]
1

2

−

−
[∫ 1

u2

(v2 − v1)N1dα

]

1

2

·
[∫ 1

u2

(v2 − v1)N2dα

]

1

2

∣

∣

∣

∣

∣

≤
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≤
∣

∣

∣

∣

[

v21 (u2 − u1)
2 N1N2

]
1

2 −
[

(1− u2)
2 (v2 − v1)

2N1N2

]
1

2

∣

∣

∣

∣

≤

≤
∣

∣

∣

∣

[

N1N2v
2
1δ

2
]
1

2 −
[

N1N2 (1− u2)
2 δ2

] 1

2

∣

∣

∣

∣

≤

≤
∣

∣

∣

√

N1N2v1δ −
√

N1N2 (1− u2) δ
∣

∣

∣
≤

≤
∣

∣

∣

√

N1N2 (v1 + u2 − 1)
∣

∣

∣
|δ| ≤ ε,

where

N1 = sup
α,β

g (α) p (β) |H (α, β)|2 , N2 = sup
α,β

|q (α− β)|2
g (α) p (β)

.

Thus, choosing

δ =
ε√

N1N2 (v1 + u2 − 1)
,

we get the validity of the above relation so, the operator A maps any bounded set to the
compact set, i.e. the operator A : L2

gp (D) → C (D) is completely continuous.
Now if we multiply the operators Pn,ν from the right by the continuous operator, we

obtain the sequence of operators Pn,νA ∈
[

L2
gp (D) → C (D)

]

converging in norm to the
operator JA = A (J is a unique operator), i.e. we get the validity of the relation

‖Pn,νA−A‖C(D)→L2
gp(D) → 0 as n, 0 → ∞

If

A, Pn,νA ∈
[

L2
gp (D) → C (D)

]

,

then for sufficiently large values of n ≥ n0 and ν ≥ ν0

‖A− Pn,νA‖
∥

∥

∥(J −A)−1
∥

∥

∥ ≤ φ < 1.

Here the operator (J −A)−1 does exist, because the integral equation has a solution and
the operator A in the space L2

gp (D) is a completely continuous operator (also is an inversely
continuous operator). According to the known theorem (see [9]), we get that there exists
the operator (J − Pn,νA)

−1. In other words, equation (35) (or (36)) has a unique solution
for sufficiently large values of n and ν, n ≥ n0 and ν ≥ ν0.

Now estimate the error. Denote byH0 the exact solution. As the operator (J − Pn,νA)
−1

has the inverse, we have

Hnν = (J − Pn,νA)
−1 f = (J − Pn,νA)

−1 (J −A)H0 =
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= (J − Pn,νA)
−1 [(J − Pn,νA) + (Pn,νA−A)]H0 =

= (J − Pn,νA)
−1 (J − Pn,νA)H0 + (J − Pn,νA)

−1 (Pn,νA−A)H0 =

= H0 + (J − Pn,νA)
−1 (Pn,νA−A)H0.

Hence

Hnν −H0 = (J − Pn,νA)
−1 (Pn,νA−A)H0.

Then

‖Hnν −H0‖L2
gp(D) ≤ ‖J − Pn,νA‖−1

L2
gp(D)→C(D) ‖A‖

∥

∥

∥
P(n,ν)H0

∥

∥

∥

L2
gp(D)

,

where

P(n,ν) = J − Pn,ν .

Thus we get

‖Hnν −H0‖L2
gp(D) = O (‖H0 − Pn,νH0‖) .

Using Lemma 3, we get

‖Hnν −H0‖L2
gp(D) ≤ c ‖H0 − Pn,νH0‖L2

gp(D) ≤ 2cCgpEnν (H0)

where c is a constant.

So, we completed the proof of the following theorem.
Theorem. Assume that the kernel q (α− β) is a continuous function in domain D,

the conditions
∫ 1
0

dα
g(α) < ∞,

∫ 1
0

dβ
p(β) < ∞ are satisfied, and H0 (α, β) is a unique exact

solution of integral equation (32). Then for sufficiently large values of n and ν, n, ν > N
the system of linear algebraic equations (35) (or (36)) possesses a unique solution and
this approximate solution Hnν (α, β) converges to the exact solution H0 (α, β) in the mean
square sense with respect to g (α) p (β). Thus,

‖Hnν −H0‖L2
gp(D) ≤ c ‖H0 − Pn,νH0‖L2

gp(D) ≤ 2cCgpEnν (H0) ,

where c is a constant.

Thus, we have found the approximate solution of integral equation (32) in the form

Hnν (u, v) =
n
∑

k=0

ν
∑

φ=0

ckφlkn (u)ωφν (v) , (ukn, vφν) ∈ D.

According to substitution (10),
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H (u, v) = K (u− v, u+ v) = K (x, t) .

So,

H

(

x+ t

2
,
t− x

2

)

= K (x, t) .

Then

K̃ (x, t) =
n
∑

k=0

ν
∑

φ=0

ckφlkn

(

x+ t

2

)

ωφν

(

t− x

2

)

= Hnν

(

x+ t

2
,
t− x

2

)

, (xkn, tφν) ∈ G.

This is the approximate solution of integral equation (9) or Goursat problem (7), (8).
Now we can construct the Jost function. But, to find the numbers λ1, λ2, ... , λk, we

must construct f (λ, x) in the upper half-plain. In other words, we must construct the
Jost function f (λ, 0).

5. Construction of the function f (λ, 0)

We showed above that the function K̃ (x, t) is of the form

K̃ (x, t) =

n
∑

k=0

ν
∑

φ=0

ckφlkn

(

x+ t

2

)

ωφν

(

t− x

2

)

, (xkn, tφν) ∈ G. (42)

TO construct the function f (λ, 0), we put x = 0 in (42) and get:

K̃ (0, t) =
n
∑

k=0

ν
∑

φ=0

ckφlkn

(

t

2

)

ωφν

(

t

2

)

, (0, tφν) ∈ G. (43)

Allowing for (43) in (6), we find the Jost function in the form of the polynomial

f (λ, 0) = 1 +

∫ 2

0

n
∑

k=0

ν
∑

φ=0

ckφlkn

(

t

2

)

ωφν

(

t

2

)

eiλtdt, (0, tφν) ∈ G. (44)

The authors believe that it would be interesting to try to find the roots λ1, λ2, ..., λk

of polynomial f(λ, 0).
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