Some properties of $\left(X_{d}, X_{d}^{*}\right)$ and $\left(l^{\infty}, X_{d}, X_{d}^{*}\right)$-Bessel multipliers

M.H. Faroughi*,E. Osgooei, A. Rahimi

Abstract

We use the concepts of α and β-duals to define (X_{d}, X_{d}^{*}) and ($l^{\infty}, X_{d}, X_{d}^{*}$)-Bessel multipliers in Banach spaces. We investigate the properties of these multipliers when the symbol $m \in l^{\infty}, X_{d}$. In particular, we study the possibility of compactness and invertibility of these multipliers depending on their symbols and corresponding sequences.

Key Words and Phrases: X_{d}-Bessel sequence, $\left(X_{d}, X_{d}^{*}\right)$-Bessel multiplier, $\left(l^{\infty}, X_{d}, X_{d}^{*}\right)$-Bessel multiplier.
2010 Mathematics Subject Classifications: 42C40, 42C15, 41A58.

1. Introduction

In [8], Schatten presented operators of the form $\sum m_{k} \phi_{k} \otimes \overline{\psi_{k}}$, where $\left\{\phi_{k}\right\}$ and $\left\{\psi_{k}\right\}$ are orthonormal families. Balazs replaced these orthonormal families with Bessel sequences to define Bessel multipliers [1]. Bessel multipliers for p-Bessel sequences in Banach spaces and for g-Bessel sequences in Hilbert spaces were introduced in [6] and [7], respectively. Multipliers play important roles in both pure and applied mathematics. Gabor multipliers which are also known as Gabor filters are used in the field of acoustics.
Throughout this paper, X is a Banach space, X_{d} is a complex sequence space; that is, a vector space whose elements are sequences of complex numbers. All sequence spaces will be assumed to include ϕ, the set of finitely nonzero sequences. A sequence space X_{d} is called a BK-space, if it is a Banach space and all of the coordinate functionals $\left\{a_{k}\right\} \rightarrow a_{k}$ are continuous. A BK-space is called solid if whenever $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ are sequences with $\left\{b_{k}\right\} \in X_{d}$ and $\left|a_{k}\right| \leq\left|b_{k}\right|$, for each $k \in \mathbb{N}$, then it follows that $\left\{a_{k}\right\} \in X_{d}$ and $\left\|\left\{a_{k}\right\}\right\|_{X_{d}} \leq$ $\left\|\left\{b_{k}\right\}\right\|_{X_{d}}$. A sequence space X_{d} is called an AK-space if it is a topological vector space and $\left\{a_{k}\right\}=\lim _{n} p_{n}\left(\left\{a_{k}\right\}\right)$ for each $\left\{a_{k}\right\} \in X_{d}$, where $p_{n}\left(\left\{a_{k}\right\}\right)=\left(a_{1}, a_{2}, \ldots, a_{n}, 0, \ldots\right)$.
In [4], Köthe has assigned for each sequence space X_{d} another sequence space X_{d}^{α}, α-dual (Köthe-dual) of X_{d} which is defined by:

$$
X_{d}^{\alpha}=\left\{\left\{a_{k}\right\}: \sum_{k=1}^{\infty}\left|a_{k} b_{k}\right|<\infty, \quad \forall\left\{b_{k}\right\} \in X_{d}\right\},
$$

*Corresponding author.
and X_{d}^{β} for the β-dual of X_{d} defined by:

$$
X_{d}^{\beta}=\left\{\left\{a_{k}\right\}: \sum_{k=1}^{\infty} a_{k} b_{k} \text { converges }, \quad \forall\left\{b_{k}\right\} \in X_{d}\right\}
$$

It is evident that $X_{d}^{\alpha} \subseteq X_{d}^{\beta}$. We note that α and β-duals of a BK-space X_{d} are BK-spaces with respect to the norms

$$
\begin{equation*}
\left\|\left\{a_{k}\right\}\right\|_{\alpha}=\sup _{\left\|\left\{b_{k}\right\}\right\|_{X_{d}} \leq 1} \sum_{k=1}^{\infty}\left|a_{k} b_{k}\right| \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left\{a_{k}\right\}\right\|_{\beta}=\sup _{\left\|\left\{b_{k}\right\}\right\|_{X_{d}} \leq 1}\left|\sum_{k=1}^{\infty} a_{k} b_{k}\right| \tag{1.2}
\end{equation*}
$$

respectively. Also if X_{d} is a solid BK-space, then $X_{d}^{\alpha}=X_{d}^{\beta}[5,10]$.
Remark 1.1. We note that if X_{d} is a solid BK-space, the norms defined in (1.1) and (1.2) are equivalent by the open mapping theorem.

