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On the Key Estimate for Variable Exponent Spaces

L. Diening, S. Schwarzacher

Abstract. The so-called key estimate is a fundamental tool for variable exponent spaces. Among
other things it implies the boundedness of the Hardy-Littlewood maximal operator, which opens
the door to the tools of harmonic analysis. We give a survey on the key estimate and present an
improved version, which allows to apply the key estimate to a larger class of functions and provides
better error estimates.
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1. History of the key estimate

In recent years there has been an extensive growth in the field of variable exponent
spaces Lp(·). Different from the classical Lebesgue spaces Lp, the exponent is not a constant
but a function p : Rn → [1,∞] depending on the space-variable. The introduction of these
spaces goes already back to Orlicz [11]. We refer to the recent books [3, 6] for a detailed
study of the variable exponent spaces.

A major breakthrough in the theory of variable exponent spaces was the fact that the
right condition on the exponent was found: the log-Hölder continuity. This condition,
which consists of a local and a decay condition, ensures the important boundedness for
the Hardy-Littlewood maximal operator M on Lp(·), see [4, 8]. In fact for such exponents
(which are bounded away from one) the boundedness of M is a consequence of the key
estimate for variable exponent spaces, which roughly reads

(
−

∫

Q

|f | dx

)p(y)

≤ c −

∫

Q

|f |p(x) dx+ error (1.1)

where Q is a ball or cube, y ∈ Q and the “error” denotes an appropriate error term, which
is essentially independent of f . See Theorem 1 for the precise statement.

Since both sides of the key estimate have a different scaling behavior, it cannot hold for
all functions f , but we have to require that a certain norm of f is bounded. The original
assumption form [8] was ‖f‖p(·) ≤ 1. To conclude from this the boundedness of M it was
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necessary to prove the key estimate with p(·) replaced by p(·)/p−, where p− = inf p. Note
that [8] was before the discovery of the log-Hölder decay condition, so it was additionally
assumed that p is constant outside a large, compact set. This restriction was overcome
in [4] by introducing the log-Hölder decay condition. In that article the key estimate is
not used exactly in the form above, but the crucial estimates in their Lemma 2.3 and
Lemma 2.5 are very similar to the key estimate. The only difference is that the error was
not independent of f but contained an additional term depending on the Hardy operator
of f . However, the crucial condition for the validity of the estimates was again ‖f‖p(·) ≤ 1;

their estimates involved used the exponent p(·)/p− as well.

In [9, Lemma 3.1] and [5, Lemma 3.3] it has been discovered that it is possible to derive
the key estimate for all log-Hölder continuous exponents which satisfy the decay condition.
Moreover, this key estimate holds for the full range 1 ≤ p− ≤ p+ ≤ ∞, where p+ = sup p,
while the ones of [8, 4] were restricted to the case p+ < ∞. Again the boundedness of M
is an immediate consequence for p− > 1.

It was also discovered in [9, 5] that it is not necessary to prove the key estimate for
the exponent p(·)/p−. Instead it suffices to prove the key estimate for the exponent p(·)
for a larger class of functions, namely ‖f‖Lp(·)+L∞ ≤ 1. Indeed, the embedding Lp(·) ↪→

Lp(·)/p− + L∞ allows to apply the key estimate then directly to the exponent p(·)/p−.
The same key estimate also appears in [6, Theorem 4.2.4] with a slight improvement (an
additional indicator function χ{|f |≤1} appears in the error term), which is needed for a
suitable weak-type estimate of the Riesz potential operator, see [6, Theorem 6.1.11].

From the point of application, it is important that we can apply the key estimate even
to a larger class of functions. For example, in the study of higher integrability of weak
solutions to the p(·)-Laplacian system [1, 12], i.e.

