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On the Completeness of the System of Airy
Functions

A.Kh. Khanmamedov*, Kh.E. Abbasova

Abstract. Airy functions Ai (z — \,),n = 1,2, ..., are considered, where \,, is the eigen-

value of the one-dimensional Stark operator on the semi-axis with finite potential and

Dirichlet boundary condition at zero. The completeness in the space Lo (0,00) of a
. . oo .

system of functions {Ai (z — \,)},_; is proved.
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1. Introduction and main result

In the space Lg (0, 00) we consider a self-adjoint operator
d2

Ty = -
0 dx?

+ x,
generated by the left-hand side of the equation
— +axy=Ay, 0<x <00, XAEC, (1)

and boundary condition

y(0) =0. (2)
It is well known [1] that the equation (1) has a solution f (z,A) in the form

fl,A) = Ai(z = A), (3)
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where Ai(z) is the Airy function of the first kind. It is also known that (see
[1]) Ai(z) is an entire function of order 3/2 and type 2/3. We have (see [1]) the
following asymptotic equalities as |z| — oo:

Ai(z) w2z 1e ¢ 140 (7). (4)
A (2) ~ —r3z1e¢ [1+0(¢Y)], |argz| <,

where ( = %z% Since qp (z) = © — +oo for x — +oo, the spectrum of the
operator Tp consists of simple real eigenvalues. From (3), (4) it follows that for
each fixed A from the complex plane, the relation f(x,\) € Ly (0,00) holds.
Therefore, the spectrum of the problem (1)-(2), i.e. of the operator Tp, coincide
with the zeros of the function f(0,A) = Ai(—A\). The function Ai(—\) has [1]
zeros A\),n = 1,2, ... only on the positive semi axis and the following asymptotic

equality is valid:
dn —1
=g (), )

where

()14 5 ., 5 _, 77125 _, 108056875 _g .
Z)~Z —Zz — —Z z — z z 0.
g 48 36 82944 6967296 ’

We now consider the self-adjoint operator
T=Ty+q(z)

in space Lo (0,00), where the real potential g (z) is twice differentiable and finite.
Such an operator describes (see [1, 2]) the influence of the electric field potential
and is called the Stark operator. Note that in the context of various spectral
problems, the one-dimensional Stark operators have been studied by many au-
thors (see [3, 4, 5, 6, 7] and references therein). Many important results were
obtained on the resonances of the one-dimensional Stark operators in [8, 9].

In [5] the asymptotic behavior of the eigenvalues of the operator 7" has been
studied. It was proved there that the spectrum of the operator T consists of
a sequence of simple real eigenvalues A\,,n > 1, and the following asymptotic
formula is valid:

An = (zmg_l)>§+0<n_§),n—>oo. (6)

Of particular interest is the question of the completeness of the system of functions

{f (z,A\n)};2,. This matter can be very useful in the study of inverse spectral

problem for the operator T, since the completeness of this system of functions
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plays a key role in the unique solvability of the Gelfand-Levitan equation (see
[10, 11]).
The main result of this paper is the following theorem.

Theorem 1. Let the numbers Ap, Ap # Mg, (n # k) be in the form of (6). Then
the system of functions {f (x, \n)}oey is complete in Ly (0, 00).

Proof. Let h(z) € Ly (0,00) be such that
/ h(x)Ai(x — A\p)dx =0, n > 0.
0

Consider the Hadamard factorization of the function Ai (—M\):

A
Ai (=) = Coe?? H (1 — ) el

OJ\!\J

where Cy = Ai (0) = 1?(

Introduce the function

)’
00 A A

= CeP? —Z)eM
A(N) =Ce nl;[1 (1 )\n) ern,

the set of roots of which coincides with the sequence \,,, where C7 = Cj Hn 1 )\0

It follows from (5), (6) that A(/\) is an entire function of order 3. For h(z) €

o)

Lg (0,00), as shown in I, J;° b (x) Ai (x — X) d is an entire function of order p <
2 It follows that A~1 (X) [ h Az (x — N)dx is an entire function of order p <
% Further, when 0 < arg)\ < 27r the function Ai~! fo x) Ai (z — \) dx
admits (see [7]) the estimate

‘Ail(—/\)/ h(x) Ai (z — A) dz| < M ||h|| RZ, R = |A| > Ry.
0

On the other hand, inside the corner § < arg A < 27 — 4, § > 0, the relation

An — A0
A= Ao

holds. Then from the formula
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it follows that
Ai(—=X)
AN

<

Using the last relations, we obtain
‘A‘l ()\)/ h(z) Ai (x — \) dz| < My ||f|| R2
0

where R = |\| > Ry, 0 < arg A < 27 — 6. Now let § > 0 be such that the sector

(7)

angle is smaller than 2% Applying the Phragmen-Lindelof theorem [12] to the
function (1 + M) “2 471 A) JoT h(z) Ai (z — ) dz, we find that the estimate (7)
also holds in the sector —5 < arg )\ < 6. From this, using the Liouville’s theorem
[12] we conclude that A~ (X) [§¥ h(z) Ai (z — X) dz = 0, i.e.

H()\):/Oooh(x)Ai(x—)\)deO.

On the other hand, as shown in [13] (see Theorem 2.1), for all h (z) € Ly (0, 00)

we have the equality
| m@ra= [
0 —00

and consequently, h (z) = 0. This completes the proof of the theorem. <«
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