It is proved in [5, 10], that the spaces X_{d}^{*} and X_{d}^{β} are isometrically isomorphic with the norm defined in (1.2), when X_{d} is a BK-AK-space. So by Remark 1.1, we deduce that if X_{d} is a solid BK-AK-space, then the spaces X_{d}^{*} and X_{d}^{α} are isomorphic with the norm defined in (1.1) and there exist $K, K^{\prime}>0$ such that

$$
\begin{equation*}
K^{\prime}\left\|\left\{a_{k}\right\}\right\|_{X_{d}^{*}} \leq\left\|\left\{a_{k}\right\}\right\|_{\alpha} \leq K\left\|\left\{a_{k}\right\}\right\|_{X_{d}^{*}}, \quad\left\{a_{k}\right\} \in X_{d}^{*} \simeq X_{d}^{\alpha} \tag{1.3}
\end{equation*}
$$

where K^{\prime} can be set to 1 .
Lemma 1.2. [3] Let $\left\{e_{k}\right\}$ be a Schauder basis of a normed space X. The canonical projections $P_{n}: X \rightarrow X$, where $P_{n}\left(\sum_{i=1}^{\infty} a_{i} e_{i}\right)=\sum_{i=1}^{n} a_{i} e_{i}$, satisfy:
(i) $\operatorname{dim}\left(P_{n}(X)\right)=n$;
(ii) $P_{n} P_{m}=P_{m} P_{n}=P_{\min (m, n)}$;
(iii) $P_{n}(x) \rightarrow x$ in X for every $x \in X$.

Definition 1.3. Let X be a Banach space and X_{d} be a BK-space. A countable sequence $\left\{g_{k}\right\}_{k=1}^{\infty}$ in the dual X^{*} is called an X_{d}-frame for X if
(i) $\left\{g_{k}(f)\right\} \in X_{d}, \quad f \in X$;
(ii) the norms $\|f\|_{X}$ and $\left\|\left\{g_{k}(f)\right\}\right\|_{X_{d}}$ are equivalent i.e., there exist constants $A, B>0$ such that

$$
\begin{equation*}
A\|f\|_{X} \leq\left\|\left\{g_{k}(f)\right\}\right\|_{X_{d}} \leq B\|f\|_{X}, \quad f \in X \tag{1.4}
\end{equation*}
$$

The constants A and B are called lower and upper X_{d}-frame bounds, respectively. If (i) and the upper condition in (1.4), are satisfied, then $\left\{g_{k}\right\}$ is called an X_{d}-Bessel sequence for X with bound B. We call $\left\{g_{k}\right\}$ a tight X_{d}-frame if $A=B$ and a Parseval X_{d}-frame if $A=B=1$.

Definition 1.4. Let $\left\{g_{k}\right\}$ be a sequence of elements in X^{*} and $\left\{m_{k}\right\} \subseteq \mathbb{C}$. We call $\left\{g_{k}\right\}$ a weighted X_{d}-frame for X, if the sequence $\left\{m_{k} g_{k}\right\}$ is an X_{d}-frame for X.

