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On Ridge Functions
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Abstract. In this paper we survey some of the basic properties of linear combinations of ridge
functions.
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1. Introduction

In this paper we will review a few of the basic properties associated with linear com-
binations of Ridge Functions. We hope the reader will find this subject worthy of further
consideration.

A Ridge Function, in its simplest form, is any multivariate function

F : IRn → IR

of the form
F (x) = f(a1x1 + · · · + anxn) = f(a · x)

where f : IR → IR, x = (x1, . . . , xn), and a = (a1, . . . , an) ∈ IRn\{0}. The vector
a ∈ IRn\{0} is generally called the direction. It is a multivariate function, constant on
the hyperplanes a · x = c, c ∈ IR. It is one of the simpler multivariate functions. Namely,
a superposition of a univariate function with one of the simplest multivariate functions,
the inner product.

More generally, we can also consider, for given d, 1 ≤ d ≤ n − 1, functions F of the
form

F (x) = f(Ax),

where A is a fixed d × n non-zero real matrix, and f : IRd → IR. For d = 1, this reduces
to a ridge function. Many of the results reported on in this paper for d = 1 have their
counterparts when d > 1.

We see ridge functions in numerous multivariate settings without considering them as
of interest in and of themselves. For example, in multivariate Fourier series where the
basic functions are of the form ei(n·x), for n ∈ ZZn, as the kernel of the Fourier transform
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ei(w·x), and in the Radon transform. We see them in PDEs where, for example, if P is a
constant coefficient polynomial in n variable, then

P

(

∂

∂x1
, . . . ,

∂

∂xn

)

f = 0

has a solution f(x) = ea·x if and only if P (a) = 0. And, of course, polynomials in the
form (a · x)k are used in many settings.

2. Motivation

Where do we find ridge functions used in a more central way? Here are a few examples.
We see them in Approximation Theory. Ridge functions should be of interest to

researchers and students of approximation theory. The basic concept in approximation
theory is straightforward and simple. Approximate complicated functions by simpler func-
tions. Among the class of multivariate functions linear combinations of ridge functions
are a class of simpler functions. The questions one asks are the basic questions of ap-
proximation theory. Can one approximate arbitrarily well (density)? How well can one
approximate (degree of approximation)? How does one approximate (algorithms)? Etc
....

Ridge functions are found in PDE theory where they were called Plane Waves. For
example, we see them in the book by F. John [6]. In that book one finds representations of
multivariate functions using integrals whose kernels are specific “plane waves” and appli-
cations thereof to partial differential equations. Plane waves are also discussed in Courant
and Hilbert [1]. In general, linear combinations of ridge functions with fixed directions
occur in the study of hyperbolic constant coefficient partial differential equations. As an
example, assume the (ai, bi) are pairwise linearly independent vectors in IR2. Then the
general “solution” to the homogeneous partial differential equation

r
∏

i=1

(

bi
∂

∂x
− ai

∂

∂y

)

F = 0,

where the derivatives are understood in the sense of distributions, are all functions of the
form

F (x, y) =
r

∑

i=1

fi(aix+ biy),

for arbitrary univariate functions fi.
Ridge functions and ridge function approximations are studied in statistics in the

analysis of large multivariate data sets. There they often go under the name of projection
pursuit, (see e. g. Friedman and Stuetzle [2] and Huber [4]). Projection pursuit algorithms
approximate a function of n variables by functions of the form

r
∑

i=1

fi(a
i · x),
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where both the directions ai and the univariate functions fi are variables. The idea here
is to “reduce dimension” and thus bypass the “curse of dimensionality”. The ai · x is
considered as a projection of x. The directions ai are chosen to “pick out the salient
features”. The method of approximation, introduced by Friedman and Stuetzle [2] and
called projection pursuit regression (PPR), is essentially a stepwise greedy algorithm that,
at its kth stage, looks for a best (or good) approximation of the form fk(a

k · x), as we
vary over both the univariate function fk and the direction ak.

Ridge functions appear in many neural network models. One of the popular models
in the theory of neural nets is that of a multilayer feedforward perceptron (MLP) neural
net with input, hidden, and output layers. The simplest case (which is that of one hidden
layer, r processing units and one output) considers, in mathematical terms, functions of
the form

r
∑

i=1

αiσ(w
i · x+ θi),

where σ : IR → IR is some given fixed univariate function, θi ∈ IR, wi ∈ IRn\{0}. In this
model, which is just one of many, we are in general permitted to vary over the wi and θi,
in order to approximate an unknown function. Note that for each θ and w the function

σ(w · x+ θ)

is also a ridge function. Thus, a lower bound on the degree of approximation by such
functions is given by the degree of approximation by ridge functions. See e. g. Pinkus [10]
and references therein for more on this problem.

