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Some properties of (Xd, X
∗
d) and (l∞, Xd, X

∗
d)-Bessel multi-

pliers
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Abstract. We use the concepts of α and β-duals to define (Xd, X
∗

d
) and (l∞, Xd, X

∗

d
)-Bessel

multipliers in Banach spaces. We investigate the properties of these multipliers when the symbol
m ∈ l∞, Xd. In particular, we study the possibility of compactness and invertibility of these
multipliers depending on their symbols and corresponding sequences.
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1. Introduction

In [8], Schatten presented operators of the form
∑

mkφk⊗ψk, where {φk} and {ψk} are
orthonormal families. Balazs replaced these orthonormal families with Bessel sequences
to define Bessel multipliers [1]. Bessel multipliers for p-Bessel sequences in Banach spaces
and for g-Bessel sequences in Hilbert spaces were introduced in [6] and [7], respectively.
Multipliers play important roles in both pure and applied mathematics. Gabor multipliers
which are also known as Gabor filters are used in the field of acoustics.
Throughout this paper, X is a Banach space, Xd is a complex sequence space; that is, a
vector space whose elements are sequences of complex numbers. All sequence spaces will
be assumed to include φ, the set of finitely nonzero sequences. A sequence space Xd is
called a BK-space, if it is a Banach space and all of the coordinate functionals {ak} → ak
are continuous. A BK-space is called solid if whenever {ak} and {bk} are sequences with
{bk} ∈ Xd and |ak| ≤ |bk|, for each k ∈ N, then it follows that {ak} ∈ Xd and ‖{ak}‖Xd

≤
‖{bk}‖Xd

. A sequence space Xd is called an AK-space if it is a topological vector space
and {ak} = limn pn({ak}) for each {ak} ∈ Xd, where pn({ak}) = (a1, a2, ..., an, 0, ...).
In [4], Köthe has assigned for each sequence space Xd another sequence space Xα

d , α-dual
(Köthe-dual) of Xd which is defined by:

Xα
d =

{

{ak} :

∞
∑

k=1

|akbk| <∞, ∀{bk} ∈ Xd

}

,

∗Corresponding author.

http://www.azjm.org 70 c© 2010 AZJM All rights reserved.



71

and Xβ
d for the β-dual of Xd defined by:

Xβ
d =

{

{ak} :

∞
∑

k=1

akbk converges, ∀{bk} ∈ Xd

}

.

It is evident that Xα
d ⊆ Xβ

d . We note that α and β-duals of a BK-space Xd are BK-spaces
with respect to the norms

‖{ak}‖α = sup
‖{bk}‖Xd

≤1

∞
∑

k=1

|akbk|, (1.1)

and

‖{ak}‖β = sup
‖{bk}‖Xd

≤1
|

∞
∑

k=1

akbk|, (1.2)

respectively. Also if Xd is a solid BK-space, then Xα
d = Xβ

d [5, 10].

Remark 1.1. We note that if Xd is a solid BK-space, the norms defined in (1.1) and (1.2)
are equivalent by the open mapping theorem.

It is proved in [5, 10], that the spaces X∗
d and Xβ

d are isometrically isomorphic with
the norm defined in (1.2), when Xd is a BK-AK-space. So by Remark 1.1, we deduce that
if Xd is a solid BK-AK-space, then the spaces X∗

d and Xα
d are isomorphic with the norm

defined in (1.1) and there exist K,K ′ > 0 such that

K ′‖{ak}‖X∗

d
≤ ‖{ak}‖α ≤ K‖{ak}‖X∗

d
, {ak} ∈ X∗

d ' Xα
d , (1.3)

where K ′ can be set to 1.

Lemma 1.2. [3] Let {ek} be a Schauder basis of a normed space X. The canonical
projections Pn : X → X, where Pn(

∑∞
i=1 aiei) =

∑n
i=1 aiei, satisfy:

(i) dim (Pn(X)) = n;
(ii) PnPm = PmPn = Pmin(m,n);
(iii) Pn(x) → x in X for every x ∈ X.

Definition 1.3. Let X be a Banach space and Xd be a BK-space. A countable sequence
{gk}

∞
k=1 in the dual X∗ is called an Xd-frame for X if

(i) {gk(f)} ∈ Xd, f ∈ X;
(ii) the norms ‖f‖X and ‖{gk(f)}‖Xd

are equivalent i.e., there exist constants A,B > 0
such that

A‖f‖X ≤ ‖{gk(f)}‖Xd
≤ B‖f‖X , f ∈ X. (1.4)

The constants A and B are called lower and upper Xd-frame bounds, respectively. If (i)
and the upper condition in (1.4), are satisfied, then {gk} is called an Xd-Bessel sequence
for X with bound B. We call {gk} a tight Xd-frame if A = B and a Parseval Xd-frame if
A = B = 1.
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Definition 1.4. Let {gk} be a sequence of elements in X∗ and {mk} ⊆ C. We call {gk}
a weighted Xd-frame for X, if the sequence {mkgk} is an Xd-frame for X.

