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One Distribution Function on the Moran Sets
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Abstract. In the present article, topological, metric, and fractal properties of certain
sets are investigated. These sets are images of sets whose elements have restrictions on
using digits or combinations of digits in own s-adic representations, under the map f ,
that is a certain distribution function.
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1. Introduction

Let us consider the space Rn. In [7], P. A. P. Moran introduced the following
construction of sets and calculated the Hausdorff dimension of the limit set:

E =
∞⋂
n=1

⋃
i1,...,in∈A0,p

∆i1i2...in . (1)

Here p is a fixed positive integer, A0,p = {1, 2, . . . , p}, and sets ∆i1i2...in are basic
sets having the following properties:

• any set ∆i1i2...in is closed and disjoint;

• for any i ∈ A0,p the condition ∆i1i2...ini ⊂ ∆i1i2...in holds;

•
lim
n→∞

d (∆i1i2...in) = 0,where d(·) is the diameter of a set;

• each basic set is the closure of its interior;

• at each level the basic sets do not overlap (their interiors are disjoint);
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• any basic set ∆i1i2...ini is geometrically similar to ∆i1i2...in ;

•
d (∆i1i2...ini)

d (∆i1i2...in)
= σi,

where σi ∈ (0, 1) for i = 1, p.

The Hausdorff dimension α0 of the set E is the unique root of the following
equation:

p∑
i=1

σα0
i = 1.

It is easy to see that the set (1) is a Cantor-like set and a self-similar fractal.
The set E is called the Moran set.

Much research has been dedicated to Moran-like constructions and Cantor-
like sets (see, e.g., [3, 4, 6, 8, 1, 2, 5, 23, 17] and references therein).

Fractal sets are widely applicated in computer design, algorithms of informa-
tion compression, quantum mechanics, solid-state physics, analysis and catego-
rizations of signals of various forms appearing in different areas (e.g. the analysis
of exchange rate fluctuations in economics, etc.). In addition, such sets are useful
for checking the Hausdorff dimension by certain functions [22, 23]. However, for
many classes of fractals the problem of Hausdorff dimension calculation is difficult
and the estimation of parameters on which the Hausdorff dimension of certain
classes of fractal sets depends is left out of consideration.

Let s > 1 be a fixed positive integer. Let us consider the s-adic representation
of numbers from [0, 1]:

x = ∆s
α1α2...αn... =

∞∑
n=1

αn
sn
,

where αn ∈ A = {0, 1, . . . , s− 1}.
In addition, we say that the following representation

x = ∆−sα1α2...αn... =

∞∑
n=1

αn
(−s)n

,

is a nega-s-adic representation of numbers from
[
− s
s+1 ,

1
s+1

]
. Here αn ∈ A as

well.
Some articles (see [1, 2, 17, 9, 10, 11, 12, 13, 14, 16] ) were dedicated to sets

whose elements have certain restrictions on using combinations of digits in own
s-adic representation. Let us consider the following results.

Suppose s > 2 is a fixed positive integer.
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Let us consider a class Υs of sets S(s,u) represented in the form

S(s,u) =

{
x : x =

u

s− 1
+
∞∑
n=1

αn − u
sα1+···+αn , (αn) ∈ L,αn 6= u, αn 6= 0

}
,

where u = 0, s− 1, the parameters u and s are fixed for the set S(s,u). In other
words, the class Υs contains the sets S(s,0), S(s,1), . . . ,S(s,s−1). We say that Υ is
a class of sets which contains the classes Υ3,Υ4, . . . ,Υn, . . . .

It is easy to see that the set S(s,u) can be defined by the s-adic representation
in the following form:

S(s,u) =

x : x = ∆s
u . . . u︸ ︷︷ ︸
α1−1

α1u . . . u︸ ︷︷ ︸
α2−1

α2...u . . . u︸ ︷︷ ︸
αn−1

αn..., (αn) ∈ L,αn 6= u, αn 6= 0

 ,

Theorem 1 ([13, 16, 17]). For an arbitrary u ∈ A, the set S(s,u) is an uncount-
able, perfect, nowhere dense set of zero Lebesgue measure and a self-similar fractal
whose Hausdorff dimension α0(S(s,u)) satisfies the following equation:

∑
p 6=u,p∈A0

(
1

s

)pα0

= 1.

Remark 1. Theorem 1 is true for all sets S(s,0), S(s,1), . . . ,S(s,s−1) (for fixed pa-
rameters u = 0, s− 1 and any fixed 2 < s ∈ N ) except for the sets S(3,1) and
S(3,2).

Theorem 2 ([13, 16, 14, 17]). Let E be a set, whose elements contain (in own
s-adic or nega-s-adic representation) only digits or combinations of digits from a
certain fixed finite set {σ1, σ2, . . . , σm} of s-adic digits or combinations of digits.

