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Abstract. We obtain sufficient conditions for the boundedness of the nonsingular inte-
gral operator and its commutators on vanishing generalized Orlicz-Morrey spaces
MΦ,ϕ(Rn

+) including their weak versions.
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1. Introduction

In connection with elliptic partial differential equations, C. Morrey proposed
a weak condition for the solution to be continuous enough in [26]. Later on,
his condition became a family of normed spaces and they are called Morrey
spaces. Although the notion is originally from the partial differential equations,
the space turned out to be important in many branches of mathematics. Despite
the fact that such spaces allow to describe local properties of functions better than
Lebesgue spaces, they have some unpleasant issues. It is well known that Morrey
spaces are non separable and the usual classes of nice functions are not dense in
such spaces. Moreover, various Morrey spaces are defined in the process of study.
Guliyev, Mizuhara and Nakai [9, 25, 27] introduced and studied the boundedness
of some classical integral operators in the generalized Morrey spaces Mp,ϕ(Rn).

In [4], the generalized Orlicz-Morrey space MΦ,ϕ(Rn) was introduced to unify
Orlicz and generalized Morrey spaces. Other definitions of generalized Orlicz-
Morrey spaces can be found in [28] and [34]. In words of [15], the generalized
Orlicz-Morrey space is the third kind and the ones in [28] and [34] are the first
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kind and the second kind, respectively. According to the examples in [8], one can
say that the generalized Orlicz-Morrey spaces of the first kind and the second
kind are different and that second kind and third kind are different. However,
we do not know anything about the relationship between the first and the second
kind.

Note that, Orlicz-Morrey spaces unify Orlicz and generalized Morrey spaces.
We extend some results on generalized Morrey space in the papers [1, 5, 10, 11,
12, 16, 18] to the case of Orlicz-Morrey space in [4, 13, 14, 15].

Based on the results of [10, 11], the following conditions were introduced in [4]
(see also [13]) for the boundedness of the singular integral operators on MΦ,ϕ(Rn):∫ ∞

r

(
ess inf
t<s<∞

ϕ1(x, s)

Φ−1
(
s−n

)) Φ−1
(
t−n
)dt
t
≤ C ϕ2(x, r), (1)

where C does not depend on x and r.

Consider the half-space Rn+ = Rn−1 × (0,∞). For x = (x′, xn) ∈ Rn+, let
x̃ = (x′,−xn) be the ”reflected point” and B+(x, r) = B(x, r)∩Rn+. Let x ∈ Rn+.

The nonsingular integral operator T̃ is defined by

T̃ f(x) =

∫
Rn+

|f(y)|
|x̃− y|n

dy, x̃ = (x′,−xn). (2)

The commutators generated by b ∈ L1
loc(Rn) and the operator T̃ are defined

by

[b, T̃ ]f(x) =

∫
Rn+

b(x)− b(y)

|x̃− y|n
f(y)dy.

The operator T̃ and its commutator appear in [3] in connection with boundary
estimates for solutions to elliptic equations.

In [6], the boundedness of the nonsingular integral operator T̃ and its com-
mutators [b, T̃ ] on generalized Orlicz-Morrey spaces of the third kind MΦ,ϕ(Rn+)
was studied.

The main purpose of this paper is to find sufficient conditions on general
Young function Φ and functions ϕ1, ϕ2 which ensure the boundedness of the
nonsingular integral operator T̃ from one vanishing generalized Orlicz-Morrey
space VMΦ,ϕ1(Rn+) (see definition in Section 2) to another VMΦ,ϕ2(Rn+), from
VMΦ,ϕ1(Rn+) to vanishing weak generalized Orlicz-Morrey space VWMΦ,ϕ2(Rn+)

and the boundedness of the commutator of the nonsingular integral operator [b, T̃ ]
from VMΦ,ϕ1(Rn+) to VMΦ,ϕ2(Rn+).