−div(|∇u|p(·)−2∇u) = −div(|F |p(·)−2F )

for certain F , it is very useful to apply the key estimate to functions in the unit ball of

Lp−
Q + L∞, where p−Q = infQ p(·). We will use this approach for example in [10]. It is

the aim of this paper to provide the necessary extended version of the key estimate. In
particular, we will show that the key estimate holds for all functions from the unit ball of
L1+L∞, which includes all of the cases mentioned above. Actually, we will allow an even
larger class of functions. Unfortunately, this improvement requires us to restrict the key
estimate again to p+ < ∞. This is however sufficient for the applications that we have in
mind.

Another application that we have in mind comes from the finite element approximation
of a p(·)-Laplacian system, see [2]. To derive the a priori error estimates for the discrete
weak solution it is necessary to control the Scott-Zhang [13] interpolation operator in the
variable exponent context. These estimates are again based on the key estimate. For
the applications above it was sufficient that the error of the key estimate is controlled in
L1,∞∩L∞, where L1,∞ is the Marcinkiewicz space. However, in the finite element context,
we also need that the error is small for small Q. Therefore, we present a key estimate
that additionally has this feature. This kind of smallness was first introduced in the key
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estimate of [5] (in the case of bounded Lp(·) + L∞ norm) and used in the study of spaces
with variable smoothness and integrability [7].

It is the goal of this paper to provide a key estimate that combines the advantages of
all the approaches mentioned above.

2. The key estimate

For a measurable set E ⊂ R
n let |E| be the Lebesgue measure of E and χE its

characteristic function. For 0 < |E| < ∞ and f ∈ L1(E) we define the mean value of f
over E by

〈f〉E := −

∫

E

f dx :=
1

|E|

∫

E
f dx.

For an open set Ω ⊂ R
n let L0(Ω) denote the set of measurable functions.

Let us introduce the spaces of variable exponents Lp(·). We use the notation of the
recent book [6]. We define P to consist of all p ∈ L0(Rn) with p : R

n → [1,∞] (called
variable exponents). For p ∈ P we define p−Ω := ess infΩ p and p+Ω := ess supΩ p. Moreover,
let p+ := p+

Rn and p− := p−
Rn .

For t ≥ 0 and q ∈ [1,∞) we define

ϕ̃q(t) :=
1

q
tq, ϕ̄q(t) := tq

and

ϕ̄∞(t) := ϕ̃∞(t) := ∞ · χ(1,∞)(t) =

{
0 if t ∈ [0, 1],

∞ if t ∈ (1,∞).

Moreover, by ϕq we denote in the following either ϕ̃q or ϕ̄q.
For p ∈ P the generalized Lebesgue space Lp(·)(Ω) is defined as

Lp(·)(Ω) :=
{
f ∈ L0(Ω) : ‖f‖Lp(·)(Ω) < ∞

}
,

where

‖f‖p(·) := ‖f‖Lp(·)(Ω) := inf

{
λ > 0 :

∫

Rn

ϕp(x)

(∣∣∣∣
f(x)

λ

∣∣∣∣
)
dx ≤ 1

}
.

Note that both choices ϕ̃p(·) and ϕ̄p(·) produce the same space. The induced norms are
different but equivalent, see [6, (3.2.2)]. The advantage of ϕ̄p(·) is that the norm is just
the classical Lp norm if p(·) is constant. The advantage of ϕ̃p(·) is that it behaves better
under duality. The key estimate that we present will be valid for both versions of ϕp(·).

We say that a function α : Rn → R is log-Hölder continuous on Ω if there exists a
constant c ≥ 0 and α∞ ∈ R such that

|α(x) − α(y)| ≤
c

log(e+ 1/|x − y|)
and |α(x) − α∞| ≤

c

log(e+ |x|)
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for all x, y ∈ R
n. The first condition describes the so called local log-Hölder continuity and

the second the decay condition. The smallest such constant c is the log-Hölder constant
of α. We define P log to consist of those exponents p ∈ P for which 1

p : Rn → [0, 1] is log-

Hölder continuous. By p∞ we denote the limit of p at infinity, which exists for p ∈ P log. If
p ∈ P is bounded, then p ∈ P log is equivalent to the log-Hölder continuity of p. However,
working with 1

p gives better control of the constants especially in the context of averages
and maximal functions. Therefore, we define clog(p) as the log-Hölder constant of 1/p.
Expressed in p we have for all x, y ∈ R

n

|p(x)− p(y)| ≤
(p+)2clog(p)

log(e+ 1/|x− y|)
and |p(x)− p∞| ≤

(p+)2clog(p)

log(e+ |x|)
.

