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Local Generalized Morrey Spaces and Singular Integrals

with Rough Kernel
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Abstract. Let Ω ∈ Ls(S
n−1) be a homogeneous function of degree zero with s > 1 and have a

mean value zero on Sn−1. In this paper, we will study the boundedness of homogeneous singular

integrals with rough kernel on the local generalized Morrey spaces LM
{x0}
p,ϕ for s′ ≤ p or p < s. We

will also prove that the commutator operators formed by a local BMO function b and these rough

operators are bounded on the local generalized Morrey spaces LM
{x0}
p,ϕ .
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1. Introduction

For x ∈ Rn and r > 0, let B(x, r) denote the open ball of radius r centered at x ,
{

B(x, r) denote its complement and |B(x, r)| be the Lebesgue measure of the ball B(x, r).
Suppose that Sn−1 is the unit sphere in Rn (n ≥ 2) equipped with the normalized Lebesgue
measure dσ. Let Ω ∈ Ls(Sn−1) be a homogeneous function of degree zero with 1 < s ≤ ∞
and satisfy the cancellation condition

∫

Sn−1

Ω(x′)dσ(x′) = 0,

where x′ = x/|x| for any x 6= 0. The homogeneous singular integral operator TΩ is defined
by

TΩf(x) = lim
ε→0

∫

|x−y|>ε

Ω(x− y)

|x− y|n
f(y)dy.

It is obvious that when Ω ≡ 1, TΩ is the singular integral operator T .

Theorem A ([13]) Suppose that, 1 ≤ p < ∞, Ω ∈ Ls(S
n−1), s > 1, is a homogeneous

function of degree zero and has a mean value zero on Sn−1. If s′ ≤ p or p < s, then
the operator TΩ is bounded on Lp(Rn). Also, the operator TΩ is bounded from L1(Rn) to
WL1(Rn).
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Let b be a locally integrable function on Rn. Then we shall define the commutators
generated by singular integral operators with rough kernels and b as follows:

[b, TΩ]f(x) ≡ b(x)TΩf1(x)− TΩ(bf)(x) =

∫

Rn

Ω(x− y)

|x− y|n−α
[b(x)− b(y)]f(y)dy.

Theorem B ([13]) Suppose that Ω ∈ Ls(S
n−1), s > 1, is a homogeneous function of

degree zero and has a mean value zero on Sn−1. Let 1 < p < ∞ and b ∈ BMO(Rn). If
s′ ≤ p or p < s, then the commutator operator [b, TΩ] is bounded on Lp(Rn).

The classical Morrey spaces Mp,λ were first introduced by Morrey in [27] to study the
local behavior of solutions to second order elliptic partial differential equations. For the
boundedness of the Hardy-Littlewood maximal operator, the fractional integral operator
and the Calderón-Zygmund singular integral operator on these spaces, we refer the readers
to [1, 9, 29]. For the properties and applications of classical Morrey spaces see [10, 11, 15,
16] and references therein.

In this paper, we prove the boundedness of the operators TΩ from one local generalized

Morrey space LM
{x0}
p,ϕ1 to LM

{x0}
p,ϕ2 , 1 < p < ∞, and from the space LM

{x0}
1,ϕ1

to the weak

space WLM
{x0}
1,ϕ2

. In the case b ∈ CBMO
{x0}
p2 , we find the sufficient conditions on the pair

(ϕ1, ϕ2) which ensures the boundedness of the commutator operators [b, TΩ] from LM
{x0}
p,ϕ1

to LM
{x0}
p,ϕ2 , 1 < p < ∞, 1

p = 1
p1

+ 1
p2
.

By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent.

2. Local generalized Morrey spaces

We find it convenient to define the generalized Morrey spaces in the form as follows.

Definition 1. Let ϕ(x, r) be a positive measurable function on Rn×(0,∞) and 1 ≤ p < ∞.
We denote by Mp,ϕ ≡ Mp,ϕ(Rn) the generalized Morrey space, the space of all functions
f ∈ Lloc

p (Rn) with finite quasinorm

‖f‖Mp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|
− 1

p ‖f‖Lp(B(x,r)).

Also by WMp,ϕ ≡ WMp,ϕ(Rn) we denote the weak generalized Morrey space of all functions
f ∈ WLloc

p (Rn) for which

‖f‖WMp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|
− 1

p ‖f‖WLp(B(x,r)) < ∞.