Then the Hausdorff dimension α0 of E satisfies the following equation:

N(σ1m)

(
1

s

)α0

+N(σ2m)

(
1

s

)2α0

+ · · ·+N(σkm)

(
1

s

)kα0

= 1,

where N(σkm) is a number of k-digit combinations σkm from the set {σ1, σ2, . . . , σm},
k ∈ N, and N(σ1m) +N(σ2m) + · · ·+N(σkm) = m.

Now we will describe the main function of our investigation. Let η be a
random variable defined by the s-adic representation

η =
ξ1
s

+
ξ2
s2

+
ξ3
s3

+ · · ·+ ξk
sk

+ · · · = ∆s
ξ1ξ2...ξk...

,
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where ξk = αk and digits ξk (k = 1, 2, 3, . . . ) are random and taking the values
0, 1, . . . , s− 1 with positive probabilities p0, p1, . . . , ps−1. That is, ξk are indepen-
dent and P{ξk = ik} = pik , ik ∈ A.

From the definition of distribution function and the expressions

{η < x} = {ξ1 < α1(x)} ∪ {ξ1 = α1(x), ξ2 < α2(x)} ∪ . . .

∪{ξ1 = α1(x), ξ2 = α2(x), . . . , ξk−1 = αk−1(x), ξk < αk(x)} ∪ . . . ,

P{ξ1 = α1(x), ξ2 = α2(x), . . . , ξk−1 = αk−1(x), ξk < αk(x)} = βαk(x)

k−1∏
j=1

pαj(x),

where

βαk =

{∑αk(x)−1
i=0 pi(x) whenever αk(x) > 0

0 whenever αk(x) = 0,

it is easy to see that the following statement is true.

Statement 1. The distribution function fη of the random variable η can be
represented in the following form:

fη(x) =


0 whenever x < 0

βα1(x) +
∑∞

k=2

(
βαk(x)

∏k−1
j=1 pαj(x)

)
whenever 0 ≤ x < 1

1 whenever x ≥ 1,

where pαj(x) > 0.

The function

f(x) = βα1(x) +
∞∑
n=2

βαn(x) n−1∏
j=1

pαj(x)


can be used as a representation of numbers from [0, 1]. That is,

x = ∆P
α1(x)α2(x)...αn(x)...

= βα1(x) +
∞∑
n=2

βαn(x) n−1∏
j=1

pαj(x)

,
where P = {p0, p1, . . . , ps−1}, p0+p1+· · ·+ps−1 = 1, and pi > 0 for all i = 0, s− 1.
The last-mentioned representation is the P-representation of numbers from [0, 1].

Let us remark that the function f is the Salem function for s = 2. Some
researches are devoted to generalizations of the Salem function (see [20, 21, 24,
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15]) including the cases when arguments of such generalizations are defined in
terms of certain (see [18, 19]) alternating representations of real numbers.

In this article, we consider properties of the images of the sets considered in
Theorem 1 and Theorem 2 under the map f .

We begin with definitions.
Let s be a fixed positive integer, s > 2. Let c1, c2, . . . , cm be an ordered tuple

of integers such that ci ∈ {0, 1, . . . , s− 1} for i = 1,m.

Definition 1. A cylinder of rank m with base c1c2 . . . cm is a set ∆P
c1c2...cm formed

by all numbers of the segment [0, 1] with P-representations in which the first m
digits coincide with c1, c2, . . . , cm, respectively, i.e.,

∆P
c1c2...cm =

{
x : x = ∆P

α1α2...αn..., αj = cj , j = 1,m
}
.

Cylinders ∆P
c1c2...cm have the following properties:

1. any cylinder ∆P
c1c2...cm is a closed interval;

2.

inf ∆P
c1c2...cm = ∆P

c1c2...cm000..., sup ∆P
c1c2...cm = ∆P

c1c2...cm[s−1][s−1][s−1]...;

3.
|∆P

c1c2...cm | = pc1pc2 · · · pcm ;

4.
∆P
c1c2...cmc ⊂ ∆P

c1c2...cm ;

5.

∆P
c1c2...cm =

s−1⋃
c=0

∆P
c1c2...cmc;

6.
lim
m→∞

|∆P
c1c2...cm | = 0;

7.
|∆P

c1c2...cmcm+1
|

|∆P
c1c2...cm |

= pcm+1 ;

8.
sup ∆P

c1c2...cmc = inf ∆P
c1c2...cm[c+1],

where c 6= s− 1;
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9.
∞⋂
m=1

∆P
c1c2...cm = x = ∆P

c1c2...cm....

Definition 2. A number x ∈ [0, 1] is called P-rational if

x = ∆P
α1α2...αn−1αn000...

or
x = ∆P

α1α2...αn−1[αn−1][s−1][s−1][s−1]....

The other numbers in [0, 1] are called P-irrational.