The term ridge function was coined in a 1975 paper by Logan and Shepp [9]. This was
a seminal paper in computerized tomography. In tomography, or at least in tomography
as the theory was initially constructed in the early 1980’s, ridge functions were basic. The
idea there was to try to reconstruct a given, but unknown, function G(x) from the values
of its integrals along certain planes or lines. Logan and Shepp considered ridge functions
in the unit disk in IR2 with equally spaced directions. We will consider some nice domain
K in IRn, and a function G belonging to L2(K). Assume that for some fixed directions
{ai}ri=1 we are given

∫

K∩{ai·x=λ}
G(x) dx

for each λ and i = 1, . . . , r. That is, we see the projections of G along the hyperplanes
K ∩ {ai · x = λ}, λ a.e., i = 1, . . . , r. What is a good method of reconstructing G based
only on this information? It easily transpires, from basic orthogonality considerations,
that the unique best L2(K) approximation

f∗(x) =

r
∑

i=1

f∗
i (a

i · x)

to G from the space

M(a1, . . . ,ar) =

{

r
∑

i=1

fi(a
i · x) : fi vary

}

,
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if such a best approximation exists, necessarily satisfies
∫

K∩{ai·x=λ}
G(x) dx =

∫

K∩{ai·x=λ}
f∗(x) dx

for each λ and i = 1, . . . , r. That is, it has the same projections as G. Furthermore, since
it is a best approximation in a Hilbert space, its norm is less than the norm of G. Thus,
among all functions with the same data (projections) as G, this specific linear combination
of ridge functions is the one of minimal L2(K) norm. In the unit disk in IR2 with equally
spaced directions, Logan and Shepp also give a closed-form expression for f∗.

3. Density of Ridge Functions

Ridge functions are dense in C(K) for every compact K ∈ IRn. For example, consider

span{en·x : n ∈ ZZn
+}.

It easily follows from the Stone-Weierstrass Theorem that this class is dense.
Let Ω be any fixed set of vectors in IRn, and

M(Ω) = span{f(a · x) : a ∈ Ω, all f}.

A more interesting question is to try to determine necessary and sufficient conditions on
the set of directions Ω for when we have density of M(Ω) in C(IRn), in the topology of
uniform convergence on compact subsets of IRn. Why this norm and topology? Note that
no ridge function (other than the identically zero function) is in any of the classical spaces
Lp(IRn), for any p ∈ [1,∞). As such, the set of functions that we will approximate are
functions of the class C(IRn), in the topology of uniform convergence on compact subsets.
That is, we would like to have the property that for any given G ∈ C(IRn), any compact
set K ⊂ IRn, and any ε > 0, there exists an F ∈ M(Ω) such that

‖G− F‖K = max
x∈K

|G(x) − F (x)| < ε.

If we can prove density for this class of functions, then we also obtain density in many
other spaces, such as Lp(K), where K is any compact subset of IRn, and every p ∈ [1,∞).

The following result may be found in Vostrecov and Kreines [12], see also Lin and
Pinkus [8]. This result was, for many years, overlooked.

Theorem 3.1. M(Ω) is dense in C(IRn), in the topology of uniform convergence on
compact subsets, if and only if no non-trivial homogeneous polynomial vanishes on Ω.

Some simple consequences of this result are the following.
Corollary 3.2. Assume Ω = Ω1∪Ω2. Then M(Ω) is dense in C(IRn), in the topology

of uniform convergence on compact subsets, if and only if M(Ωj) is dense in C(IRn), in
the topology of uniform convergence on compact subsets, for j = 1 and/or j = 2.

Corollary 3.3. If Ω contains only a finite number of distinct elements, then M(Ω) 6=
C(IRn).



126 A. Pinkus

Corollary 3.4. In IR2, we have that M(Ω) is dense in C(IR2), in the topology of
uniform convergence on compact subsets, if and only if Ω contains an infinite number of
pairwise linearly independent vectors.

What about if the directions are also permitted to vary? Let Ωj, j ∈ J , be sets of
vectors in IRn, and M(Ωj) be as above. We ask when, for each given G ∈ C(IRn), compact
K ⊂ IRn and ε > 0, there exists an F ∈ M(Ωj), for some j ∈ J , such that

‖G− F‖K < ε?

If Ωj = Ω for all j ∈ J , then this is exactly the problem considered previously. If the
{Ωj}j∈J are the totality of all sets with at most k elements, then this is the problem of
approximating with k arbitrary directions

To state the result we introduce the following quantity. To each Ωj, let rj be the
minimal degree of the non-trivial homogeneous polynomials that vanish on Ωj . If no
non-trivial homogeneous polynomial vanishes on Ωj, we set rj = ∞.

The following result is from Kroó [7].

Theorem 3.5. The set
⋃

j∈J M(Ωj) is dense in C(IRn), in the above sense, if and
only if

sup
j∈J

rj = ∞.

4. Representation

As in the previous section, let Ω be any set of fixed vectors in IRn, and

M(Ω) = span{f(a · x) : a ∈ Ω, all f}.

The question we ask here is the following. What is M(Ω) when it is not all of C(IRn)?

For any polynomial p we define

p(D) := p

(

∂

∂x1
, . . . ,

∂

∂xn

)

.

Let P(Ω) be the set of all homogeneous polynomials that vanish on Ω, and let C(Ω)
be the set of all polynomials q such that

p(D)q = 0, all p ∈ P(Ω).