Proposition 1.5. [2] Suppose that X_{d} is a BK-space for which the canonical unit vectors $\left\{e_{k}\right\}$ form a Schauder basis. Then $\left\{g_{k}\right\} \subseteq X^{*}$ is an X_{d}^{*}-Bessel sequence for X with bound B if and only if the operator

$$
T:\left\{d_{k}\right\} \rightarrow \sum_{k=1}^{\infty} d_{k} g_{k},
$$

is well defined (hence bounded) from X_{d} into X^{*} and $\|T\| \leq B$.
Definition 1.6. A sequence $\left\{f_{k}\right\} \subseteq X$ is called an X_{d}-Riesz basis for X, if it is complete in X and there exist constants $A, B>0$ such that

$$
A\left\|\left\{c_{k}\right\}\right\|_{X_{d}} \leq\left\|\sum_{k=1}^{\infty} c_{k} f_{k}\right\| \leq B\left\|\left\{c_{k}\right\}\right\|_{X_{d}}, \quad\left\{c_{k}\right\} \in X_{d}
$$

The constants A and B are called lower and upper X_{d}-Riesz basis bounds, respectively. If $\left\{f_{k}\right\}$ is an X_{d}-Riesz basis for $\overline{\operatorname{span}}_{k}\left\{f_{k}\right\}$, then $\left\{f_{k}\right\}$ is called an X_{d}-Riesz sequence.

Proposition 1.7. [9] Suppose that X_{d} is a reflexive BK-space for which the canonical unit vectors $\left\{e_{k}\right\}$ form a Schauder basis. Assume that $\left\{\psi_{k}\right\} \subseteq X^{*}$ is an X_{d}^{*}-Riesz basis for X^{*} with lower bound A and upper bound B. Then there exists a unique sequence $\left\{\tilde{\psi}_{k}\right\} \subseteq X$, which is an X_{d}-Riesz basis for X with lower bound $\frac{1}{B}$ and upper bound $\frac{1}{A}$, such that

$$
\begin{aligned}
& f=\sum_{k=1}^{\infty} \psi_{k}(f) \tilde{\psi}_{k}, \quad f \in X, \\
& g=\sum_{k=1}^{\infty} g\left(\tilde{\psi}_{k}\right) \psi_{k}, \quad g \in X^{*} .
\end{aligned}
$$

This sequence $\left\{\tilde{\psi}_{k}\right\}$ is the unique biorthogonal to $\left\{\psi_{k}\right\}$.
Throughout the following sections, X is a reflexive Banach space and X_{d} is a solid, reflexive, BK-space such that the canonical unit vectors $\left\{e_{k}\right\}$ form a Schauder basis for X_{d}.

2. Main Results

In the following theorem by the concepts of α and β-duals, we investigate boundedness of multipliers in two different cases:

Theorem 2.1. Suppose that $\left\{\phi_{k}\right\} \subseteq X$ is an X_{d}^{*}-Bessel sequence for X^{*} with bound B^{\prime}. Then the following statements hold:
(i) Let $\left\{\psi_{k}\right\} \subseteq X^{*}$. Suppose that there exists $P>0$ such that $\left\|\psi_{k}\right\| \leq P$ for each $k \in \mathbb{N}$, and $m=\left\{m_{k}\right\} \in X_{d}$. Then the operator $M=M_{m,\left(\phi_{k}\right),\left(\psi_{k}\right)}: X \rightarrow X$ defined by:

$$
M_{m,\left(\phi_{k}\right),\left(\psi_{k}\right)}(f)=\sum_{k=1}^{\infty} m_{k} \psi_{k}(f) \phi_{k}, \quad f \in X,
$$

is well defined and bounded.
(ii) Let $\left\{\psi_{k}\right\} \subseteq X^{*}$ be an X_{d}-Bessel sequence for X with bound B, and $m=\left\{m_{k}\right\} \in l^{\infty}$. Then the operator $M^{\prime}=M_{m,\left(\phi_{k}\right),\left(\psi_{k}\right)}^{\prime}: X \rightarrow X$ defined by:

$$
M_{m,\left(\phi_{k}\right),\left(\psi_{k}\right)}^{\prime}(f)=\sum_{k=1}^{\infty} m_{k} \psi_{k}(f) \phi_{k}, \quad f \in X,
$$

is well defined and bounded.
Proof. (i) First, we prove that $\left\{\sum_{k=1}^{n} m_{k} \psi_{k}(f) \phi_{k}\right\}_{n=1}^{\infty}$ is Cauchy in X. Consider $m, n \in \mathbb{N}, m>n$. Then we have

$$
\begin{aligned}
\left\|\sum_{k=n+1}^{m} m_{k} \psi_{k}(f) \phi_{k}\right\| & =\sup _{g \in X^{*},\|g\| \leq 1}\left|\sum_{k=n+1}^{m} m_{k} \psi_{k}(f) \phi_{k}(g)\right| \\
& \leq P\|f\| \sup _{g \in X^{*},\|g\| \leq 1} \sum_{k=n+1}^{\infty}\left|m_{k} \phi_{k}(g)\right|,
\end{aligned}
$$

