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On Zeros of the Modified Bessel Function of the
First Kind

A.Kh. Khanmamedov*, Kh.E. Abbasova

Abstract. Zeros of the modified Bessel function Iν (z) of the first kind, considered as
a function of index ν are studied. It is proved that for each ε, ε > 0 outside the band
|Imν| < ε the function Iν (z) can only have a finite number of zeros. Real zeros of the
function Iν (z) are located in the intervals (−2k,− (2k − 1)) , k = 1, 2, ....
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1. Introduction and main result

Consider the modified Bessel equation

z2u′′ + zu′ −
(
z2 + ν2

)
u = 0, (1)

where ν is a complex parameter. It is well known [1] that this equation has a
solution Iν (z), representable in the form

Iν (z) =
(z

2

)ν ∞∑
k=0

(
z
2

)2k
k!Γ (ν + k + 1)

, (2)

where Γ (·) is a gamma function. Function Iν (z) is called the modified Bessel
function of the first kind and has numerous applications in many natural and
technical sciences (especially in physics and mechanics). Zeros of conventional
and modified Bessel functions of the first kind Jν (z) and Iν (z), as well as the
functions themselves, have numerous applications in the problems of physics,
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mechanics, etc. (see [2, 3, 4]). It should be noted that the zeros of Bessel functions
have been studied in more detail in case they are considered as functions of their
arguments, i.e. with a fixed index (see [5, 6, 7, 8, 9, 10] and the references therein).
The situation is different when Bessel functions are considered as functions of the
index for a fixed argument. In this direction, we note the work [11], in which it
is shown that for the positive z zeros νk of the Bessel function of the first kind
Jν (z) is real, simple and asymptotically close to the negative integers. A similar
problem for the modified Bessel function of the second kind was studied in the
works [12, 13, 14, 15]. In the works [1, 2] it was shown that the modified function
Iν (z) of the first kind, as a function of order ν, does not have zeros in the right
half-plane. The analysis of ν-zeros of the function Iν (z) in the left half-plane is
also of interest. The last question, as far as we know, has not yet been studied.

In this paper, the distribution of ν-zeros function Iν (z) in the left half-plane
is studied. The main result of this work is the following theorem.

Theorem 1. For each fixed z > 0, the function Iν (z) outside the band |Imν| <
ε, ε > 0 can only have a finite number of ν−zeros. The real zeros of the function
Iν (z) can only be located in the intervals (−2k,− (2k − 1)) , k = 1, 2, ..., and
for large values of k, the function Iν (z) has exactly two zeros in the interval
(−2k,− (2k − 1)) , k = 1, 2, ....

2. Proof of Theorem 1

Consider the equation (1). If we put z = ec−x, y (x) = u (ec−x) , ν = iλ,
where c is any finite number, then equation (1) will take the form

−y′′ + q (x) y = λ2y, q (x) = e2(c−x). (3)

Consider the boundary problem, generated on the half-axis by 0 ≤ x < ∞,
differential equation (3) and a boundary condition

y (0) = 0. (4)

From the above substitutions it follows that the function

f (x, λ) = I−iλ
(
ec−x

)
(5)

is a solution of the equation (3). It is known that I−iλ (z) for a fixed z > 0 is an
entire function of λ. Then, by (5), with each fixed x, 0 ≤ x < +∞, the solution
f (x, λ) of the equation (3) is as an entire function with respect to λ. From the
known relation [16]

Iν (z) =
(z

2

)ν
Γ−1 (ν + 1) (1 + o (1)) , z → 0,
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it follows that

f (x, λ) = 2iλe−icλeiλxΓ−1 (1− iλ) (1 + o (1)) , x→ +∞. (6)

On the other hand, as is known [17], the equation (3) has a unique solution
e (x, λ) with asymptotics e (x, λ) = eiλx (1 + o (1)) , x → +∞. Moreover, the
following triangular representation is true:

e (x, λ) = eiλx +

∫ +∞

x
K (x, t) eiλtdt, (7)

where the kernel K (x, t) is a continuously differentiable function and satisfies the
relation

K (x, t) = O
(
e2c−x−t

)
, x+ t→ +∞. (8)

From (5) - (8) it follows that

e (x, λ) = 2−iλeicλΓ (1− iλ) I−iλ
(
ec−x

)
. (9)

According to the general theory (see [17] ), the boundary problem (3) - (4)
has a continuous spectrum that fills the half-axis [0,+∞). The eigenvalues of this
problem coincide with the squares of the zeros of the function e (0, λ), located
in the upper half-plane. As is known [17], for λ > 0 the functione (0, λ) has no
zeros. In addition, by virtue of (2), (9), we have e (0, 0) 6= 0. Further, it is
known [17] that in the general case, i.e. for the real potential q (x) from the class∫ +∞
0 x |q (x)| dx < ∞, the function e (0, λ) in the half-plane Imλ > 0 can only

have a finite number of zeros λn, lying on the imaginary axis: λn = iθn, θn > 0.
In this case, the numbers −θ2n are the eigenvalues of the boundary problem (3) -
(4). However, due to the positivity of the potential q (x) = e2(c−x), the boundary
problem (3) - (4) cannot have [17] negative eigenvalues. Consequently, e (0, λ) 6= 0
for Imλ ≥ 0. Then, (9) implies that for all ν, Reν ≥ 0, the relation Iν (ec) 6= 0
holds.