According to this definition, we recover the Morrey space Mp,λ and weak Morrey space

WMp,λ under the choice ϕ(x, r) = r
λ−n
p :

Mp,λ = Mp,ϕ

∣∣∣
ϕ(x,r)=r

λ−n
p

, WMp,λ = WMp,ϕ

∣∣∣
ϕ(x,r)=r

λ−n
p

.
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Definition 2. Let ϕ(x, r) be a positive measurable function on Rn×(0,∞) and 1 ≤ p < ∞.
We denote by LMp,ϕ ≡ LMp,ϕ(Rn) the local generalized Morrey space, the space of all
functions f ∈ Lloc

p (Rn) with finite quasinorm

‖f‖LMp,ϕ = sup
r>0

ϕ(0, r)−1 |B(0, r)|
− 1

p ‖f‖Lp(B(0,r)).

Also by WLMp,ϕ ≡ WLMp,ϕ(Rn) we denote the weak generalized Morrey space of all
functions f ∈ WLloc

p (Rn) for which

‖f‖WLMp,ϕ = sup
r>0

ϕ(0, r)−1 |B(0, r)|−
1
p ‖f‖WLp(B(0,r)) < ∞.

Definition 3. Let ϕ(x, r) be a positive measurable function on Rn×(0,∞) and 1 ≤ p < ∞.

For any fixed x0 ∈ Rn we denote by LM
{x0}
p,ϕ ≡ LM

{x0}
p,ϕ (Rn) the local generalized Morrey

space, the space of all functions f ∈ Lloc
p (Rn) with finite quasinorm

‖f‖
LM

{x0}
p,ϕ

= ‖f(x0 + ·)‖LMp,ϕ .

Also by WLM
{x0}
p,ϕ ≡ WLM

{x0}
p,ϕ (Rn) we denote the weak generalized Morrey space of all

functions f ∈ WLloc
p (Rn) for which

‖f‖
WLM

{x0}
p,ϕ

= ‖f(x0 + ·)‖WLMp,ϕ < ∞.

According to this definition, we recover the local Morrey space LM
{x0}
p,λ and weak local

Morrey space WLM
{x0}
p,λ under the choice ϕ(x0, r) = r

λ−n
p :

LM
{x0}
p,λ = LM{x0}

p,ϕ

∣∣∣
ϕ(x0,r)=r

λ−n
p

, WLM
{x0}
p,λ = WLM{x0}

p,ϕ

∣∣∣
ϕ(x0,r)=r

λ−n
p

.

Wiener [30, 31] looked for a way to describe the behavior of a function at the infinity.
The conditions he considered are related to appropriate weighted Lq spaces. Beurling [4]
extended this idea and defined a pair of dual Banach spaces Aq and Bq′ , where 1/q+1/q′ =
1. To be precise, Aq is a Banach algebra with respect to the convolution, expressed as a
union of certain weighted Lq spaces; the space Bq′ is expressed as the intersection of the
corresponding weighted Lq′ spaces. Feichtinger [17] observed that the space Bq can be
described by

‖f‖Bq
= sup

k≥0
2−

kn
q ‖fχk‖Lq(Rn), (1)

where χ0 is the characteristic function of the unit ball {x ∈ Rn : |x| ≤ 1}, χk is the
characteristic function of the annulus {x ∈ Rn : 2k−1 < |x| ≤ 2k}, k = 1, 2, . . .. By duality,
the space Aq(Rn), called Beurling algebra now, can be described by

‖f‖Aq
=

∞∑

k=0

2
− kn

q′ ‖fχk‖Lq(Rn). (2)



82 V.S.Guliyev

Let Ḃq(Rn) and Ȧq(Rn) be the homogeneous versions of Bq(Rn) and Aq(Rn) by taking
k ∈ Z in (1) and (2) instead of k ≥ 0 there.

If λ < 0 or λ > n, then LM
{x0}
p,λ (Rn) = Θ, where Θ is the set of all functions equivalent

to 0 on Rn. Note that LMp,0(Rn) = Lp(Rn) and LMp,n(Rn) = Ḃp(Rn).

Ḃp,µ = LMp,ϕ

∣∣∣
ϕ(0,r)=rµn

, WḂp,µ = WLMp,ϕ

∣∣∣
ϕ(0,r)=rµn

.