The following results are the fundamental theorems in this paper:
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Theorem 1. Let Φ be a Young function with Φ ∈ ∆2. Let also ϕ1, ϕ2 ∈ ΩΦ,1

satisfy

cδ :=

∫ ∞
δ

sup
x∈Rn+

ϕ1(x, t)
dt

t
<∞ (3)

for every δ > 0, and

1

ϕ2(x, r)

∫ ∞
r

ϕ1(x, t)
dt

t
≤ C0, (4)

where C0 does not depend on x ∈ Rn+ and r > 0. Then the nonsingular integral

operator T̃ is bounded from VMΦ,ϕ1(Rn+) to VWMΦ,ϕ2(Rn+). If, in addition,

Φ ∈ ∇2, then the operator T̃ is bounded from VMΦ,ϕ1(Rn+) to VMΦ,ϕ2(Rn+).

Theorem 2. Let Φ be a Young function with Φ ∈ ∆2 ∩ ∇2, b ∈ BMO(Rn+).
ϕ1, ϕ2 ∈ ΩΦ,1 satisfy∫ ∞

r

(
1 + ln

t

r

)
ϕ1(x, t)

dt

t
≤ C0ϕ2(x, r), (5)

where C0 does not depend on x ∈ Rn+ and r > 0, and the conditions

lim
r→0

ln 1
r

infx∈Rn+ ϕ2(x, r)
= 0 (6)

and

cδ :=

∫ ∞
δ

(1 + | ln t|) sup
x∈Rn+

ϕ1(x, t)
dt

t
<∞ (7)

hold for every δ > 0. Then the commutator of the nonsingular integral operator
[b, T̃ ] is bounded from VMΦ,ϕ1(Rn+) to VMΦ,ϕ2(Rn+).

By A . B we mean that A ≤ CB with some positive constant C independent
of appropriate quantities. If A . B and B . A, we write A ≈ B and say that A
and B are equivalent.

2. Definitions and Preliminary Results

2.1. On Young Functions and Orlicz Spaces

We recall the definition of Young functions.
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Definition 1. A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is
convex, left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞
Φ(r) =∞.

From the convexity and Φ(0) = 0 it follows that any Young function is in-
creasing. If there exists s ∈ (0,∞) such that Φ(s) =∞, then Φ(r) =∞ for r ≥ s.
The set of Young functions such that

0 < Φ(r) <∞ for 0 < r <∞

will be denoted by Y. If Φ ∈ Y, then Φ is absolutely continuous on every closed
interval in [0,∞) and bijective from [0,∞) to itself.

For a Young function Φ and 0 ≤ s ≤ ∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s}.

If Φ ∈ Y, then Φ−1 is the usual inverse function of Φ. We note that

Φ(Φ−1(r)) ≤ r ≤ Φ−1(Φ(r)) for 0 ≤ r <∞.

It is well known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0, (8)

where Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)} , r ∈ [0,∞)

∞ , r =∞.

A Young function Φ is said to satisfy the ∆2-condition, denoted also as Φ ∈
∆2, if

Φ(2r) ≤ kΦ(r)for r > 0

for some k > 1. If Φ ∈ ∆2, then Φ ∈ Y. A Young function Φ is said to satisfy
the ∇2-condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2k
Φ(kr), r ≥ 0,

for some k > 1.

Definition 2. (Orlicz Space). For a Young function Φ, the set

LΦ(Rn+) =

{
f ∈ L1

loc(Rn+) :

∫
Rn+

Φ(k|f(x)|)dx <∞ for some k > 0

}
is called Orlicz space. If Φ(r) = rp, 1 ≤ p < ∞, then LΦ(Rn+) = Lp(Rn+). If
Φ(r) = 0, (0 ≤ r ≤ 1) and Φ(r) = ∞, (r > 1), then LΦ(Rn+) = L∞(Rn+). The
space LΦ

loc(Rn+) is defined as the set of all functions f such that fχB ∈ LΦ(Rn+)
for all balls B ⊂ Rn+.
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LΦ(Rn+) is a Banach space with respect to the norm