2. The objects of research

Let 2 < s be a fixed positive integer, A = {0, 1, . . . , s − 1}, A0 = A \ {0} =
{1, 2, . . . , s− 1}, and

L ≡ (A0)
∞ = (A0)× (A0)× (A0)× . . .

be the space of one-sided sequences of elements of A0.
Let P = {p0, p1, . . . , ps−1} be a fixed set of positive numbers such that p0 +

p1 + · · ·+ ps−1 = 1.
Let us consider a class Γ that contains classes ΓPs of sets S(Ps,u) represented

in the form

S(Ps,u) ≡

x : x = ∆P
u...u︸︷︷︸
α1−1

α1u...u︸︷︷︸
α2−1

α2...u...u︸︷︷︸
αn−1

αn..., (αn) ∈ L,αn 6= u, αn 6= 0

 , (2)

where u = 0, s− 1, the parameters u and s are fixed for the set S(Ps,u). That is,
the class ΓPs contains the sets S(Ps,0),S(Ps,1), . . . ,S(Ps,s−1).

Lemma 1. An arbitrary set S(Ps,u) is an uncountable set.

Proof. Let us consider the mapping g : S(Ps,u) → Su. That is,

∀(αn) ∈ L : x = ∆P
u...u︸︷︷︸
α1−1

α1u...u︸︷︷︸
α2−1

α2...u...u︸︷︷︸
αn−1

αn...
g−→ ∆s

α1α2...αn... = y = g(x).

It follows from the definition of an arbitrary set Su that s-adic-rational num-
bers of the form

∆s
α1α2...αn−1αn000...
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do not belong to Su (since the condition αn /∈ {0, u} holds). Hence each element
of Su has the unique s-adic representation.

For any x ∈ S(Ps,u) there exists y = g(x) ∈ Su and for any y ∈ Su there exists
x = g−1(y) ∈ S(Ps,u). Since P-rational numbers do not belong to S(Ps,u), we have
f(x1) 6= f(x2) for every x1 6= x2.

So from the uncountability of Su we get the uncountability of the set S(Ps,u).
J

To investigate topological and metric properties of S(Ps,u), we will study prop-
erties of cylinders.

Let c1, c2, . . . , cn be an ordered tuple of integers such that ci ∈ {0, 1, . . . , s−1}
for i = 1, n.

Definition 3. A cylinder of rank n with base c1c2 . . . cn is a set ∆
(P,u)
c1c2...cn of the

form

∆(P,u)
c1c2...cn =

=

x : x = ∆P
u...u︸︷︷︸
c1−1

c1u...u︸︷︷︸
c2−1

c2...u...u︸︷︷︸
cn−1

cn u...u︸︷︷︸
αn+1−1

αn+1 u...u︸︷︷︸
αn+2−1

αn+2..., αj = cj , j = 1, n

 .

By (a1a2 . . . ak) we denote the period a1a2 . . . ak in the representation of a
periodic number.

Lemma 2. Cylinders ∆
(P,u)
c1...cn have the following properties:

1.

inf ∆(P,u)
c1...cn =



∆P
0...0︸︷︷︸
c1−1

c10...0︸︷︷︸
c2−1

c2...0...0︸︷︷︸
cn−1

cn(0...0︸︷︷︸
s−2

[s−1]) if u = 0

∆P
1...1︸︷︷︸
c1−1

c11...1︸︷︷︸
c2−1

c2...1...1︸︷︷︸
cn−1

cn(1...1︸︷︷︸
s−2

[s−1]) if u = 1

∆P
u...u︸︷︷︸
c1−1

c1u...u︸︷︷︸
c2−1

c2...u...u︸︷︷︸
cn−1

cn(1)
if u ∈ {2, 3, . . . , s− 1},

sup ∆(P,u)
c1...cn... =
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=



∆P
[s− 1]...[s− 1]︸ ︷︷ ︸

c1−1

c1...[s− 1]...[s− 1]︸ ︷︷ ︸
cn−1

cn([s− 1]...[s− 1]︸ ︷︷ ︸
s−3

[s−2])
if u = s− 1

∆P
u...u︸︷︷︸
c1−1

c1u...u︸︷︷︸
c2−1

c2...u...u︸︷︷︸
cn−1

cn(u...u︸︷︷︸
u

[u+1]) if u ∈ {1, . . . , s− 2}

∆P
0...0︸︷︷︸
c1−1

c10...0︸︷︷︸
c2−1

c2...0...0︸︷︷︸
cn−1

cn(1)
if u = 0.

2. If d(·) is the diameter of a set, then

d(∆(P,u)
c1...cn) = d(S(Ps,u))p

c1+c2+···+cn−n
u

n∏
j=1

pcj .

3.
d(∆

(P,u)
c1...cncn+1)

d(∆
(P,u)
c1...cn)

= pcn+1p
cn+1−1
u .

4.

∆(P,u)
c1c2...cn =

s−1⋃
i=1

∆
(P,u)
c1c2...cni

∀cn ∈ A0, n ∈ N, i 6= u.