Now, by (1.1) and the proof of the first Proposition in [11], we have

$$
\left\|\sum_{k=n+1}^{m} m_{k} \psi_{k}(f) \phi_{k}\right\| \leq P\|f\|\left\|\left\{m_{k}\right\}-p_{n}\left(\left\{m_{k}\right\}\right)\right\|_{X_{d}} \sup _{g \in X^{*},\|g\| \leq 1}\left\|\left\{\phi_{k}(g)\right\}\right\|_{\alpha},
$$

hence by (1.3), there exists $K>0$ such that

$$
\begin{aligned}
\left\|\sum_{k=n+1}^{m} m_{k} \psi_{k}(f) \phi_{k}\right\| & \leq K P\|f\|\left\|\left\{m_{k}\right\}-p_{n}\left(\left\{m_{k}\right\}\right)\right\|_{X_{d}} \sup _{g \in X^{*},\|g\| \leq 1}\left\|\left\{\phi_{k}(g)\right\}\right\|_{X_{d}^{*}} \\
& \leq K P B^{\prime}\|f\|\left\|\left\{m_{k}\right\}-p_{n}\left(\left\{m_{k}\right\}\right)\right\|_{X_{d}} .
\end{aligned}
$$

Since the canonical unit vectors $\left\{e_{k}\right\}$ form a Schauder basis for X_{d}, by Lemma 1.2, $\lim _{n}\left\|\left\{m_{k}\right\}-p_{n}\left(\left\{m_{k}\right\}\right)\right\|_{X_{d}}=0$. Therefore $\left\{\sum_{k=1}^{n} m_{k} \psi_{k}(f) \phi_{k}\right\}_{n=1}^{\infty}$ is Cauchy in X and so M is well defined.
Now we show that M is bounded.

$$
\begin{aligned}
\|M(f)\| & =\left\|\sum_{k=1}^{\infty} m_{k} \psi_{k}(f) \phi_{k}\right\|=\sup _{g \in X^{*},\|g\| \leq 1}\left|\sum_{k=1}^{\infty} m_{k} \psi_{k}(f) \phi_{k}(g)\right| \\
& \leq P\|f\| \sup _{g \in X^{*},\|g\| \leq 1} \sum_{k=1}^{\infty}\left|m_{k} \phi_{k}(g)\right|,
\end{aligned}
$$

by (1.1) and (1.3), we have

$$
\begin{aligned}
\|M(f)\| & \leq P\|f\|\left\|\left\{m_{k}\right\}\right\|_{X_{d}} \sup _{g \in X^{*},\|g\| \leq 1}\left\|\left\{\phi_{k}(g)\right\}\right\|_{\alpha} \\
& \leq K P B^{\prime}\|f\|\left\|\left\{m_{k}\right\}\right\|_{X_{d}}, \quad f \in X .
\end{aligned}
$$

So, $\|M\| \leq K P B^{\prime}\left\|\left\{m_{k}\right\}\right\|_{X_{d}}$.
(ii) Since $\left\{m_{k}\right\} \in l^{\infty}$, we have

$$
\left|m_{k} \psi_{k}(f)\right| \leq\left|m _ { k } \left\|\psi_{k}(f)\left|\leq\left\|\left\{m_{k}\right\}\right\|_{\infty}\right| \psi_{k}(f) \mid, \quad k \in \mathbb{N} .\right.\right.
$$