‖f‖LΦ(Rn+) = inf

{
λ > 0 :

∫
Rn+

Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

We note that ∫
Rn+

Φ
( |f(x)|
‖f‖LΦ(Rn+)

)
dx ≤ 1. (9)

The weak Orlicz space

WLΦ(Rn+) = {f ∈ L1
loc(Rn+) : ‖f‖WLΦ(Rn+) < +∞}

is defined by the norm

‖f‖WLΦ(Rn+) = inf
{
λ > 0 : sup

t>0
Φ(t)m

(f
λ
, t
)
≤ 1
}
.

2.2. Vanishing generalized Orlicz-Morrey Space

Various versions of generalized Orlicz-Morrey spaces were introduced in [28],
[34] and [4]. We used the definition of [4] which runs as follows.

We now define generalized Orlicz-Morrey spaces of the third kind. The gen-
eralized Orlicz-Morrey space MΦ,ϕ(Rn+) of the third kind is defined as the set of
all measurable functions f for which the norm

‖f‖MΦ,ϕ(Rn+) ≡ sup
x∈Rn+, r>0

1

ϕ(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖f‖LΦ(B+(x,r))

is finite, where B+(x, r) = B(x, r)∩Rn+. Also by WMΦ,ϕ(Rn+) we denote the weak
generalized Orlicz-Morrey space of the third kind of all functions f ∈WLΦ

loc(Rn+)
for which

‖f‖WMΦ,ϕ(Rn+) = sup
x∈Rn+,r>0

ϕ(x, r)−1Φ−1(|B+(x, r)|−1) ‖f‖WLΦ(B+(x,r)) <∞,

where WLΦ(B+(x, r)) denotes the weak LΦ-space of measurable functions f for
which

‖f‖WLΦ(B+(x,r)) ≡ ‖fχB+(x,r)
‖WLΦ(Rn+).

Note that MΦ,ϕ(Rn+) covers many classical function spaces.
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Example 1. Let 1 ≤ q ≤ p < ∞ and Φ ∈ ∆2 ∩ ∇2. From the following special
cases, we see that our results will cover the Lebesgue space Lp(Rn+), the classical
Morrey space Mp

q (Rn+), the generalized Morrey space Mp,ϕ(Rn+) and the Orlicz
space LΦ(Rn+) with norm coincidence:

1. If Φ(t) = tp and ϕ(t) = t
−n
p , then MΦ,ϕ(Rn+) = Lp(Rn+) with norm equiva-

lence.

2. If Φ(t) = tq and ϕ(t) = t
−n
p , then MΦ,ϕ(Rn+), which is denoted by Mp

q (Rn+),
is the classical Morrey space.

3. If Φ(t) = tp, then MΦ,ϕ(Rn+) = Mp,ϕ(Rn+) is the generalized Morrey space
discussed in [10, 25, 27].

4. If ϕ(t) = Φ−1(t−n), then MΦ,ϕ(Rn+) = LΦ(Rn+), which is beyond the reach of
generalized Orlicz-Morrey spaces of the second kind defined in [8] according
to an example constructed in [34].

Other definitions of generalized Orlicz-Morrey spaces can be found in [8, 28,
29, 30]. Therefore, our definition of generalized Orlicz-Morrey spaces here is
named “third kind”.

In the case ϕ(x, r) =
Φ−1
(
|B+(x,r)|−1

)
Φ−1
(
|B+(x,r)|−λ/n

) , we get the Orlicz-Morrey space

MΦ,λ(Rn+) from generalized Orlicz-Morrey space MΦ,ϕ(Rn+). We refer to [13,
Lemmas 2.8 and 2.9] for more information about Orlicz-Morrey spaces.

Lemma 1. [13, Lemma 2.12] Let Φ be a Young function and ϕ be a positive
measurable function on Rn+ × (0,∞).