Proposition 1.5. [2] Suppose that Xd is a BK-space for which the canonical unit vectors
{ek} form a Schauder basis. Then {gk} ⊆ X∗ is an X∗

d -Bessel sequence for X with bound
B if and only if the operator

T : {dk} →

∞
∑

k=1

dkgk,

is well defined (hence bounded) from Xd into X∗ and ‖T‖ ≤ B.

Definition 1.6. A sequence {fk} ⊆ X is called an Xd-Riesz basis for X, if it is complete
in X and there exist constants A,B > 0 such that

A‖{ck}‖Xd
≤ ‖

∞
∑

k=1

ckfk‖ ≤ B‖{ck}‖Xd
, {ck} ∈ Xd.

The constants A and B are called lower and upper Xd-Riesz basis bounds, respectively.
If {fk} is an Xd-Riesz basis for spank{fk}, then {fk} is called an Xd-Riesz sequence.

Proposition 1.7. [9] Suppose that Xd is a reflexive BK-space for which the canonical unit
vectors {ek} form a Schauder basis. Assume that {ψk} ⊆ X∗ is an X∗

d -Riesz basis for X∗

with lower bound A and upper bound B. Then there exists a unique sequence {ψ̃k} ⊆ X,
which is an Xd-Riesz basis for X with lower bound 1

B
and upper bound 1

A
, such that

f =

∞
∑

k=1

ψk(f)ψ̃k, f ∈ X,

g =

∞
∑

k=1

g(ψ̃k)ψk, g ∈ X∗.

This sequence {ψ̃k} is the unique biorthogonal to {ψk}.

Throughout the following sections, X is a reflexive Banach space and Xd is a solid,
reflexive, BK-space such that the canonical unit vectors {ek} form a Schauder basis for
Xd.

2. Main Results

In the following theorem by the concepts of α and β-duals, we investigate boundedness
of multipliers in two different cases:

Theorem 2.1. Suppose that {φk} ⊆ X is an X∗
d -Bessel sequence for X∗ with bound B′.

Then the following statements hold:
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(i) Let {ψk} ⊆ X∗. Suppose that there exists P > 0 such that ‖ψk‖ ≤ P for each k ∈ N,
and m = {mk} ∈ Xd. Then the operator M =Mm,(φk),(ψk) : X → X defined by:

Mm,(φk),(ψk)(f) =
∞
∑

k=1

mkψk(f)φk, f ∈ X,

is well defined and bounded.
(ii) Let {ψk} ⊆ X∗ be an Xd-Bessel sequence for X with bound B, and m = {mk} ∈ l∞.
Then the operator M ′ =M ′

m,(φk),(ψk)
: X → X defined by:

M ′
m,(φk),(ψk)

(f) =

∞
∑

k=1

mkψk(f)φk, f ∈ X,

is well defined and bounded.

Proof. (i) First, we prove that {
∑n

k=1mkψk(f)φk}
∞
n=1 is Cauchy in X. Consider

m,n ∈ N, m > n. Then we have

‖
m
∑

k=n+1

mkψk(f)φk‖ = sup
g∈X∗,‖g‖≤1

|
m
∑

k=n+1

mkψk(f)φk(g)|

≤ P‖f‖ sup
g∈X∗,‖g‖≤1

∞
∑

k=n+1

|mkφk(g)|,

Now, by (1.1) and the proof of the first Proposition in [11], we have

‖

m
∑

k=n+1

mkψk(f)φk‖ ≤ P‖f‖‖{mk} − pn({mk})‖Xd
sup

g∈X∗,‖g‖≤1
‖{φk(g)}‖α,

hence by (1.3), there exists K > 0 such that

‖
m
∑

k=n+1

mkψk(f)φk‖ ≤ KP‖f‖‖{mk} − pn({mk})‖Xd
sup

g∈X∗,‖g‖≤1
‖{φk(g)}‖X∗

d

≤ KPB′‖f‖‖{mk} − pn({mk})‖Xd
.

Since the canonical unit vectors {ek} form a Schauder basis for Xd, by Lemma 1.2,
limn ‖{mk}− pn({mk})‖Xd

= 0. Therefore {
∑n

k=1mkψk(f)φk}
∞
n=1 is Cauchy in X and so

M is well defined.
Now we show that M is bounded.