Alvarez, Guzman-Partida and Lakey [3], in order to study the relationship between
central BMO spaces and Morrey spaces, introduced λ-central bounded mean oscillation
spaces and central Morrey spaces Ḃp,µ(Rn) ≡ LMp,n+npµ(Rn), µ ∈ [−1

p , 0]. If µ < −1
p or

µ > 0, then Ḃp,µ(Rn) = Θ. Note that Ḃp,− 1
p
(Rn) = Lp(Rn) and Ḃp,0(Rn) = Ḃp(Rn). Also

define the weak central Morrey spaces WḂp,µ(Rn) ≡ WLMp,n+npµ(Rn).
Inspired by this, we consider the boundedness of singular integral operator with rough

kernel on generalized local Morrey spaces and give the central bounded mean oscillation
estimates for their commutators.

3. Singular integral operators with rough kernels in the spaces LM
{x0}
p,ϕ

In this section we are going to use the following statement on the boundedness of the
weighted Hardy operator

H∗
wg(t) :=

∫ ∞

t
g(s)w(s)ds, 0 < t < ∞,

where w is a fixed function non-negative and measurable on (0,∞).

Theorem 1. Let v1, v2 and w be positive almost everywhere and measurable functions on
(0,∞). The inequality

ess sup
t>0

v2(t)H
∗
wg(t) ≤ C ess sup

t>0
v1(t)g(t) (3)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := ess sup
t>0

v2(t)

∫ ∞

t

w(s)ds

ess sup
s<τ<∞

v1(τ)
< ∞.

Moreover, if C∗ is the minimal value of C in (3), then C∗ = B.

In [13], the following statement was proved for singular integral operators with rough
kernels TΩ, containing the results in [26, 28].

Theorem 2. Suppose that Ω ∈ Ls(S
n−1), s > 1, is a homogeneous function of degree zero

and has a mean value zero on Sn−1. Let 1 ≤ s′ < p < ∞ and ϕ(x, r) satisfy conditions

c−1ϕ(x, r) ≤ ϕ(x, t) ≤ cϕ(x, r) (4)
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whenever r ≤ t ≤ 2r, where c (≥ 1) does not depend on t, r, x ∈ Rn and

∫ ∞

r
ϕ(x, t)p

dt

t
≤ C ϕ(x, r)p, (5)

where C does not depend on x and r. Then the operator TΩ is bounded on Mp,ϕ.

The following statement, containing results obtained in [26], [28] was proved in [18, 20]
(see also [2], [5]-[8], [19]).

Theorem 3. Let 1 ≤ p < ∞ and (ϕ1, ϕ2) satisfy the condition

∫ ∞

r
ϕ1(0, t)

dt

t
≤ C ϕ2(0, r), (6)

where C does not depend on r. Then the operator T is bounded from LMp,ϕ1 to LMp,ϕ2

for p > 1 and from LM1,ϕ1 to WLM1,ϕ2 for p = 1.

Corollary 1. Let 1 ≤ p < ∞ and (ϕ1, ϕ2) satisfy the condition

∫ ∞

r
tα−1ϕ1(x, t)dt ≤ C ϕ2(x, r), (7)

where C does not depend on x and r. Then the operator T is bounded from Mp,ϕ1 to Mp,ϕ2

for p > 1 and from M1,ϕ1 to WM1,ϕ2 for p = 1.

Lemma 1. Let x0 ∈ Rn, 1 ≤ p < ∞, Ω ∈ Ls(S
n−1), s > 1, be a homogeneous function of

degree zero. Then, for p > 1 and s′ ≤ p or p < s the inequality

‖TΩf‖Lp(B(x0,r)) . r
n
p

∫ ∞

2r
t−

n
p
−1‖f‖Lp(B(x0,t))dt

holds for any ball B(x0, r) and for all f ∈ Lloc
p (Rn).

Moreover, for s > 1 the inequality

‖TΩf‖WL1(B(x0,r)) . rn
∫ ∞

2r
t−n−1‖f‖L1(B(x0,t))dt, (8)

holds for any ball B(x0, r) and for all f ∈ Lloc
1 (Rn).

Proof. Let 1 < p < ∞ and s′ ≤ p. Set B = B(x0, r) for the ball of radius r centered
at x0. We represent f as

f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ {(2B)
(y), r > 0, (9)

and have

‖TΩf‖L(B) ≤ ‖TΩf1‖Lp(B) + ‖TΩf2‖Lp(B).
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Since f1 ∈ Lp(Rn), TΩf1 ∈ Lp(Rn) and from the boundedness of TΩ on Lp(Rn) it
follows that

‖TΩf1‖Lp(B) ≤ ‖TΩf1‖Lp(Rn) ≤ C‖f1‖Lp(Rn) = C‖f‖Lp(2B),

where constant C > 0 is independent of f .