Now, since $\left\{\psi_{k}(f)\right\} \in X_{d}$ and X_{d} is a solid Bk-space, $\left\{m_{k} \psi_{k}(f)\right\} \in X_{d}$ and we have

$$
\begin{equation*}
\left\|\left\{m_{k} \psi_{k}(f)\right\}\right\|_{X_{d}} \leq\left\|\left\{m_{k}\right\}\right\|_{\infty}\left\|\left\{\psi_{k}(f)\right\}\right\| . \tag{2.1}
\end{equation*}
$$

Now we prove that $\left\{\sum_{k=1}^{n} m_{k} \psi_{k}(f) \phi_{k}\right\}_{n=1}^{\infty}$ is Cauchy in X. Consider $m, n \in \mathbb{N}, m>n$. Then by (2.1) and (1.1), we have

$$
\begin{aligned}
\left\|\sum_{k=n+1}^{m} m_{k} \psi_{k}(f) \phi_{k}\right\| & =\sup _{g \in X^{*},\|g\| \leq 1}\left|\sum_{k=n+1}^{m} m_{k} \psi_{k}(f) \phi_{k}(g)\right| \\
& \leq\left\|\left\{m_{k} \psi_{k}(f)\right\}-p_{n}\left(\left\{m_{k} \psi_{k}(f)\right\}\right)\right\|_{X_{d}} \sup _{g \in X^{*},\|g\| \leq 1}\left\|\left\{\phi_{k}(g)\right\}\right\|_{\alpha} .
\end{aligned}
$$

Similar to the proof of (i), $\left\{\sum_{k=1}^{n} m_{k} \psi_{k}(f) \phi_{k}\right\}_{n=1}^{\infty}$ is Cauchy in X_{d}. Therefore, M^{\prime} is well defined.
By a similar argument we can show that $\left\|M^{\prime}\right\| \leq K B B^{\prime}\|m\|_{\infty}$.
The operator M in Theorem 2.1, is called $\left(X_{d}, X_{d}^{*}\right)$-Bessel multiplier and M^{\prime} is called $\left(l^{\infty}, X_{d}, X_{d}^{*}\right)$-Bessel multiplier. The sequences $\left\{\phi_{k}\right\}$ and $\left\{\psi_{k}\right\}$ are called corresponding sequences of operators M and M^{\prime} and the sequence $m=\left\{m_{k}\right\}$ is called the symbol of these operators.

Example 2.2. Let $X=X_{d}=l^{p}, 1<p<\infty$. Suppose that $\left\{E_{k}\right\}_{k=1}^{\infty}$ is the sequence of coefficient functionals associated to the canonical basis $\left\{e_{k}\right\}_{k=1}^{\infty}$ of X_{d}. Denote $\left\{\psi_{k}\right\}_{k=1}^{\infty}=\left\{\frac{1}{2} E_{1}, E_{2}, \frac{1}{2^{2}} E_{1}, E_{3}, \frac{1}{2^{3}} E_{1}, \ldots\right\},\left\{\phi_{k}\right\}_{k=1}^{\infty}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, \ldots\right\}$ and $\left\{m_{k}\right\}_{k=1}^{\infty}=$ $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\}$. Then $\left\|\psi_{k}\right\| \leq 1$, for each $k \in \mathbb{N},\left\{\phi_{k}\right\}_{k=1}^{\infty} \subseteq l^{p}$ is a Parseval l^{q}-frame for l^{q} and $\left\{m_{k}\right\}_{k=1}^{\infty} \in l^{p}$. Therefore, $M_{m,\left(\phi_{k}\right),\left(\psi_{k}\right)}$ is a $\left(l^{p}, l^{q}\right)$ Bessel multiplier.

Example 2.3. Let $X=X_{d}=l^{p}, 1<p<\infty$. Suppose that $\left\{E_{k}\right\}_{k=1}^{\infty}$ is the sequence of coefficient functionals associated to the canonical basis $\left\{e_{k}\right\}_{k=1}^{\infty}$ of X. Denote $\left\{\psi_{k}\right\}_{k=1}^{\infty}=$ $\left\{E_{k}\right\}_{k=1}^{\infty}$ and $\left\{\phi_{k}\right\}_{k=1}^{\infty}=\left\{e_{k}\right\}_{k=1}^{\infty}$. Then $M_{1,\left(\phi_{k}\right),\left(\psi_{k}\right)}$ is a $\left(l^{\infty}, l_{p}, l_{q}\right)$-Bessel multiplier