Remark 1. It is also possible to consider log-Hölder continuous exponents on a do-
main Ω ⊂ R

n. However, due to [6, Proposition 4.17] it is always possible to extend
such exponents to R

n while preserving the log-Hölder constants.

We are now able to present our key estimate.

Theorem 1 (Key estimate). Let p ∈ P log(Rn) with p+ < ∞. Then for every m > 0 there
exists β ∈ (0, 1) only depending on m and clog(p) and p+ such that

ϕp(x)

(
β−

∫

Q

|f(y)| dy

)
≤ −

∫

Q

ϕp(y)(|f(y)|) dy + eQ(x),

with

eQ(x) =
1

2
min {1, |Q|m}−

∫

Q

(
(e+|x|)−m+(e+|y|)−m

)
χ{0<|f(y)|≤1} dy

for every cube (or ball) Q ⊂ R
n, all x ∈ Q, and all f ∈ L1(Q) with

−

∫

Q

|f | dy ≤ max {1, |Q|−m}.

We will prove Theorem 1 below on page 72.

Remark 2. Let us point out that Theorem 1 is in particular valid for all functions f with
‖f‖L1+L∞ ≤ 1, since

−

∫

Q

|f | dx ≤ 2 ‖f‖L1+L∞ max {1, |Q|−1}.

The additional constant 2 can be removed by adapting β accordingly. The same conclusion
also holds for the other lemmas and corollaries of this paper.
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Before we get to the proof of Theorem 1 we need a few auxiliary results.

Lemma 1. Let p ∈ P log(Rn) and m > 0. Then there exists β ∈ (0, 1) which only depends
on clog(p) and m such that

ϕp(x)

(
βϕ−1

p−
Q

(
λmax {1, |Q|−m}

))
≤ λmax {1, |Q|−m},

for all λ ∈ [0, 1], any cube (or ball) Q ⊂ R
n and any x ∈ Q.

Proof. The case max {1, |Q|−m} = 1 is obvious. The case max {1, |Q|−m} = |Q|−m

follows from [6, Lemma 4.2.1] raised to the power m.J

Lemma 2. Let p ∈ P(Rn) and let 1
p be locally log-Hölder continuous with p+ < ∞. Define

q ∈ P log(Rn × R
n) by

1

q(x, y)
:= max

{
1

p(x)
−

1

p(y)
, 0

}
.

Then for any γ ∈ (0, 1) there exists β ∈ (0, 1) only depending on γ, clog(p) and p+ such
that

ϕp(x)

(
β−

∫

Q

|f(y)| dy

)
≤ −

∫

Q

ϕp(y)(|f(y)|) dy +−

∫

Q

ϕq(x,y)(γ)χ{0<|f(y)|≤1} dy

for every cube (or ball) Q ⊂ R
n, x ∈ Q, and f ∈ L1(Q) with

−

∫

Q

|f | dy ≤ max {1, |Q|−m}.

Proof. The proof is in most parts the same as in [6], so we only point out the differences.
As there, we prove it with no loss of generality for ϕ̄. We split f into three parts

f1(y) := f(y)χ{y∈Q : |f(y)|>1},

f2(y) := f(y)χ{y∈Q : |f(y)|≤1,p(y)≤p(x)},

f3(y) := f(y)χ{y∈Q : |f(y)|≤1,p(y)>p(x)}.