5. The following relations are true:

(a) if u ∈ {0, 1}, then

inf ∆(P,u)
c1...cnp > sup ∆

(P,u)
c1...cn[p+1];

(b) if u ∈ {2, 3, . . . , s− 3}, then
sup ∆

(P,u)
c1...cnp < inf ∆

(P,u)
c1...cn[p+1] for all p+ 1 ≤ u

inf ∆
(P,u)
c1...cnp > sup ∆

(P,u)
c1...cn[p+1], for all u < p;

(c) if u ∈ {s− 2, s− 1}, then

sup ∆(P,u)
c1...cnp < inf ∆

(P,u)
c1...cn[p+1]

(in this case, the condition p 6= s− 1 holds).
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Proof. The first property follows from the equality

x = ∆P
u...u︸︷︷︸
c1−1

c1u...u︸︷︷︸
c2−1

c2...u...u︸︷︷︸
cn−1

cn u...u︸︷︷︸
αn+1−1

αn+1 u...u︸︷︷︸
αn+2−1

αn+2...

= ∆P
u...u︸︷︷︸
c1−1

c1u...u︸︷︷︸
c2−1

c2...u...u︸︷︷︸
cn−1

cn(0)
+ pc1+···+cn−nu

(
n∏
k=1

pck

)
∆P
u...u︸︷︷︸
αn+1−1

αn+1 u...u︸︷︷︸
αn+2−1

αn+2...

and the definition of S(Ps,u).
It is easy to see that the second property follows from the first property, the

third property is a corollary of the first and second properties, and Property 4
follows from the definition of the set.

Let us show that Property 5 is true. Let us prove that the first inequality
holds for u = 1. In fact,

inf ∆(P,0)
c1...cnp − sup ∆

(P,0)
c1...cn[p+1] =

= ∆P
0...0︸︷︷︸
c1−1

c10...0︸︷︷︸
c2−1

c2...0...0︸︷︷︸
cn−1

cn0...0︸︷︷︸
p−1

p(0...0︸︷︷︸
s−2

[s−1]) −∆P
0...0︸︷︷︸
c1−1

c10...0︸︷︷︸
c2−1

c2...0...0︸︷︷︸
cn−1

cn0...0︸︷︷︸
p

[p+1](1)

= βpp
c1+...+cn−n+p−1
0

n∏
j=1

pcj + ppp
c1+...+cn−n+p−1
0

 n∏
j=1

pcj

 inf S(Ps,0)

−βp+1p
c1+...+cn−n+p
0

n∏
j=1

pcj − pp+1p
c1+...+cn−n+p
0

 n∏
j=1

pcj

 supS(Ps,0)

= pc1+...+cn−n+p0

 n∏
j=1

pcj

(βpp−10 + ppp
−1
0 inf S(Ps,0) − βp+1 − pp+1 supS(Ps,0)

)

= pc1+...+cn−n+p−10

 n∏
j=1

pcj

 (p0(1− p0 − pp − pp+1 supS(Ps,0))+

+(1− p0)(p1 + ...+ pp−1) + pp inf S(Ps,0)) > 0,

because

1− p0 − pp − pp+1 supS(Ps,0) = 1− p0 − pp − pp+1
p0

1− p1
=

=

∑
i/∈{0,1,p,p+1} pi + pp+1(1− p0) + p0p1 + p1pp

1− p1
> 0.
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Also,

inf ∆(P,1)
c1...cnp − sup ∆

(P,1)
c1...cn[p+1] =

= ∆P
1...1︸︷︷︸
c1−1

c10...0︸︷︷︸
c2−1

c2...1...1︸︷︷︸
cn−1

cn1...1︸︷︷︸
p−1

p(1...1︸︷︷︸
s−2

[s−1]) −∆P
1...1︸︷︷︸
c1−1

c11...1︸︷︷︸
c2−1

c2...1...1︸︷︷︸
cn−1

cn 1...1︸︷︷︸
p

[p+1](12)

= βpp
c1+...+cn+p−n−1
1

n∏
j=1

pcj + ppp
c1+...+cn−n+p−1
1

 n∏
j=1

pcj

 inf S(Ps,1)

−βp+1p
c1+...+cn+p−n
1

n∏
j=1

pcj − pp+1p
c1+...+cn−n+p
1

 n∏
j=1

pcj

 supS(Ps,1)

= pc1+...+cn−n+p−11

 n∏
j=1

pcj

(βp + pp inf S(Ps,1) − βp+1p1 − pp+1p1 supS(Ps,1)
)

= pc1+...+cn−n+p−11

 n∏
j=1

pcj

 (pp inf S(Ps,1) + p1(1− p1 − pp − pp+1 supS(Ps,1))+

+(1− p1)(p0 + p2 + ...+ pp−1)) > 0,

since

supS(Ps,1) = ∆P
(12) = β1 +

∞∑
k=1

β1p
k
1p
k
2 +

∞∑
k=1

β2p
k
1p
k
2 =

p0 + p0p1 + p21
1− p1p2

> 0

and

1 = p0 + p1 + · · ·+ ps−1.