Then we have the following.

Theorem 4.1. On C(IRn), in the topology of uniform convergence on compact subsets,
we have

M(Ω) = C(Ω).
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As a consequence we have, for example, that g(b · x) ∈ M(Ω) for some b and all
continuous g if and only if all homogeneous polynomials vanishing on Ω also vanish on b.

For n = 2 and Ω = {(ai, bi)}
r
i=1, we have from Theorem 4.1 that

F (x, y) =

r
∑

i=1

fi(aix+ biy)

for arbitrary smooth fi if and only if

r
∏

i=1

(

bi
∂

∂x
− ai

∂

∂y

)

F = 0.

In fact, the set M(Ω) is, to a great extent, determined by the polynomials it contains.
To understand this relationship we have the following result.

Let Πn
m denote the set of polynomials of total degree at most m in n variables, and let

Hn
m denote the set of homogeneous polynomials of degree m in n variables. Then

Proposition 4.2. We have the equality

span{(a · x)r : a ∈ Ω, r = 0, . . . ,m} = Πn
m

if and only if no non-trivial p ∈ Hn
m vanishes on Ω.

5. Smoothness

Assume

G(x) =
r

∑

i=1

fi(a
i · x),

where r is finite, and the ai are pairwise linearly independent fixed vectors in IRn. If G is
of a certain smoothness class, what can we say about the smoothness of the fi?

Let us first consider the simpler cases. Assume G ∈ Ck(IRn). If r = 1 then since

G(x) = f1(a
1 · x)

is in Ck(IRn) for some a1 6= 0, it easily follows that f1 ∈ Ck(IR).

Now assume r = 2. As the a1 and a2 are linearly independent, there exists a vector
c ∈ IRn satisfying a1 · c = 0 and a2 · c = 1. Thus for all t ∈ IR

G(tc) = f1(a
1 · tc) + f2(a

2 · tc) = f1(0) + f2(t).

As G(tc) is in Ck(IR), as a function of t, so is f2. The same result holds for f1.

For r ≥ 3, the situation is very much different. Recall that the Cauchy Functional
Equation

g(x+ y) = g(x) + g(y)



128 A. Pinkus

has, as proved by Hamel [3], very badly behaved solutions. As such, setting f1 = f2 =
−f3 = g, we have very badly behaved (and certainly not in Ck(IR)) fi, i = 1, 2, 3, that
satisfy

0 = f1(x1) + f2(x2) + f3(x1 + x2)

for all (x1, x2) ∈ IR2. This Cauchy Functional Equation turns out to be critical in the
analysis of this problem for all r ≥ 3.

Denote by B any class of real-valued functions f defined on IR such that if there is a
function r ∈ C(IR) such that f − r satisfies the Cauchy Functional Equation, then f − r

is necessarily linear, i.e. (f − r)(x) = Ax for some constant A, and all x ∈ IR. B includes,
for example, the set of all functions that are continuous at a point, or monotonic on an
interval, or bounded on one side on a set of positive measure, or Lebesgue measurable.
The following is from Pinkus [11].

Theorem 5.1. Assume G ∈ Ck(IRn) is of the form

G(x) =

r
∑

i=1

fi(a
i · x),

where r is finite, and the ai are pairwise linearly independent vectors in IRn. Assume, in
addition, that each fi ∈ B. Then, necessarily, fi ∈ Ck(IR) for i = 1, . . . , r.

6. Uniqueness of the Representations

What can we say about the uniqueness of the representation? That is, when and for
which functions {gi}

k
i=1 and {hi}

`
i=1 can we have distinct representations

G(x) =

k
∑

i=1

gi(b
i · x) =

∑̀

j=1

hi(c
i · x)

for all x ∈ IRn, where k and ` are finite, and the b1, . . . ,bk, c1, . . . , c` are k + ` pairwise
linearly independent vectors in IRn?

From linearity this is, of course, equivalent to the following. Assume

r
∑

i=1

fi(a
i · x) = 0

for all x ∈ IRn, where r is finite, and the ai are pairwise linearly independent vectors in
IRn. What does this imply regarding the fi?

Theorem 6.1. Assume
r

∑

i=1

fi(a
i · x) = 0

where r is finite, and the ai are pairwise linearly independent vectors in IRn. Assume, in
addition, that fi ∈ B, for i = 1, . . . , r. Then fi ∈ Π1

r−2, i = 1, . . . , r.
That is, with minor smoothness assumptions we have uniqueness of representations up

to polynomials of degree r − 2.
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7. Conclusion

In these few pages we have touched upon certain basic properties of linear combinations
of ridge functions. There are many, many other aspects to the study of ridge functions that
we have not considered. For example, we have not discussed the question of characterizing
best approximations from spaces of finite linear combination of ridge functions with fixed
or variable directions in different normed linear spaces, nor the algorithms for finding such
best approximations. We have not looked at the closure of the space M(Ω) in, say, Lp(K)
for boundedK (it may or may not be closed). We did not review known results concerning
interpolation at points or on lines by ridge functions. Some of these and related questions
are addressed in the recent review article by Ismailov [5].
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