Remark 2.4. We note that by the definition of $\left(X_{d}, X_{d}^{*}\right)$-Bessel multiplier, M can be expressed by:

$$
M=T_{\phi_{k}} D_{m} U
$$

where $T_{\phi_{k}}$ is the synthesis operator of X_{d}^{*}-Bessel sequence $\left\{\phi_{k}\right\}$ and the mappings D_{m} : $l^{\infty} \rightarrow X_{d}, D_{m}\left(\left\{c_{k}\right\}\right)=\left\{m_{k} c_{k}\right\}$ and $U: X \rightarrow l^{\infty}, U(f)=\left\{\psi_{k}(f)\right\}$, are well defined operators. Also, by the definition of $\left(l^{\infty}, X_{d}, X_{d}^{*}\right)$ Bessel multiplier, M^{\prime} can be shown by:

$$
M^{\prime}=T_{\phi_{k}} D_{m} U_{\psi_{k}}
$$

where $T_{\phi_{k}}$ is the synthesis operator of X_{d}^{*}-Bessel sequence $\left\{\phi_{k}\right\}$. The mapping $D_{m}: X_{d} \rightarrow$ $X_{d}, D_{m}\left(\left\{c_{k}\right\}\right)=\left\{m_{k} c_{k}\right\}$ is a well defined operator and $U_{\psi_{k}}$ is the analysis operator of the X_{d}-Bessel sequence $\left\{\psi_{k}\right\}$. In this case, M^{\prime} can also be written by:

$$
M^{\prime}=T_{\phi_{k}} U_{m_{k} \psi_{k}}
$$

where $T_{\phi_{k}}$ is the synthesis operator of X_{d}^{*}-Bessel sequence $\left\{\phi_{k}\right\}$, and $U_{m_{k} \psi_{k}}$ is the analysis operator of the weighted X_{d}-Bessel sequence $\left\{\psi_{k}\right\}$, where $\left\{m_{k}\right\}$ is a sequence of weights.

3. COMPACTNESS AND INVERTIBILITY OF MULTIPLIERS

In this section, we investigate the compactness and invertibility of Bessel multipliers and determine the formula for $\left(M^{\prime}\right)^{-1}$ when M^{\prime} is invertible.

Theorem 3.1. The following assertions are true:
(i) If M is an $\left(X_{d}, X_{d}^{*}\right)$-Bessel multiplier, then M is a compact operator.
(ii) If M^{\prime} is a $\left(l^{\infty}, X_{d}, X_{d}^{*}\right)$-Bessel multiplier and $m=\left\{m_{k}\right\} \in c_{0}$, then M^{\prime} is a compact operator.

Proof. (i) We define the finite rank operator

$$
M_{K}(f)=\sum_{k=1}^{K} m_{k} \psi_{k}(f) \phi_{k}
$$

Then we have

$$
\begin{aligned}
\left\|M-M_{K}\right\| & =\sup _{f \in X,\|f\| \leq 1} \sup _{g \in X^{*},\|g\| \leq 1}\left|\sum_{k=K+1}^{\infty} m_{k} \psi_{k}(f) \phi_{k}(g)\right| \\
& \leq \sup _{f \in X,\|f\| \leq 1} \sup _{g \in X^{*},\|g\| \leq 1} \sum_{k=K+1}^{\infty}\left|m_{k} \psi_{k}(f) \phi_{k}(g)\right|,
\end{aligned}
$$

now by (1.1), (1.3) and the proof of the first proposition in [11] we have

$$
\begin{aligned}
\left\|M-M_{K}\right\| & \leq P\left\|\left\{m_{k}\right\}-p_{K}\left(\left\{m_{k}\right\}\right)\right\|_{X_{d}} \sup _{g \in X^{*},\|g\| \leq 1}\left\|\left\{\phi_{k}(g)\right\}\right\|_{\alpha} \\
& \leq K P B^{\prime}\left\|\left\{m_{k}\right\}-p_{K}\left(\left\{m_{k}\right\}\right)\right\|_{X_{d}} .
\end{aligned}
$$