Let us prove the system of inequalities. Consider the first inequality. For the
case where p+ 1 ≤ u we get

inf ∆
(P,u)
c1...cn[p+1] − sup ∆(P,u)

c1...cnp = ∆P
u...u︸︷︷︸
c1−1

c1u...u︸︷︷︸
c2−1

c2...u...u︸︷︷︸
cn−1

cnu...u︸︷︷︸
p

[p+1](1)−

−∆P
u...u︸︷︷︸
c1−1

c1u...u︸︷︷︸
c2−1

c2...u...u︸︷︷︸
cn−1

cnu...u︸︷︷︸
p−1

p(u...u︸︷︷︸
u

[u+1])

= βup
c1+...+cn−n+p−1
u

n∏
j=1

pcj + βp+1p
c1+...+cn−n+p
u

n∏
j=1

pcj+
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+pp+1p
c1+...+cn−n+p
u

 n∏
j=1

pcj

 ·∆P
(1)

−βppc1+...+cn−n+p−1u

n∏
j=1

pcj − pppc1+...+cn−n+p−1u

 n∏
j=1

pcj

 ·∆P
(u...u︸︷︷︸

u

[u+1])

= pc1+...+cn−n+p−1u

 n∏
j=1

pcj

βu + βp+1pu + pp+1pu∆P
(1) − βp − pp∆

P
(u...u︸︷︷︸

u

[u+1])


= pc1+...+cn−n+p−1u

 n∏
j=1

pcj

×
×

pp+1pu∆P
(1) + (βu − βp) + pupp + βppu − pp∆P

(u...u︸︷︷︸
u

[u+1])

 > 0

since the conditions p < u, βu − βp > 0, and βp+1 = βp + pp hold.

Let us prove that the second inequality is true. Here p > u, i.e., p − u ≥ 1.
Similarly,

inf ∆(P,u)
c1...cnp − sup ∆

(P,u)
c1...cn[p+1] = ∆P

u...u︸︷︷︸
c1−1

c1u...u︸︷︷︸
c2−1

c2...u...u︸︷︷︸
cn−1

cnu...u︸︷︷︸
p−1

p(1)−

−∆P
u...u︸︷︷︸
c1−1

c1u...u︸︷︷︸
c2−1

c2...u...u︸︷︷︸
cn−1

cnu...u︸︷︷︸
p

[p+1](u...u︸︷︷︸
u

[u+1])

= βpp
c1+...+cn−n+p−1
u

n∏
j=1

pcj + ppp
c1+...+cn−n+p−1
u

 n∏
j=1

pcj

 ·∆P
(1)

−βupc1+...+cn−n+p−1u

n∏
j=1

pcj − βp+1p
c1+...+cn−n+p
u

n∏
j=1

pcj − pp+1p
c1+...+cn−n+p
u ×

×

 n∏
j=1

pcj

 ·∆P
(u...u︸︷︷︸

u

[u+1])

= pc1+...+cn−n+p−1u

 n∏
j=1

pcj

βp + pp∆
P
(1) − βu − βp+1pu − pp+1pu∆P

(u...u︸︷︷︸
u

[u+1])


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= pc1+...+cn−n+p−1u

 n∏
j=1

pcj

(pp∆P
(1)+

+(pu+1 + ...+ pp+1) + pu(pp+1 + ...+ ps−1−

−pp+1∆
P
(u...u︸︷︷︸

u

[u+1]))

 > 0

since the conditions p > u, βp − βu = pu + pu+1 + ... + pp−1, and 1 − βp+1 =
pp+1 + ...+ ps−1 hold.

Suppose that u = s− 2. Then

inf ∆
(P,s−2)
c1c2...cn[p+1] − sup ∆(P,s−2)

c1c2...cnp

= ∆P
[s− 2]...[s− 2]︸ ︷︷ ︸

c1−1

c1[s− 2]...[s− 2]︸ ︷︷ ︸
c2−1

c2...[s− 2]...[s− 2]︸ ︷︷ ︸
cn−1

cn[s− 2]...[s− 2]︸ ︷︷ ︸
p

[p+1](1)

−∆P
[s− 2]...[s− 2]︸ ︷︷ ︸

c1−1

c1...[s− 2]...[s− 2]︸ ︷︷ ︸
cn−1

cn[s− 2]...[s− 2]︸ ︷︷ ︸
p−1

p([s− 2]...[s− 2]︸ ︷︷ ︸
s−2

[s−1])

= βs−2p
c1+...+cn−n+p−1
s−2

n∏
j=1

pcj + βp+1p
c1+...+cn−n+p
s−2

n∏
j=1

pcj

+pp+1p
c1+...+cn−n+p
s−2

 n∏
j=1

pcj

 ·∆P
(1) − βpp

c1+...+cn−n+p−1
s−2

n∏
j=1

pcj

−pppc1+...+cn−n+p−1s−2

 n∏
j=1

pcj

 ·∆P
([s− 2]...[s− 2]︸ ︷︷ ︸

s−2

[s−1])