It’s clear that x ∈ B, y ∈
{

(2B) implies 1
2 |x0 − y| ≤ |x− y| ≤ 3

2 |x0 − y|. We get

|TΩf2(x)| ≤ 2nc1

∫

{(2B)

|f(y)||Ω(x− y)|

|x0 − y|n
dy.

By Fubini’s theorem we have

∫

{(2B)

|f(y)||Ω(x− y)|

|x0 − y|n
dy ≈

∫

{(2B)
|f(y)||Ω(x− y)|

∫ ∞

|x0−y|

dt

tn+1
dy

≈
∫ ∞

2r

∫

2r≤|x0−y|≤t
|f(y)||Ω(x− y)|dy

dt

tn+1

.

∫ ∞

2r

∫

B(x0,t)
|f(y)||Ω(x− y)|dy

dt

tn+1
.

Applying Hölder’s inequality, we get

∫

{(2B)

|f(y)||Ω(x− y)|

|x0 − y|n
dy

.

∫ ∞

2r
‖f‖Lp(B(x0,t)) ‖Ω(x− ·)‖Ls(B(x0,t)) |B(x0, t)|

1− 1
p
− 1

s
dt

tn+1

.

∫ ∞

2r
‖f‖Lp(B(x0,t))

dt

t
n
p
+1

.

(10)

Moreover, for all p ∈ [1,∞) the inequality

‖TΩf2‖Lp(B) . r
n
p

∫ ∞

2r
‖f‖Lp(B(x0,t))

dt

t
n
p
+1

. (11)

is valid. Thus

‖TΩf‖Lq(B) . ‖f‖Lp(2B) + r
n
p

∫ ∞

2r
‖f‖Lp(B(x0,t))

dt

t
n
p
+1

.

On the other hand,

‖f‖Lp(2B) ≈ r
n
p ‖f‖Lp(2B)

∫ ∞

2r

dt

t
n
p
+1

≤ r
n
p

∫ ∞

2r
‖f‖Lp(B(x0,t))

dt

t
n
p
+1

. (12)

Thus

‖TΩf‖Lp(B) . r
n
p

∫ ∞

2r
‖f‖Lp(B(x0,t))

dt

t
n
p
+1

.
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When 1 < p < s, by Fubini’s theorem and the Minkowski inequality, we get

‖TΩf2‖Lp(B) ≤
(∫

B

( ∫ ∞

2r

∫

B(x0,t)
|f(y)||Ω(x− y)|dy

dt

tn+1

)p
dx
) 1

p

≤

∫ ∞

2r

∫

B(x0,t)
|f(y)| ‖Ω(· − y)‖Lp(B)dy

dt

tn+1

≤ |B(x0, r)|
1
p
− 1

s

∫ ∞

2r

∫

B(x0,t)
|f(y)| ‖Ω(· − y)‖Ls(B)dy

dt

tn+1

. r
n
p

∫ ∞

2r
‖f‖L1(B(x0,t))

dt

tn+1
. r

n
p

∫ ∞

2r
‖f‖Lp(B(x0,t))

dt

t
n
p
+1

. (13)

Let p = 1 < s ≤ ∞. From the weak (1, 1) boundedness of TΩ and (12) it follows that:

‖TΩf1‖WL1(B) ≤ ‖TΩf1‖WL1(Rn) . ‖f1‖L1(Rn)

= ‖f‖L1(2B) . rn
∫ ∞

2r
‖f‖L1(B(x0,t))

dt

tn+1
. (14)

Then from (11) and (14) we get the inequality (8).J

Theorem 4. Let x0 ∈ Rn, 1 ≤ p < ∞ and Ω ∈ Ls(S
n−1), s > 1, be a homogeneous

function of degree zero. Let also, for s′ ≤ p or p < s the pair (ϕ1, ϕ2) satisfy the condition

∫ ∞

r

ess inf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
p
+1

dt ≤ C ϕ2(x0, r), (15)

where C does not depend on r.

Then the operator TΩ is bounded from LM
{x0}
p,ϕ1 to LM

{x0}
p,ϕ2 for p > 1 and from LM

{x0}
1,ϕ1

to WLM
{x0}
1,ϕ2

for p = 1. Moreover, for p > 1

‖TΩf‖LM{x0}
p,ϕ2

. ‖f‖
LM

{x0}
p,ϕ1

,

and for p = 1

‖TΩf‖WLM
{x0}
1,ϕ2

. ‖f‖
LM

{x0}
1,ϕ1

.