Since the canonical unit vectors $\left\{e_{k}\right\}$ form a Schauder basis for X_{d}, by Lemma 1.2, $\lim _{l}\left\|\left\{m_{k}\right\}-p_{K}\left(\left\{m_{k}\right\}\right)\right\|=0$ and so M is a compact operator.
(ii) For a given $m \in c_{o}$, let $m^{(l)}=\left(m_{1}, m_{2}, \ldots, m_{l}, 0,0, \ldots\right)$. Then by part (ii) of Theorem 2.1, we have

$$
\left.\begin{array}{rl}
\| M_{m,\left(\phi_{k}\right),\left(\psi_{k}\right)}^{\prime}-M_{m}^{\prime}(l),\left(\phi_{k}\right),\left(\psi_{k}\right)
\end{array}\right)=\left\|M_{m-m^{(l)},\left(\phi_{k}\right),\left(\psi_{k}\right)}^{\prime}\right\| .
$$

Since $m \in c_{0}, \lim _{l}\left\|m-m^{(l)}\right\|_{\infty}=0$, and the proof is evident.
Here is an example which shows that a $\left(l^{\infty}, X_{d}, X_{d}^{*}\right)$-Bessel multiplier may not be a compact operator, if $m=\left\{m_{k}\right\} \notin c_{0}$.
Example 3.2. Let $X=X_{d}=l^{p}, 1<p<\infty$. Suppose that $\left\{E_{k}\right\}_{k=1}^{\infty}$ is the sequence of coefficient functionals associated to the canonical basis $\left\{e_{k}\right\}_{k=1}^{\infty}$ of X. Denote $\left\{\psi_{k}\right\}_{k=1}^{\infty}=$ $\left\{E_{k}\right\}_{k=1}^{\infty}$ and $\left\{\phi_{k}\right\}_{k=1}^{\infty}=\left\{e_{k}\right\}_{k=1}^{\infty}$. Then $M_{1,\left(\phi_{k}\right),\left(\psi_{k}\right)}$ is an $\left(l^{\infty}, l_{p}, l_{q}\right)$-Bessel multiplier but it is not a compact operator.
Definition 3.3. The sequence $\left\{m_{k}\right\}$ is called semi-normalized, if

$$
0<\inf _{k}\left|m_{k}\right| \leq \sup _{k}\left|m_{k}\right|<\infty .
$$

Theorem 3.4. Suppose that $M_{m,\left(\phi_{k}\right),\left(\psi_{k}\right)}^{\prime}$ is a $\left(l^{\infty}, X_{d}, X_{d}^{*}\right)$-Bessel multiplier and $m=$ $\left\{m_{k}\right\}$ is semi-normalized. Also assume that $\left\{\psi_{k}\right\} \subseteq X^{*}$ is an X_{d}^{*}-Riesz basis for X^{*} and $\left\{\phi_{k}\right\} \subseteq X$ is an X_{d}-Riesz basis for X. Then $M_{\tilde{\prime}}^{\prime}$ is an invertible operator. In this case $\left(M^{\prime}\right)^{-1}=M_{\left(\frac{1}{m_{k}}\right),\left(\tilde{\psi_{k}}\right),\left(\tilde{\phi}_{k}\right)}^{\prime}$, where $\left\{\tilde{\psi}_{k}\right\} \subseteq X$ and $\left\{\tilde{\phi}_{k}\right\} \subseteq X^{*}$ are X_{d}-Riesz basis for X and X_{d}^{*}-Riesz basis for X^{*}, respectively.