= pc1+...+cn−n+p−1s−2

 n∏
j=1

pcj

×
×(βs−2 + βp+1ps−2 + ps−2pp+1∆

P
(1) − βp − pp∆

P
([s− 2]...[s− 2]︸ ︷︷ ︸

s−2

[s−1]))

= pc1+...+cn−n+p−1s−2

 n∏
j=1

pcj

 (pp(1−∆P
([s− 2]...[s− 2]︸ ︷︷ ︸

s−2

[s−1]))+(pp+1+ ...+ps−3)+
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+βp+1ps−2 + ps−2pp+1∆
P
(1)) > 0

since βs−2 − βp = pp + pp+1 + · · ·+ ps−3. Here p 6= s− 1.

Suppose that u = s− 1. Then

inf ∆
(P,s−1)
c1c2...cn[p+1] − sup ∆(P,s−1)

c1c2...cnp

= ∆P
[s− 1]...[s− 1]︸ ︷︷ ︸

c1−1

c1...[s− 1]...[s− 1]︸ ︷︷ ︸
cn−1

cn[s− 1]...[s− 1]︸ ︷︷ ︸
p

[p+1](1)

−∆P
[s− 1]...[s− 1]︸ ︷︷ ︸

c1−1

c1...[s− 1]...[s− 1]︸ ︷︷ ︸
cn−1

cn[s− 1]...[s− 1]︸ ︷︷ ︸
p−1

p([s− 1]...[s− 1]︸ ︷︷ ︸
s−3

[s−2])

= βs−1p
c1+...+cn−n+p−1
s−1

n∏
j=1

pcj + βp+1p
c1+...+cn−n+p
s−1

n∏
j=1

pcj

+pp+1p
c1+...+cn−n+p
s−1

 n∏
j=1

pcj

 ·∆P
(1) − βpp

c1+...+cn−n+p−1
s−1

n∏
j=1

pcj

−pppc1+...+cn−n+p−1s−1

 n∏
j=1

pcj

 ·∆P
([s− 1]...[s− 1]︸ ︷︷ ︸

s−3

[s−2])

= pc1+...+cn−n+p−1s−1 ×

×

 n∏
j=1

pcj

 (βs−1+βp+1ps−1+ps−1pp+1∆
P
(1)−βp−pp∆

P
([s− 1]...[s− 1]︸ ︷︷ ︸

s−3

[s−2])) > 0.

J

Theorem 3. The set S(Ps,u) is a perfect and nowhere dense set of zero Lebesgue
measure.

Proof. Let us prove that the set S(Ps,u) is a nowhere dense set. By definition,

there exist cylinders ∆
(P,u)
c1...cn of rank n in an arbitrary subinterval of the segment

I = [inf S(Ps,u), supS(Ps,u)]. Since Property 5 from Lemma 2 is true for these
cylinders, for any subinterval of I there exists a subinterval which does not contain
points from S(Ps,u). So S(Ps,u) is a nowhere dense set.
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Let us show that S(Ps,u) is a set of zero Lebesgue measure. Suppose that

I
(Ps,u)
c1c2...cn is a closed interval whose endpoints coincide with the endpoits of the

cylinder ∆
(P,u)
c1c2...cn ,

|I(Ps,u)c1c2...cn | = d(∆(P,u)
c1c2...cn) = d(S(Ps,u))p

c1+c2+···+cn−n
u

n∏
j=1

pcj ,

and

S(Ps,u) =
∞⋂
k=1

E
(Ps,u)
k ,

where
E

(Ps,u)
1 =

⋃
c1∈A0\{u}

I(Ps,u)c1 ,

E
(Ps,u)
2 =

⋃
c1,c2∈A0\{u}

I(Ps,u)c1c2 ,

. . . . . . . . . . . . . . . . . . . . .

E
(Ps,u)
k =

⋃
c1,c2,...,ck∈A0\{u}

I(Ps,u)c1c2...ck
,

. . . . . . . . . . . . . . . . . . . . .

In addition, since E
(Ps,u)
k+1 ⊂ E(Ps,u)

k , we have

E
(Ps,u)
k = E

(Ps,u)
k+1 ∪ Ē(Ps,u)

k+1 .

Let I be an initial closed interval such that λ(I) = d0 and [ inf S(Ps,u), supS(Ps,u)] =
I, λ(·) be the Lebesgue measure of a set. Then

λ(E
(Ps,u)
1 ) =

∑
c1∈A0\{u}

|I(Ps,u)c1 | = d(S(Ps,u))
∑

c1∈A0\{u}

pc1−1u = γ0.

We get

λ(Ē
(Ps,u)
1 ) = d0 − λ(E

(Ps,u)
1 ) = d0 − γ0d0 = d0(1− γ0).