Proof. Let s′ ≤ p or p < s. By Lemma 1 and Theorem 1 with v2(r) = ϕ2(x0, r)
−1,

v1(r) = ϕ1(x0, r)
−1r−

n
p and w(r) = r−

n
p we have for p > 1

‖TΩf‖LM{x0}
p,ϕ2

. sup
r>0

ϕ2(x0, r)
−1

∫ ∞

r
‖f‖Lp(B(x0,t))

dt

t
n
p
+1

. sup
r>0

ϕ1(x0, r)
−1 r−

n
p ‖f‖Lp(B(x0,r)) = ‖f‖

LM
{x0}
p,ϕ1
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and for p = 1

‖TΩf‖WLM
{x0}
1,ϕ2

. sup
r>0

ϕ2(x0, r)
−1

∫ ∞

r
‖f‖L1(B(x0,t))

dt

tn+1

. sup
r>0

ϕ1(x0, r)
−1 r−n ‖f‖Lp(B(x0,r)) = ‖f‖

LM
{x0}
1,ϕ1

.

Let 1 ≤ p < s. By Lemma 1 and Theorem 1 with v2(r) = ϕ2(x0, r)
−1, v1(r) =

ϕ1(x0, r)
−1r−

n
p
+n

s and w(r) = r−
n
p
+n

s we have for p > 1

‖TΩf‖LM{x0}
p,ϕ2

. sup
r>0

ϕ2(x0, r)
−1r−

n
s

∫ ∞

r
‖f‖Lp(B(x0,t))

dt

t
n
p
−n

s
+1

. sup
r>0

ϕ1(x0, r)
−1 r−

n
p ‖f‖Lp(B(x0,r)) = ‖f‖

LM
{x0}
p,ϕ1

and for p = 1

‖TΩf‖WLM
{x0}
1,ϕ2

. sup
r>0

ϕ2(x0, r)
−1r−

n
s

∫ ∞

r
‖f‖L1(B(x0,t))

dt

tn−
n
s
+1

. sup
r>0

ϕ1(x0, r)
−1 r−n ‖f‖L1(B(x0,r)) = ‖f‖

LM
{x0}
1,ϕ1

.

J

Corollary 2. Let 1 ≤ p < ∞ and Ω ∈ Ls(S
n−1), s > 1, be a homogeneous function of

degree zero. Let also, for s′ ≤ p or p < s the pair (ϕ1, ϕ2) satisfy the condition

∫ ∞

r

ess inf
t<τ<∞

ϕ1(x, τ)τ
n
p

t
n
p
+1

dt ≤ C ϕ2(x, r),

where C does not depend on x and r.

Then the operator TΩ is bounded from Mp,ϕ1 to Mp,ϕ2 for p > 1 and from M1,ϕ1 to
WM1,ϕ2 for p = 1. Moreover, for p > 1

‖TΩf‖Mp,ϕ2
. ‖f‖Mp,ϕ1

,

and for p = 1

‖TΩf‖WM1,ϕ2
. ‖f‖M1,ϕ1

.

Corollary 3. Let 1 ≤ p < ∞ and (ϕ1, ϕ2) satisfy condition (15). Then the operator T is

bounded from LM
{x0}
p,ϕ1 to LM

{x0}
p,ϕ2 for p > 1 and from LM

{x0}
1,ϕ1

to WLM
{x0}
1,ϕ2

for p = 1.

Remark 1. Note that, in the case s = ∞ Corollary 2 was proved in [21]. The condition
(15) in Theorem 4 is weaker than condition (6) in Theorem 3 (see [21]).
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4. Commutators of singular integral operators with rough kernels in

the spaces LM
{x0}
p,ϕ

Let T be a linear operator. For a function b, we define the commutator [b, T ] by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x)

for any suitable function f . If T̃ is a Calderón-Zygmund singular integral operator,
a well known result of Coifman, Rochberg and Weiss [12] states that the commutator
[b, T̃ ]f = b T̃ f − T̃ (bf) is bounded on Lp(Rn), 1 < p < ∞, if and only if b ∈ BMO(Rn).
The commutator of Calderón-Zygmund operators plays an important role in studying the
regularity of solutions of elliptic partial differential equations of second order (see, for
example, [10, 11, 15]).