The estimates for f2 and f3 are just as in [6] so we need to adapt the estimate for f1.
Let A := −

∫
Q f1 dy. We can assume A 6= 0. Then by the assumptions on f we have

A ≤ max {1, |Q|−m}. So by Lemma 1 we get for some β̃ > 0

ϕ̄p(x)

(
β̃ϕ̄−1

p−
Q

(
A
))

≤ A.

Hence, for β := β̃p+

ϕ̄p(x)(βA) ≤ ϕ̄p−
Q

(
ϕ̄p(x)

(
β̃ϕ̄−1

p−
Q

(A)
) 1
A

)
ϕ̄p−

Q
(A) ≤ ϕ̄p−

Q
(A).
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This and Jensen’s inequality imply

ϕ̄p(x)

(
β−

∫

Q

f1dy

)
≤ ϕ̄p−

Q

(
−

∫

Q

f1dy

)
≤ −

∫

Q

ϕ̄p−
Q
(|f1|)dy

= −

∫

Q

ϕ̄p−
Q
(|f |)χ{|f |≤1}dy ≤ −

∫

Q

ϕ̄p(y)(|f |)dy.

This proves the estimate for f1. The rest of the proof is as in [6]. J

We can now prove our key estimate.

Proof of Theorem 1. In view of Lemma 2 it suffices to prove

−

∫

Q

ϕq(x,y)(γ)χ{0<|f(y)|≤1} dy ≤ eQ(y).

This follows exactly from the proof of [5, Lemma 3.3] while keeping the indicator func-
tion χ{0<|f(y)|≤1} at all steps. The main idea is to estimate ϕq(x,y)(γ) by the square of

ϕq(x,y)(γ
1/2). One factor is used to produce the min {1, |Q|m} part of eQ. The other factor

is used to produce the mean value integral part of eQ.

3. A few consequences of the key estimate

Let us state a few direct consequences of our improved key estimate. We begin with an
integral version of the key estimate that we will need in the finite element analysis of [2].

Corollary 1. Let p ∈ P log(Rn) with p+ < ∞. Then for every m > 0 there exists β ∈ (0, 1)
only depending on m and clog(p) such that

∫

Q
ϕp(x)

(
β−

∫

Q

|f(y)| dy

)
dx ≤

∫

Q
ϕp(y)(|f(y)|) dy

+min {1, |Q|m}

∫

Q
(e+ |y|)−m dy,

for every cube (or ball) Q ⊂ R
n and all f ∈ L1(Q) with

−

∫

Q

|f | dy ≤ max {1, |Q|−m}.

The following lemma is a Jensen’s type inequality with singular measure like [6,
Lemma 6.1.12].
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Corollary 2 (Jensen inequality with singular measure). Let p ∈ P log(Rn) with p+ < ∞.
For every m > 0 there exists β ∈ (0, 1) only depending on m and clog(p) such that

ϕp(x)

(
β

∫

B

|f(y)|

r |x− y|n−1 dy

)
≤

∫

B

ϕp(y)(|f(y)|)

r |x− y|n−1 dy

+min {1, |B|m}M
(
(e+ |·|)−m

)
(x)

for every ball B with radius r and all f ∈ L1(B) with

−

∫

Q

|f | dy ≤ max {1, |B|−m}.

As in [6, Proposition 8.2.11] (which is based on [12]) this immediately implies

Corollary 3. Let p ∈ P log(Rn) satisfy 1 < p− ≤ p+ < ∞ and let s ≤ p− satisfy
s ∈ [1, n

n−1). Then for every m > 0 there exists a constant c depending on n, clog(p),
m, and s such that

−

∫

BR

(
|v − 〈v〉BR

|

R

)p(x)

dx ≤ c

(
−

∫

BR

|∇v|
p(·)
s dx

)s

+ cmin {1, |BR|
m} −

∫

BR

(e+ |x|)−ms dx

for every ball BR with radius R, and every v ∈ W 1,
p(·)
s (BR) with

−

∫

Q

|∇v| dy ≤ max {1, |Q|−m}.

This corollary is very important for [10].
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