(i) If

sup
t<r<∞

Φ−1(|B+(x, r)|−1)

ϕ(x, r)
=∞ for some t > 0 and for all x ∈ Rn+,

(10)

then MΦ,ϕ(Rn+) = Θ.

(ii) If

sup
0<r<τ

ϕ(x, r)−1 =∞ for some τ > 0 and for all x ∈ Rn+, (11)

then MΦ,ϕ(Rn+) = Θ.
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Remark 1. Let Φ be a Young function. We denote by ΩΦ the set of all positive
measurable functions ϕ on Rn+ × (0,∞) such that for all t > 0,

sup
x∈Rn

∥∥∥Φ−1(|B+(x, r)|−1)

ϕ(x, r)

∥∥∥
L∞(t,∞)

<∞,

and
sup
x∈Rn

∥∥∥ϕ(x, r)−1
∥∥∥
L∞(0,t)

<∞,

respectively. In what follows, keeping in mind Lemma 1, we always assume that
ϕ ∈ ΩΦ.

Definition 3. (vanishing generalized Orlicz-Morrey Space) The vanishing gen-
eralized Orlicz-Morrey space VMΦ,ϕ(Rn+) is defined as the space of functions
f ∈MΦ,ϕ(Rn+) such that

lim
r→0

sup
x∈Rn+

1

ϕ(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖f‖LΦ(B+(x,r)) = 0.

Definition 4. (vanishing weak generalized Orlicz-Morrey Space) The vanishing
weak generalized Orlicz-Morrey space VWMΦ,ϕ(Rn+) is defined as the space of
functions f ∈WMΦ,ϕ(Rn+) such that

lim
r→0

sup
x∈Rn+

1

ϕ(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖f‖LΦ(B+(x,r)) = 0.

The vanishing Morrey space VMp,λ(Rn) of the classical Morrey spacesMp,λ(Rn)
was introduced by Vitanza in [35] and applied there to obtain a regularity re-
sult for elliptic partial differential equations. Later in [36] Vitanza proved an
existence theorem for a Dirichlet problem, under weaker assumptions than those
introduced by Miranda in [24], and obtained a W 3,2 regularity result assuming
that the partial derivatives of the coefficients of the highest and lower order terms
belong to the vanishing Morrey spaces depending on the dimension. Also M.A.
Ragusa [32] proved a sufficient condition for commutators of fractional integral
operators to belong to vanishing Morrey spaces VMp,λ(Rn+). About commutator
operators in vanishing Morrey spaces see the papers [2, 7, 17, 31, 32].

Remark 2. We denote by ΩΦ,1 the set of all positive measurable functions ϕ on
Rn+ × (0, ı) such that

lim
r→0

1

Φ−1(r−n) infx∈Rn+ ϕ(x, r)
= 0 (12)
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and

inf
x∈Rn+

inf
r>δ

ϕ(x, r) > 0, for some δ > 0. (13)

For the non-triviality of the space VMΦ,ϕ(Rn+) we always assume that
ϕ ∈ ΩΦ,1.

The spaces VMΦ,ϕ(Rn+) and WVMΦ,ϕ(Rn+) are Banach spaces with respect
to the norm

‖f‖VMΦ,ϕ ≡ ‖f‖MΦ,ϕ = sup
x∈Rn+,r>0

1

ϕ(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖f‖LΦ(B+(x,r)),

‖f‖VWMΦ,ϕ ≡ ‖f‖WMΦ,ϕ = sup
x∈Rn+,r>0

1

ϕ(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖f‖WLΦ(B+(x,r)),

respectively. The spaces VMΦ,ϕ(Rn+) and VWMΦ,ϕ(Rn+) are closed subspaces
of the Banach spaces MΦ,ϕ(Rn+) and WMΦ,ϕ(Rn+), respectively, which may be
shown by standard means.