‖M(f)‖ = ‖

∞
∑

k=1

mkψk(f)φk‖ = sup
g∈X∗,‖g‖≤1

|

∞
∑

k=1

mkψk(f)φk(g)|

≤ P‖f‖ sup
g∈X∗,‖g‖≤1

∞
∑

k=1

|mkφk(g)|,
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by (1.1) and (1.3), we have

‖M(f)‖ ≤ P‖f‖‖{mk}‖Xd
sup

g∈X∗,‖g‖≤1
‖{φk(g)}‖α

≤ KPB′‖f‖‖{mk}‖Xd
, f ∈ X.

So, ‖M‖ ≤ KPB′‖{mk}‖Xd
.

(ii) Since {mk} ∈ l∞, we have

|mkψk(f)| ≤ |mk||ψk(f)| ≤ ‖{mk}‖∞|ψk(f)|, k ∈ N.

Now, since {ψk(f)} ∈ Xd and Xd is a solid Bk-space, {mkψk(f)} ∈ Xd and we have

‖{mkψk(f)}‖Xd
≤ ‖{mk}‖∞‖{ψk(f)}‖. (2.1)

Now we prove that {
∑n

k=1mkψk(f)φk}
∞
n=1 is Cauchy in X. Consider m,n ∈ N, m > n.

Then by (2.1) and (1.1), we have

‖

m
∑

k=n+1

mkψk(f)φk‖ = sup
g∈X∗,‖g‖≤1

|

m
∑

k=n+1

mkψk(f)φk(g)|

≤ ‖{mkψk(f)} − pn({mkψk(f)})‖Xd
sup

g∈X∗,‖g‖≤1
‖{φk(g)}‖α.

Similar to the proof of (i), {
∑n

k=1mkψk(f)φk}
∞
n=1 is Cauchy in Xd. Therefore, M

′ is well
defined.
By a similar argument we can show that ‖M ′‖ ≤ KBB′‖m‖∞. J

The operator M in Theorem 2.1, is called (Xd,X
∗
d )-Bessel multiplier and M ′ is called

(l∞,Xd,X
∗
d )-Bessel multiplier. The sequences {φk} and {ψk} are called corresponding

sequences of operators M and M ′ and the sequence m = {mk} is called the symbol of
these operators.

Example 2.2. Let X = Xd = lp, 1 < p < ∞. Suppose that {Ek}
∞
k=1 is the se-

quence of coefficient functionals associated to the canonical basis {ek}
∞
k=1 of Xd. Denote

{ψk}
∞
k=1 = {1

2E1, E2,
1
22
E1, E3,

1
23
E1, ...}, {φk}

∞
k=1 = {e1, e2, e3, e4, e5, ...} and {mk}

∞
k=1 =

{1, 12 ,
1
3 ,

1
4 ,

1
5 , ...}. Then ‖ψk‖ ≤ 1, for each k ∈ N, {φk}

∞
k=1 ⊆ lp is a Parseval lq-frame for

lq and {mk}
∞
k=1 ∈ l

p. Therefore, Mm,(φk),(ψk) is a (lp, lq) Bessel multiplier.

Example 2.3. Let X = Xd = lp, 1 < p < ∞. Suppose that {Ek}
∞
k=1 is the sequence of

coefficient functionals associated to the canonical basis {ek}
∞
k=1 of X. Denote {ψk}

∞
k=1 =

{Ek}
∞
k=1 and {φk}

∞
k=1 = {ek}

∞
k=1. Then M1,(φk),(ψk) is a (l∞, lp, lq)-Bessel multiplier

Remark 2.4. We note that by the definition of (Xd,X
∗
d )-Bessel multiplier, M can be

expressed by:

M = TφkDmU,
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where Tφk is the synthesis operator of X∗
d -Bessel sequence {φk} and the mappings Dm :

l∞ → Xd, Dm({ck}) = {mkck} and U : X → l∞, U(f) = {ψk(f)}, are well defined
operators. Also, by the definition of (l∞,Xd,X

∗
d ) Bessel multiplier, M ′ can be shown by:

M ′ = TφkDmUψk
,

where Tφk is the synthesis operator of X∗
d -Bessel sequence {φk}. The mapping Dm : Xd →

Xd, Dm({ck}) = {mkck} is a well defined operator and Uψk
is the analysis operator of the

Xd-Bessel sequence {ψk}. In this case, M ′ can also be written by:

M ′ = TφkUmkψk
,

where Tφk is the synthesis operator of X∗
d -Bessel sequence {φk}, and Umkψk

is the analysis
operator of the weighted Xd-Bessel sequence {ψk}, where {mk} is a sequence of weights.

3. COMPACTNESS AND INVERTIBILITY OF MULTIPLIERS

In this section, we investigate the compactness and invertibility of Bessel multipliers
and determine the formula for (M ′)−1 when M ′ is invertible.