The definition of local BMO space is as follows:

Definition 4. Let 1 ≤ q < ∞. A function f ∈ Lloc
q (Rn) is said to belong to the

CBMO
{x0}
q (Rn) (central BMO space), if

‖f‖
CBMO

{x0}
q

= sup
r>0

( 1

|B(x0, r)|

∫

B(x0,r)
|f(y)− fB(x0,r)|

qdy
)1/q

< ∞.

Define
CBMO{x0}

q (Rn) = {f ∈ Lloc
q (Rn) : ‖f‖

CBMO
{x0}
q

< ∞}.

In [22], Lu and Yang introduced the central BMO space CBMOq(Rn) = CBMO
{0}
q (Rn).

Note that, BMO(Rn) ⊂ CBMO
{x0}
q (Rn), 1 ≤ q < ∞. The space CBMO

{x0}
q (Rn) can be

regarded as a local version of BMO(Rn), the space of bounded mean oscillation, at the
origin. But, they have quite different properties. The classical John-Nirenberg inequality
shows that functions in BMO(Rn) are locally exponentially integrable. This implies that,
for any 1 ≤ q < ∞, the functions in BMO(Rn) can be described by means of the condition

sup
r>0

( 1

|B|

∫

B
|f(y)− fB|

qdy
)1/q

< ∞,

where B denotes an arbitrary ball in Rn. However, the space CBMO
{x0}
q (Rn) depends on

q. If q1 < q2, then CBMO
{x0}
q2 (Rn) $ CBMO

{x0}
q1 (Rn). Therefore, there is no analogy of

the famous John-Nirenberg inequality of BMO(Rn) for the space CBMO
{x0}
q (Rn). One

can imagine that the behavior of CBMO
{x0}
q (Rn) may be quite different from that of

BMO(Rn).

Lemma 2. [24] Let b be a function in CBMO
{x0}
p (Rn), 1 ≤ p < ∞ and r1, r2 > 0. Then

(
1

|B(x0, r1)|

∫

B(x0,r1)
|b(y)− bB(x0,r2)|

pdy

) 1
p

≤ C

(
1 +

∣∣∣ ln
r1
r2

∣∣∣
)
‖b‖

CBMO
{x0}
p

,

where C > 0 is independent of b, r1 and r2.
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In [13], the following statement was proved for the commutators of fractional integral
operators with rough kernels, containing the results in [26, 28].

Theorem 5. Suppose that Ω ∈ Ls(S
n−1), s > 1, is a homogeneous function of degree zero

and b ∈ BMO(Rn). Let 1 ≤ s′ < p < ∞ and ϕ(x, r) satisfy the conditions (4) and (5).
Then the operator [b, TΩ] is bounded on Mp,ϕ.

Lemma 3. Suppose that x0 ∈ Rn, Ω ∈ Ls(S
n−1), s > 1, is a homogeneous function of

degree zero. Let 1 < p < ∞, b ∈ CBMO
{x0}
p2 (Rn), and 1

p = 1
p1

+ 1
p2
.

Then, for s′ ≤ p1 or p < s the inequality

‖[b, TΩ]f‖Lp(B(x0,r)) . ‖b‖
CBMO

{x0}
p2

r
n
p

∫ ∞

2r

(
1 + ln

t

r

)
t
− n

p1
−1

‖f‖Lp1 (B(x0,t))dt

holds for any ball B(x0, r) and for all f ∈ Lloc
p1 (R

n).

Proof. Let 1 < p < ∞ and 1
p = 1

p1
+ 1

p2
. As in the proof of Lemma 1, we represent

function f in form (9) and have

[b, TΩ]f(x) ≡ J1 + J2 + J3 + J4 =
(
b(x)− bB

)
TΩf1(x)

− TΩ

((
b(·)− bB

)
f1

)
(x) +

(
b(x)− bB

)
TΩf2(x)− TΩ

((
b(·)− bB

)
f2

)
(x).

Hence we get

‖[b, TΩ]f‖Lp(B) ≤ ‖J1‖Lp(B) + ‖J2‖Lp(B) + ‖J3‖Lp(B) + ‖J4‖Lp(B).

From the boundedness of [b, TΩ] on Lp1(R
n) it follows that:

‖J1‖Lp(B) ≤ ‖
(
b(·) − bB

)
[b, TΩ]f1(·)‖Lp(Rn)

≤ ‖
(
b(·) − bB

)
‖Lp2 (R

n)‖[b, TΩ]f1(·)‖Lp1 (R
n)

≤ C‖b‖
CBMO

{x0}
p2

r
n
p2 ‖f1‖Lp1 (R

n)

= C‖b‖
CBMO

{x0}
p2

r
n
p2

+ n
p1 ‖f‖Lp1 (2B)

∫ ∞

2r
t
−1− n

p1 dt

. ‖b‖
CBMO

{x0}
p2

r
n
p

∫ ∞

2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t))t

−1− n
p1 dt.