Proof. By Remark 2.4, $M^{\prime}=T_{\phi_{k}} D_{m} U_{\psi_{k}}$. Suppose that $\left\{\psi_{k}\right\}$ and $\left\{\phi_{k}\right\}$ are X_{d}^{*} and X_{d}-Riesz basis for X^{*} and X, respectively. Then by Propositions 3.4, 4.5 and 4.7 in [9], $T_{\phi_{k}}$ and $U_{\psi_{k}}$ are invertible and also D_{m}, since m is semi-normalized. Therefore M^{\prime} is an invertible operator. By Proposition 1.7, there exist a unique X_{d}-Riesz basis $\left\{\tilde{\psi}_{k}\right\} \subseteq X$ and a unique X_{d}^{*}-Riesz basis $\left\{\tilde{\phi}_{k}\right\} \subseteq X^{*}$, which are biorthogonal to $\left\{\psi_{k}\right\}$ and $\left\{\phi_{k}\right\}$, respectively. Since m is semi-normalized, $\frac{1}{m}=\left\{\frac{1}{m_{k}}\right\} \in l^{\infty}$ and we have

$$
\begin{aligned}
M_{\left(\frac{1}{m}\right),\left(\tilde{\psi_{k}}\right),\left(\tilde{\phi_{k}}\right)} \circ M_{m,\left(\phi_{k}\right),\left(\psi_{k}\right)}(f) & =M_{\left(\frac{1}{m}\right),\left(\tilde{\psi}_{k}\right),\left(\tilde{\phi}_{k}\right)}\left(\sum_{k=1}^{\infty} m_{k} \psi_{k}(f) \phi_{k}\right) \\
& =\sum_{i=1}^{\infty} \frac{1}{m_{i}} \tilde{\phi}_{i}\left(\sum_{k=1}^{\infty} m_{k} \psi_{k}(f) \phi_{k}\right) \tilde{\psi}_{i} \\
& =\sum_{i=1}^{\infty} \frac{1}{m_{i}} \sum_{k=1}^{\infty} m_{k} \psi_{k}(f) \tilde{\phi}_{i}\left(\phi_{k}\right) \tilde{\psi}_{i} \\
& =\sum_{i=1}^{\infty} \psi_{i}(f) \tilde{\psi}_{i} \\
& =f, \quad f \in X .
\end{aligned}
$$

Theorem 3.5. Suppose that M is an $\left(X_{d}, X_{d}^{*}\right)$-Bessel multiplier on an infinite dimensional space X. Then M is not an invertible operator.

Proof. Since by Theorem 3.1, every $\left(X_{d}, X_{d}^{*}\right)$-Bessel multiplier is a compact operator, M can not be an invertible operator on X.

References

[1] P. Balazs. Basic definition and properties of Bessel multipliers. J. Math. Anal. Appl., 325(1): 571-585, 2007.
[2] P.G. Casazza, O. Christensen, D.T. Stoeva. Frame expansions in separable Banach spaces. J. Math. Anal. Appl., 307(2): 710-723, 2005.
[3] M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucía, J. Pelant, V. Zizler. Functional analysis and infinite-dimensional geometry. Springer, 2001, New York.
[4] G. Köthe. Topological vector spaces I. Springer-Verlag, 1969, New York.
[5] E. Malkowsky, V. Rakočević. An introduction into the theory of sequence spaces and measures of noncompactness. Zbornik radova, Matematički institut SANU, 9(17): 143234, 2000.
[6] A. Rahimi, P. Balazs. Multipliers for p-Bessel sequences in Banach spaces. Integr. Equ. Oper. Theory, 68(2): 193-205, 2010.
[7] A. Rahimi. Multipliers of generalized frames in Hilbert spaces. Bull. Iran. Math. Soc., 37(1): 63-80, 2011.
[8] R. Schatten. Norm ideals of completely continuous operators. Springer, 1960, Berlin.
[9] D.T. Stoeva. X_{d}-Riesz bases in separable Banach spaces. "Collection of papers, ded. to the 60th Anniv. of M. Konstantinov", BAS Publ. House, 2008.
[10] S. Suantai, W. Sanhan. On β-dual of vector-valued sequence spaces of Maddox. Hindawi Publishing Corporation, 30(7): 383-392, 2002.
[11] G.R. Walker. Compactness of λ-nuclear operators. Michigan Math. J., 23(2): 167-172, 1976.

Faroughi M.H.
Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
E-mail: mhfaroughi@yahoo.com

Osgooei E.
Urmia University of Technology, Urmia, Iran
E-mail: osgooei@yahoo.com

Rahimi A.
Department of Mathematics, University of Maragheh, Maragheh, Iran
E-mail: rahimi@maragheh.ac.ir