3. Nonsingular integral operators in the space VMΦ,ϕ(Rn
+)

For any x ∈ Rn+ define x̃ = (x′,−xn) and recall that x0 = (x′, 0). Also define
B+
r ≡ B+(x0, r) = B(x0, r) ∩ Rn+, 2B+

r = B+(x0, 2r).
For proving our main results, we need the following estimate, which was

proved in [6].

Lemma 2. Let T̃ be a nonsingular integral operator, defined by (2), Φ be any
Young function and f ∈ LΦ

loc(Rn+) be such that∫ ∞
1
‖f‖LΦ(B+(x0,t)) Φ−1

(
t−n
) dt
t
<∞ (14)

i) If Φ ∈ ∆2
⋂
∇2, then

‖T̃ f‖LΦ(B+(x0,r)) ≤
C

Φ−1
(
r−n

) ∫ ∞
2r
‖f‖LΦ(B+(x0,t)) Φ−1

(
t−n
) dt
t
. (15)

ii) If Φ ∈ ∆2, then

‖T̃ f‖WLΦ(B+(x0,r)) ≤
C

Φ−1
(
r−n

) ∫ ∞
2r
‖f‖LΦ(B+(x0,t)) Φ−1

(
t−n
) dt
t
, (16)

where the constants are independent of x0, r and f .
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By using Lemma 2 the following statement was proved in [6].

Theorem 3. Let T̃ be a nonsingular integral operator, defined by (2), Φ ∈ ∆2

and ϕ1, ϕ2 ∈ ΩΦ satisfy (1).
i) Then the operator T̃ is bounded from MΦ,ϕ1(Rn+) to WMΦ,ϕ2(Rn+) and

‖T̃ f‖MΦ,ϕ2 (Rn+) ≤ C‖f‖WMΦ,ϕ1 (Rn+)

with constants independent of f.
ii) If Φ ∈ ∇2, then the operator T̃ is bounded from MΦ,ϕ1(Rn+) to MΦ,ϕ2(Rn+)
and

‖T̃ f‖MΦ,ϕ2 (Rn+) ≤ C‖f‖MΦ,ϕ1 (Rn+) (17)

with constants independent of f.

Proof of Theorem 1. The statement is derived from Theorem 3.
So we only have to prove that

lim
r→0

sup
x∈Rn+

1

ϕ1(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖f‖LΦ(B+(x,r)) = 0

⇒ lim
r→0

sup
x∈Rn+

1

ϕ2(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖T̃ f‖LΦ(B+(x,r)) = 0, (18)

and

lim
r→0

sup
x∈Rn+

1

ϕ1(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖f‖LΦ(B+(x,r)) = 0

⇒ lim
r→0

sup
x∈Rn+

1

ϕ2(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖T̃ f‖WLΦ(B+(x,r)) = 0. (19)

In this estimation we follow some ideas of [33] in such passage to the limit in the
case Φ(r) = rp, but base ourselves on Lemma 2.

To show that sup
x∈Rn+

1
ϕ2(x,r) Φ−1

(
1

|B+(x,r)|

)
‖T̃ f‖LΦ(B+(x,r)) < ε for small r, we

split the right-hand side of (15):

ϕ2(x, r)−1 Φ−1

(
1

|B+(x, r)|

)
‖T̃ f‖LΦ(B+(x,r)) ≤ C[Iδ(x, r) + Jδ(x, r)], (20)

where δ0 > 0 (we may take δ0 < 1), and

Iδ(x, r) :=
1

ϕ2(x, r)

(∫ δ0

r

ϕ1(x, t)

t
(ϕ1(x, t)−1 ‖f‖LΦ(B+(x,t)))dt

)
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and

Jδ(x, r) :=
1

ϕ2(x, r)

(∫ ∞
δ0

ϕ1(x, t)

t
(ϕ1(x, t)−1 ‖f‖LΦ(B+(x,t)))dt

)
.