For J2 we have

‖J2‖Lp(B) ≤ ‖[b, TΩ]
(
b(·)− bB

)
f1‖Lp(Rn)

. ‖(b(·) − bB)f1‖Lp(Rn)

. ‖b(·) − bB‖Lp2 (R
n)‖f1‖Lp1 (R

n)

. ‖b‖
CBMO

{x0}
p2

r
n
p2

+ n
p1 ‖f‖Lp1 (2B)

∫ ∞

2r
t
−1− n

p1 dt
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. ‖b‖
CBMO

{x0}
p2

r
n
p

∫ ∞

2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t))t

−1− n
p1 dt.

For J3, it is known that x ∈ B, y ∈
{

(2B), which implies 1
2 |x0−y| ≤ |x−y| ≤ 3

2 |x0−y|.
When s′ ≤ p1, by Fubini’s theorem and applying Hölder inequality we have

|TΩf2(x)| ≤ c0

∫

{(2B)
|Ω(x− y)|

|f(y)|

|x0 − y|n
dy

≈

∫ ∞

2r

∫

2r<|x0−y|<t
|Ω(x− y)||f(y)|dy t−1−ndt

.

∫ ∞

2r

∫

B(x0,t)
|Ω(x− y)||f(y)|dy t−1−ndt

.

∫ ∞

2r
‖f‖Lp1 (B(x0,t)) ‖Ω(x− ·)‖Ls(B(x0,t)) |B(x0, t)|

1− 1
p1

− 1
s t

−1− n
p1 dt

.

∫ ∞

2r
‖f‖Lp1 (B(x0,t)) t

−1− n
p1 dt.

Hence, we get

‖J3‖Lp(B) = ‖
(
b(·) − bB

)
TΩf2(·)‖Lp(Rn)

≤ ‖
(
b(·) − bB

)
‖Lp(Rn)

∫ ∞

2r
‖f‖Lp1 (B(x0,t)) t

−1− n
p1 dt

≤ ‖
(
b(·) − bB

)
‖Lp2 (R

n) r
n
p1

∫ ∞

2r
‖f‖Lp1 (B(x0,t)) t

−1− n
p1 dt

. ‖b‖
CBMO

{x0}
p2

r
n
p

∫ ∞

2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t))t

−1− n
p1 dt.

When p < s, by Fubini’s theorem and the Minkowski inequality, we get

‖J3‖Lp(B) ≤
( ∫

B

( ∫ ∞

2r

∫

B(x0,t)
|f(y)||b(x)− bB ||Ω(x− y)|dy

dt

tn+1

)p) 1
p

≤

∫ ∞

2r

∫

B(x0,t)
|f(y)| ‖|b(·) − bB |Ω(· − y)‖Lp(B)dy

dt

tn+1

≤

∫ ∞

2r

∫

B(x0,t)
|f(y)| ‖b(·) − bB‖Lp2 (B) ‖Ω(· − y)‖Lp1 (B)dy

dt

tn+1

. ‖b‖
CBMO

{x0}
p2

r
n
p2 |B|

1
p1

− 1
s

∫ ∞

2r

∫

B(x0,t)
|f(y)| ‖Ω(· − y)‖Ls(B)dy

dt

tn+1

. ‖b‖
CBMO

{x0}
p2

r
n
p

∫ ∞

2r
‖f‖L1(B(x0,t))

dt

tn+1
(16)

. ‖b‖
CBMO

{x0}
p2

r
n
p

∫ ∞

2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t))

dt

t
n
p1

+1
.
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For x ∈ B by Fubini’s theorem and applying Hölder inequality we have

|TΩ

((
b(·)− bB

)
f2

)
(x)| .

∫

{(2B)
|b(y)− bB| |Ω(x− y)|

|f(y)|

|x− y|n
dy

.

∫

{(2B)
|b(y)− bB| |Ω(x− y)|

|f(y)|

|x0 − y|n
dy

≈

∫ ∞

2r

∫

2r<|x0−y|<t
|b(y)− bB | |Ω(x− y)| |f(y)|dy

dt

tn+1

.