Similarly,

λ(Ē
(Ps,u)
2 ) = λ(E

(Ps,u)
1 )− λ(E

(Ps,u)
2 ) = γ0d0 − γ20d0 = d0γ0(1− γ0),

λ(Ē
(Ps,u)
3 ) = λ(E

(Ps,u)
2 )− λ(E

(Ps,u)
3 ) = γ20d0 − γ30d0 = (1− γ0)γ20d0,

. . . . . . . . . . . . . . . . . . . . .
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So,

λ(S(Ps,u)) = d0−
n∑
k=1

λ(Ē
(Ps,u)
k ) = d0−

n∑
k=1

γk−10 d0(1− γ0) = d0−
d0(1− γ0)

1− γ0
= 0.

The set S(Ps,u) is a set of zero Lebesgue measure.
Let us prove that S(Ps,u) is a perfect set. Since

E
(Ps,u)
k =

⋃
c1,c2,...,ck∈A0\{u}

I(Ps,u)c1c2...ck

is a closed set (E
(Ps,u)
k is a union of segments), we see that

S(Ps,u) =
∞⋂
k=1

E
(Ps,u)
k

is a closed set.
Let x ∈ S(Ps,u), P be any interval that contains x, and Jn be a segment of

E
(Ps,u)
n that contains x. Choose a number n such that Jn ⊂ P . Suppose that xn

is the endpoint of Jn such that the condition xn 6= x holds. Hence xn ∈ S(Ps,u)
and x is a limit point of the set.

Since S(Ps,u) is a closed set and does not contain isolated points, we conclude
that S(Ps,u) is a perfect set. J

Theorem 4. The set S(Ps,u) is a self-similar fractal and the Hausdorff dimension
α0(S(Ps,u)) of this set satisfies the following equality:∑

i∈A0\{u}

(
pip

i−1
u

)α0
= 1.

Proof. From S(Ps,u) ⊂ I and S(Ps,u) being a perfect set, it follows that S(Ps,u)
is a compact set. In addition,

S(Ps,u) =
⋃

i∈A0\{u}

[
I
(Ps,u)
i ∩ S(Ps,u)

]

and
[
I
(Ps,u)
i ∩ S(Ps,u)

]
pip

i−1
u∼ S(Ps,u) for all i ∈ A0 \ {u}.

The set S(Ps,u) is a compact self-similar set of space R1. Then the self-similar
dimension of this set is equal to the Hausdorff dimension of S(Ps,u). So the set
S(Ps,u) is a self-similar fractal, and its Hausdorff dimension α0 satisfies the equality∑

i∈A0\{u}

(
pip

i−1
u

)α0
= 1.
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J

Theorem 5. Let E be a set whose elements are represented in terms of the
P-representation by a finite number of fixed combinations τ1, τ2, . . . , τm of digits
from the alphabet A. Then the Hausdorff dimension α0 of E satisfies the following
equality:

m∑
j=1

(
s−1∏
i=0

p
Ni(τj)
i

)α0

= 1,

where Ni(τk) (k = 1,m) is a number of the digit i in τk from the set {τ1, τ2, . . . , τm}.

Proof. Let {τ1, τ2, . . . , τm} be a set of fixed combinations of digits from A and
the P-representation of any number from E contains only such combinations of
digits.

It is easy to see that there exist combinations τ ′, τ ′′ from the set Ξ =
{τ1, τ2, . . . , τm} such that ∆P

τ ′τ ′ ...
= inf E, ∆P

τ ′′τ ′′ ...
= supE, and

d(E) = supE − inf E = ∆P
τ ′′τ ′′ ...

−∆s
τ ′τ ′ ...

.

A cylinder ∆
(P,E)

τ
′
1τ
′
2...τ

′
n

of rank n with base τ
′
1τ
′
2 . . . τ

′
n is a set formed by all

numbers of E with the P-representations in which the first n combinations of
digits are fixed and coincide with τ

′
1, τ

′
2, . . . , τ

′
n, respectively (τ

′
j ∈ Ξ for all j =

1, n).
It is easy to see that

d(∆
(P,E)

τ
′
1τ
′
2...τ

′
n

) = d(E) · pN0(τ
′
1τ
′
2...τ

′
n)

0 p
N1(τ

′
1τ
′
2...τ

′
n)

1 · · · pNs−1(τ
′
1τ
′
2...τ

′
n)

s−1 ,

where Ni(τ
′
1τ
′
2...τ

′
n) is a number of the digit i ∈ A in τ

′
1τ
′
2...τ

′
n.

Since E is a closed set, E ⊂ [inf E, supE], and

d

(
∆

(P,E)

τ
′
1τ
′
2...τ

′
nτ
′
n+1

)
d

(
∆

(P,E)

τ
′
1τ
′
2...τ

′
n

) =
s−1∏
i=0

p
Ni(τ

′
n+1)

i ,

E = [Iτ1 ∩ E] ∪ [Iτ2 ∩ E] ∪ . . . ∪ [Iτm ∩ E],

where Iτj = [inf ∆
(P,E)
τj , sup ∆

(P,E)
τj ] and j = 1, 2, . . . ,m, we have

[Iτj ∩ E]
ωj∼ E for all j = 1,m,
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where

ωj =
s−1∏
i=0

p
Ni(τj)
i .