Besides, it is supposed that r < δ0. Now we choose any fixed δ0 > 0 such that

sup
x∈Rn+

ϕ1(x, t)−1 Φ−1

(
1

|B+(x, r)|

)
‖f‖LΦ(B+(x,r)) <

ε

2CC0
,

where C and C0 are constants from (20) and (4). This allows us to estimate the
first term uniformly in r ∈ (0, δ0) :

sup
x∈Rn+

CIδ0(x, r) <
ε

2
, 0 < r < δ0.

The estimation of the second term now may be made by choosing r sufficiently
small. Indeed, thanks to the condition (12) we have

Jδ(x, r) ≤ cδ0‖f‖VMΦ,ϕ

1

ϕ(x, r)
,

where cδ0 is the constant from (3). Then, by (12) it suffices to choose r small
enough such that

sup
x∈Rn+

1

ϕ(x, r)
≤ ε

2cδ0‖f‖VMΦ,ϕ

,

which completes the proof of (18).
The proof of (19) is similar to the proof of (18). J

4. Commutators of nonsingular integrals in the space MΦ,ϕ(Rn
+)

For a function b ∈ BMO define the commutator [b, T̃ ]f = bT̃ f − T̃ (bf). Our
aim is to show boundedness of [b, T̃ ] in MΦ,ϕ(Rn+). For this goal we recall some
well known properties of the BMO functions.

Lemma 3. (John-Nirenberg lemma, [19]) Let b ∈ BMO and p ∈ (1,∞). Then
for any ball B the inequality(

1

|B|

∫
B
|b(y)− bB|pdy

) 1
p

≤ C(p)‖b‖∗ (21)

holds.
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Definition 5. A Young function Φ is said to be of upper type p (resp. lower
type p) for some p ∈ [0,∞), if there exists a positive constant C such that, for
all t ∈ [1,∞)(resp. t ∈ [0, 1]) and s ∈ [0,∞),

Φ(st) ≤ CtpΦ(s).

Remark 3. We know that if Φ is lower type p0 and upper type p1 with 1 < p0 ≤
p1 <∞, then Φ ∈ ∆2 ∩∇2. Conversely, if Φ ∈ ∆2 ∩∇2, then Φ is lower type p0

and upper type p1 with 1 < p0 ≤ p1 <∞ (see [22]).

Before proving the main theorems, we need the following lemma.

Lemma 4. [20] Let b ∈ BMO(Rn+). Then there is a constant C > 0 such that∣∣∣bB+
r
− bB+

t

∣∣∣ ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t,

where C is independent of b, x, r, and t.

In the following lemma which was proved in [14] we provide a generalization
of the property (21) from Lp-norms to Orlicz norms.

Lemma 5. Let b ∈ BMO(Rn+) and Φ be a Young function. Let Φ be lower type
p0 and upper type p1 with 1 ≤ p0 ≤ p1 <∞. Then

‖b‖∗ ≈ sup
x∈Rn+,r>0

Φ−1
(
r−n

) ∥∥b(·)− bB+(x,r)

∥∥
LΦ(B+(x,r))

.

Remark 4. Note that the Lemma 5 for the variable exponent Lebesgue space
Lp(·) was proved in [21].

Definition 6. Let Φ be a Young function. Let

aΦ := inf
t∈(0,∞)

tΦ′(t)

Φ(t)
, bΦ := sup

t∈(0,∞)

tΦ′(t)

Φ(t)
.

Remark 5. It is known that Φ ∈ ∆2 ∩∇2 if and only if 1 < aΦ ≤ bΦ <∞ (see,
for example, [23]).

Remark 6. Remark 5 and Remark 3 show us that a Young function Φ is lower
type p0 and upper type p1 with 1 < p0 ≤ p1 <∞ if and only if 1 < aΦ ≤ bΦ <∞.