∫ ∞

2r

∫

B(x0,t)
|b(y)− bB(x0,t)||Ω(x− y)| |f(y)|dy

dt

tn+1

+

∫ ∞

2r
|bB(x0,r) − bB(x0,t)|

∫

B(x0,t)
|Ω(x− y)| |f(y)|dy

dt

tn+1

.

∫ ∞

2r
‖(b(·) − bB(x0,t))f‖Lp(B(x0,t)) ‖Ω(· − y)‖Ls(B(x0,t)) |B(x0, t)|

1− 1
p
− 1

s
dt

tn+1

+

∫ ∞

2r
|bB(x0,r) − bB(x0,t)|‖f‖Lp1 (B(x0,t)) ‖Ω(· − y)‖Ls(B(x0,t)) |B(x0, t)|

1− 1
p1

− 1
s t−n−1dt

.

∫ ∞

2r
‖b(·)− bB(x0,t)‖Lp2 (B(x0,t))‖f‖Lp1 (B(x0,t))t

−1− n
p1 dt

+ ‖b‖
CBMO

{x0}
p2

∫ ∞

2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t)) t

−1− n
p1 dt

. ‖b‖
CBMO

{x0}
p2

∫ ∞

2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t)) t

−1− n
p1 dt.

Then for J4 we have

‖J4‖Lp(B) ≤ ‖TΩ

(
b(·)− bB

)
f2‖Lp(Rn)

. ‖b‖
CBMO

{x0}
p2

r
n
p

∫ ∞

2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t))t

−1− n
p1 dt.

When p < s, by Fubini’s theorem and the Minkowski inequality, we get

‖TΩf2‖Lp(B) ≤
(∫

B

∣∣
∫ ∞

2r

∫

B(x0,t)
|f(y)||Ω(x− y)|dy

dt

tn+1

∣∣p
) 1

p

≤

∫ ∞

2r

∫

B(x0,t)
|f(y)| ‖Ω(· − y)‖Lp(B)dy

dt

tn+1

≤ |B|
1
p
− 1

s

∫ ∞

2r

∫

B(x0,t)
|f(y)| ‖Ω(· − y)‖Ls(B)dy

dt

tn+1

. r
n
p

∫ ∞

2r
‖f‖L1(B(x0,t))

dt

tn+1
(17)

. r
n
p

∫ ∞

2r
‖f‖Lp1(B(x0,t))

dt

t
n
p1

+1
.
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Now, combining by all the above estimates, we end the proof of Lemma 3.J

The following theorem is true:

Theorem 6. Suppose that x0 ∈ Rn, Ω ∈ Ls(S
n−1) with s > 1, is a homogeneous function

of degree zero. Let 1 < p < ∞, b ∈ CBMO
{x0}
p2 (Rn), 1

p = 1
p1

+ 1
p2
. Let also, for s′ ≤ p1 or

p < s the pair (ϕ1, ϕ2) satisfy the condition

∫ ∞

r

(
1 + ln

t

r

) ess inf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
p
+1

dt ≤ C ϕ2(x0, r), (18)

where C does not depend on r.

Then, the operator [b, TΩ] is bounded from LM
{x0}
p,ϕ1 to LM

{x0}
p,ϕ2 . Moreover

‖[b, TΩ]f‖LM{x0}
p,ϕ2

. ‖b‖
CBMO

{x0}
p2

‖f‖
LM

{x0}
p,ϕ1

.

Proof. The statement of Theorem 6 follows by Lemma 3 and Theorem 1 in the same
manner as in the proof of Theorem 4.J

Corollary 4. Suppose that Ω ∈ Ls(S
n−1) with s > 1, is a homogeneous function of degree

zero. Let 1 < p < n
α , b ∈ BMO(Rn), 1

p = 1
p1

+ 1
p2
. Let also, for s′ ≤ p1 or p < s the pair

(ϕ1, ϕ2) satisfy the condition

∫ ∞

r

(
1 + ln

t

r

) ess inf
t<τ<∞

ϕ1(x, τ)τ
n
p

t
n
p
+1

dt ≤ C ϕ2(x, r),

where C does not depend on x and r.

Then, the operator [b, TΩ] is bounded from Mp,ϕ1 to Mp,ϕ2. Moreover

‖[b, TΩ]f‖Mq,ϕ2
. ‖b‖BMO ‖f‖Mp,ϕ1

.

Remark 2. Note that in the case s = ∞ Corollary 4 was proved in [21].
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