Theorem 3.1. The following assertions are true:
(i) If M is an (Xd,X

∗
d )-Bessel multiplier, then M is a compact operator.

(ii) If M ′ is a (l∞,Xd,X
∗
d )-Bessel multiplier and m = {mk} ∈ c0, then M ′ is a compact

operator.

Proof. (i) We define the finite rank operator

MK(f) =
K
∑

k=1

mkψk(f)φk.

Then we have

‖M −MK‖ = sup
f∈X,‖f‖≤1

sup
g∈X∗,‖g‖≤1

|
∞
∑

k=K+1

mkψk(f)φk(g)|

≤ sup
f∈X,‖f‖≤1

sup
g∈X∗,‖g‖≤1

∞
∑

k=K+1

|mkψk(f)φk(g)|,

now by (1.1), (1.3) and the proof of the first proposition in [11] we have

‖M −MK‖ ≤ P‖{mk} − pK({mk})‖Xd
sup

g∈X∗,‖g‖≤1
‖{φk(g)}‖α

≤ KPB′‖{mk} − pK({mk})‖Xd
.

Since the canonical unit vectors {ek} form a Schauder basis for Xd, by Lemma 1.2,
liml ‖{mk} − pK({mk})‖ = 0 and so M is a compact operator.
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(ii) For a given m ∈ co, let m
(l) = (m1,m2, ...,ml, 0, 0, ...). Then by part (ii) of Theorem

2.1, we have

‖M ′
m,(φk),(ψk)

−M ′
m(l),(φk),(ψk)

‖ = ‖M ′
m−m(l),(φk),(ψk)

‖

≤ ‖m−m(l)‖∞KBB
′.

Since m ∈ c0, liml ‖m−m(l)‖∞ = 0, and the proof is evident.J

Here is an example which shows that a (l∞,Xd,X
∗
d )-Bessel multiplier may not be a

compact operator, if m = {mk} /∈ c0.

Example 3.2. Let X = Xd = lp, 1 < p < ∞. Suppose that {Ek}
∞
k=1 is the sequence of

coefficient functionals associated to the canonical basis {ek}
∞
k=1 of X. Denote {ψk}

∞
k=1 =

{Ek}
∞
k=1 and {φk}

∞
k=1 = {ek}

∞
k=1. Then M1,(φk),(ψk) is an (l∞, lp, lq)-Bessel multiplier but

it is not a compact operator.

Definition 3.3. The sequence {mk} is called semi-normalized, if

0 < inf
k
|mk| ≤ sup

k

|mk| <∞.

Theorem 3.4. Suppose that M ′
m,(φk),(ψk)

is a (l∞,Xd,X
∗
d )-Bessel multiplier and m =

{mk} is semi-normalized. Also assume that {ψk} ⊆ X∗ is an X∗
d -Riesz basis for X∗ and

{φk} ⊆ X is an Xd-Riesz basis for X. Then M ′ is an invertible operator.
In this case (M ′)−1 =M ′

( 1
m

k

),(ψ̃k),(φ̃k)
, where {ψ̃k} ⊆ X and {φ̃k} ⊆ X∗ are Xd-Riesz basis

for X and X∗
d -Riesz basis for X∗, respectively.

Proof. By Remark 2.4, M ′ = TφkDmUψk
. Suppose that {ψk} and {φk} are X∗

d and
Xd-Riesz basis for X∗ and X, respectively. Then by Propositions 3.4, 4.5 and 4.7 in [9],
Tφk and Uψk

are invertible and also Dm, since m is semi-normalized. Therefore M ′ is an
invertible operator. By Proposition 1.7, there exist a unique Xd-Riesz basis {ψ̃k} ⊆ X and
a uniqueX∗

d -Riesz basis {φ̃k} ⊆ X∗, which are biorthogonal to {ψk} and {φk}, respectively.
Since m is semi-normalized, 1

m
= { 1

mk

} ∈ l∞ and we have

M( 1
m
),(ψ̃k),(φ̃k)

◦Mm,(φk),(ψk)(f) = M( 1
m
),(ψ̃k),(φ̃k)

(

∞
∑

k=1

mkψk(f)φk)

=

∞
∑

i=1

1

mi
φ̃i(

∞
∑

k=1

mkψk(f)φk)ψ̃i

=

∞
∑

i=1

1

mi

∞
∑

k=1

mkψk(f)φ̃i(φk)ψ̃i

=
∞
∑

i=1

ψi(f)ψ̃i

= f, f ∈ X.

J
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Theorem 3.5. Suppose that M is an (Xd,X
∗
d )-Bessel multiplier on an infinite dimen-

sional space X. Then M is not an invertible operator.

Proof. Since by Theorem 3.1, every (Xd,X
∗
d )-Bessel multiplier is a compact operator,

M can not be an invertible operator on X.J
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