To estimate the commutator we shall employ the same idea which we used in
the proof of Lemma 2.
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Lemma 6. Let Φ be a Young function with Φ ∈ ∆2 ∩ ∇2 and b ∈ BMO(Rn+).
Suppose that for all f ∈ LΦ

loc(Rn+) and r > 0 the inequality∫ ∞
1

(
1 + ln

t

r

)
‖f‖LΦ(B+(x0,t)) Φ−1

(
t−n
)dt
t
<∞ (22)

holds. Then

‖[b, T̃ ]f‖LΦ(B+
r ) ≤

C‖b‖∗
Φ−1

(
r−n

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(B+(x0,t)) Φ−1

(
t−n
)dt
t
. (23)

Theorem 4. Let b ∈ BMO(Rn+), T̃ be a nonsingular integral operator, defined
by (2), and Φ ∈ ∆2 ∩∇2, ϕ1, ϕ2 ∈ ΩΦ satisfy the condition∫ ∞

r

(
1 + ln

t

r

)(
ess inf
t<s<∞

ϕ1(x, s)

Φ−1
(
s−n

)) Φ−1
(
t−n
)dt
t
≤ C ϕ2(x, r), (24)

where C does not depend on x and r. Then the operator [b, T̃ ] is bounded from
MΦ,ϕ1(Rn+) to MΦ,ϕ2(Rn+) and

‖[b, T̃ ]f‖MΦ,ϕ2 (Rn+) ≤ C‖b‖∗ ‖f‖MΦ,ϕ1 (Rn+) (25)

with a constant independent of f.

Proof of Theorem 2. The proof follows more or less the same lines as for
Theorem 3, but now the arguments are different due to the necessity to introduce
the logarithmic factor into the assumptions.

The norm inequality having already been provided by Theorem 4, we only
have to prove the implication

lim
r→0

sup
x∈Rn+

1

ϕ1(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖f‖LΦ(B+(x,r)) = 0

=⇒ 1

ϕ2(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖[b, T̃ ]f‖LΦ(B+(x,r)) = 0. (26)

To check that

sup
x∈Rn+

1

ϕ2(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖[b, T̃ ]f‖LΦ(B+(x,r)) < ε for small r,

we use the estimate (23):

1

ϕ2(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖[b, T̃ ]f‖LΦ(B+(x,r)) .
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.
‖b‖∗

ϕ2(x, r)

∫ ı

r

(
1 + ln

t

r

)
‖f‖LΦ(B(x0,t))

dt

t
.

We take r < δ0, where δ0 is chosen small enough, and split the integration:

1

ϕ2(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖[b, T̃ ]f‖LΦ(B+(x,r)) ≤ C[Iδ0(x, r) + Jδ0(x, r)], (27)

where

Iδ0(x, r) :=
1

ϕ2(x, r)

∫ δ0

r

(
1 + ln

t

r

)
‖f‖LΦ(B+(x,r))

dt

t

and

Jδ0(x, r) :=
1

ϕ2(x, r)

∫ ∞
δ0

(
1 + ln

t

r

)
‖f‖LΦ(B+(x,r))

dt

t
.

We choose a fixed δ0 > 0 such that

sup
x∈Rn+

1

ϕ1(x, r)
Φ−1

(
1

|B+(x, r)|

)
‖f‖LΦ(B+(x,r)) <

ε

2CC0
, t ≤ δ0,

where C and C0 are constants from (27) and (5), which yields the estimate of the
first term uniform in r ∈ (0, δ0) : sup

x∈Rn+
CIδ0(x, r) < ε

2 , 0 < r < δ0.

For the second term, writing 1 + ln t
r ≤ 1 + |ln t|+ ln 1

r , we obtain

Jδ0(x, r) ≤
cδ0 + c̃δ0 ln 1

r

ϕ2(x, r)
‖f‖MΦ,ϕ ,

where cδ0 is the constant from (7) with δ = δ0 and c̃δ0 is a similar constant with
omitted logarithmic factor in the integrand. Then, by (6) we can choose small r
such that supx∈Rn+ Jδ0(x, r) < ε

2 , which completes the proof. J
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