This completes the proof. J
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[8] M. Pollicott, Károly Simon, The Hausdorff dimension of λ-expansions with
deleted digits, Trans. Amer. Math. Soc., 347, 1995, 967-983.

[9] S.O. Serbenyuk, Topological, metric and fractal properties of one set
defined by using the s-adic representation, XIV International Scientific
Kravchuk Conference: Conference materials II, Kyiv: National Technical
University of Ukraine “KPI”, 2012, p. 220 (in Ukrainian), available at
https://www.researchgate.net/publication/311665455

[10] S.O. Serbenyuk, Topological, metric and fractal properties of sets of class
generated by one set with using the s-adic representation, International Con-
ference “Dynamical Systems and their Applications”: Abstracts, Kyiv: Insti-
tute of Mathematics of NAS of Ukraine, 2012, p. 42 (in Ukrainian), available
at https://www.researchgate.net/publication/311415778



One Distribution Function on the Moran Sets 29

[11] S.O. Serbenyuk, Topological, metric and fractal properties of the set
with parameter, that the set defined by s-adic representation of num-
bers, International Conference “Modern Stochastics: Theory and Ap-
plications III” dedicated to 100th anniversary of B. V. Gnedenko
and 80th anniversary of M. I. Yadrenko: Abstracts, Kyiv: Taras
Shevchenko National University of Kyiv, 2012, p. 13, available at
https://www.researchgate.net/publication/311415501

[12] S.O. Serbenyuk, Topological, metric, and fractal properties of one set
of real numbers such that it defined in terms of the s-adic representa-
tion, Naukovyi Chasopys NPU im. M. P. Dragomanova. Seria 1. Phizyko-
matematychni Nauk[Trans. Natl. Pedagog. Mykhailo Dragomanov Univer-
sity. Ser. 1. Phys. Math.], 11, 2010, 241-250. (in Ukrainian), available at
https://www.researchgate.net/publication/292606441

[13] S.O. Serbenyuk, Topological, metric properties and using one gener-
alizad set determined by the s-adic representation with a parameter,
Naukovyi Chasopys NPU im. M. P. Dragomanova. Seria 1. Phizyko-
matematychni Nauky[Trans. Natl. Pedagog. Mykhailo Dragomanov Uni-
versity. Ser. 1. Phys. Math.], 12, 2011, 66-75. (in Ukrainian), available at
https://www.researchgate.net/publication/292970196

[14] S.O. Serbenyuk, On some sets of real numbers such that defined by nega-s-
adic and Cantor nega-s-adic representations, Naukovyi Chasopys NPU im.
M. P. Dragomanova. Seria 1. Phizyko-matematychni Nauky [Trans. Natl.
Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math.], 15, 2013, 168-
187, available at https://www.researchgate.net/publication/292970280 (in
Ukrainian).

[15] S.O. Serbenyuk, Functions, that defined by functional equa-
tions systems in terms of Cantor series representation of num-
bers, Naukovi Zapysky NaUKMA, 165, 2015, 34–40, available at
https://www.researchgate.net/publication/292606546 (in Ukrainian).

[16] S. Serbenyuk, On one class of fractal sets,
https://arxiv.org/pdf/1703.05262.pdf

[17] S. Serbenyuk, More on one class of fractals, arXiv:1706.01546v1.

[18] S. Serbenyuk, Nega-Q̃-representation as a generalization of certain
alternating representations of real numbers, Bull. Taras Shevchenko
Natl. Univ. Kyiv Math. Mech., 1(35), 2016, 32-39, available at
https://www.researchgate.net/publication/308273000 (in Ukrainian).



30 S.O. Serbenyuk

[19] S. Serbenyuk, Representation of real numbers by the alternating Cantor se-
ries, Integers, 17, 2017, Paper No. A15, 27 pp.

[20] S.O. Serbenyuk, Continuous Functions with Complicated Local Structure De-
fined in Terms of Alternating Cantor Series Representation of Numbers, Zh.
Mat. Fiz. Anal. Geom., 13(1), 2017, 57-81.

[21] S.O. Serbenyuk, Non-differentiable functions defined in terms of classical
representations of real numbers, Zh. Mat. Fiz. Anal. Geom., 14(2), 2018,
197-213.

[22] S.O. Serbenyuk, Preserving the Hausdorff-Besicovitch dimension by mono-
tonic singular distribution functions, In: Second interuniversity scientific
conference on mathematics and physics for young scientists: abstracts, 2011,
106-107, available at https://www.researchgate.net/publication/301637057
(in Ukrainian).

[23] S. Serbenyuk, On one fractal property of the Minkowski function, Revista
de la Real Academia de Ciencias Exactas, F́ısicas y Naturales. Serie A.
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