Next, we replace in equation (3) x by −ix and put

z (x) = y (−ix) , λ = ik. (10)

As a result, we obtain the equation

−z′′ − e2ce2ixz = k2z. (11)

As shown in the works [18, 19], the equation (11) has the following solution:

f (x, k) = eikx

(
1 +

∞∑
n=1

1

n+ 2k

∞∑
α=n

Vnαe
iαx

)
.
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In this case, the series

∞∑
n=1

1

n

∞∑
α=n+1

α (α− n) |Vnα| ,
∞∑
n=1

n |Vnα| ,
∞∑
n=1

∞∑
α=n

|Vnα|

converge. Moreover, in the case of equation (3) for odd n the equality Vnα =
0, α ≥ n is valid. Then from (10), (11) it follows that the solution e (x, λ) of
equation (3) admits the representation

e (x, λ) = eiλx

(
1 +

1

2

∞∑
n=1

1

n− iλ

∞∑
α=n

Unαe
iαx

)
, (12)

where Unα = V2n,α. Consequently, the function e (x, λ) for each x ≥ 0 is meromor-
phic with respect to λ, the poles of which are located at points λ = −in, n ≥ 1.
In addition, formulas (9), (12) show that with each real value of c zeros of the
function Iν (ec) coincide with zeros of the meromorphic function

g (ν) = 1 +
1

2

∞∑
n=1

An
n+ ν

, An =

∞∑
α=n

Unα. (13)

Let ν = −µ+ iη, µ > 0 be a zero of the function g (ν). Then from (13) we obtain

1 +
1

2

∞∑
n=1

n− µ
(n− µ)2 + η2

An = 0, (14)

η

∞∑
n=1

1

(n− µ)2 + η2
An = 0. (15)

Note that∣∣∣∣∣
∞∑
n=1

n− µ
(n− µ)2 + η2

An

∣∣∣∣∣ ≤
∞∑
n=1

|n− µ|
2 |n− µ| · |η|

|An| ≤
1

|η|

∞∑
n=1

|An| → 0, η →∞.

(16)
It follows that the zeros of the functions g (ν) can only be located in some band
|Imν| = |η| < L. Suppose that ε is an arbitrary positive number and |η| ≥ ε.
Then we have∣∣∣∑∞n=1

n−µ
(n−µ)2+η2An

∣∣∣ ≤∑∞n=1
|n−µ|

(n−µ)2+η2 |An| =
∑[µ2 ]

n=1
|n−µ|

(n−µ)2+η2 |An|+

+
∑∞

n=[µ2 ]+1
|n−µ|

(n−µ)2+η2 |An| ≤
∑[µ2 ]

n=1
µ

(µ2 )
2
+η2
|An|+

∑∞
n=[µ2 ]+1

|n−µ|
2|η|·|n−µ| |An| ≤

≤ 4
µ

∑∞
n=1 |An|+

1
2ε

∑∞
n=[µ2 ]+1

|An| → 0, µ→∞.
(17)
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By virtue of (17), outside any band |Imν| < ε, the function g (ν) can only have
a finite number of zeros.

Finally assume that v > 0 and I−ν (ec) = 0. If ν takes integer values, then
I−ν (ec) = Iν (ec) 6= 0. With the remaining positive values of ν from the formula

Kν (ec) = π
2
I−ν(ec)−Iν(ec)

sin νπ (see [16]) it follows that

sin νπ = −π
2

Iν (ec)

Kν (ec)
.

Considering that [16] Iν(ec)
Kν(ec)

> 0 for ν > 0, we find from the last equation that the

zeros of the functions Iν (ec) can be located in the interval (−2k,− (2k − 1)) , k =
1, 2, ....

Further, we use asymptotic formulas [5]

Iν (z) ∼
(z

2

)ν 1

Γ (ν + 1)
exp

(
z2

4ν

)
, (18)

Kν (z) ∼ 1

2

(z
2

)−ν
Γ (ν) exp

(
− z

2

4ν

)
, (19)

true for |z| ≤ Cν
1
2 , |arg z| ≤ π

2 , ν → ∞, where C > 0 is some constant. On the
other hand, for |arg ν| ≤ π − ε, ε > 0, ν →∞ the asymptotic formula

Γ (ν + b) ∼
√

2π exp (−ν) vν+b−
1
2 (20)

holds. The last three relations lead us to the approximate equality

sin νπ = −1

2

( ez
2ν

)2ν
.

Since
(
ez
2ν

)2ν
strictly decreases for large values of ν, from the last equation it

follows that for large values k, the function Iν (z) has exactly two zeros in the
interval (−2k,− (2k − 1)).

Thus, the proof of the theorem is completed.
Note. As Hurwitz [5] and McDonald [6] showed, if ν < −1 and 2k + 1 < −ν <
2k+ 2, where k ≥ 0 is an integer, then Iν (z) as a function of z, has 4k+ 2 zeros,
two of which lie on the real axis. Thus, the results of this work are consistent
with the results of [5, 6].
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