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On Stability of Bases From Perturbed Exponential
Systems in Orlicz Spaces

J.A. Asadzadeh*, A.N. Jabrailova

Abstract. In this article, perturbed exponential system
{
eiλnt

}
n∈Z , (where {λn} is

some sequence of real numbers), is considered in the Orlicz space LM (−π, π). We find a
condition on the sequence {λn}, which is sufficient for the above system to form a basis for
LM (−π, π). We establish an analogue of classical Levinson theorem on the replacement
of a finite number of elements of this system by other elements. Our results are the
analogues of the corresponding results obtained for Lebesgue spaces Lp, 1 ≤ p ≤ +∞.
We also establish an analogue of classical Levinson theorem on the completeness of above
system in the spaces Lp, 1 ≤ p ≤ +∞.
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1. Introduction

Consider perturbed systems of sines

{sin λnx}n∈N , (1)

and cosines
{cosλnx}n∈Z+

, (2)

where N is a set of all positive integers, Z+ = {0}
⋃
N , and {λn} ⊂ R is some

sequence of real numbers. These systems are the natural perturbations of classical
systems of sines and cosines, and they are also the eigenfunctions of second order
ordinary differential operator with integral boundary condition. Moreover, it
should be noted that the frame theory originates from the research by Duffin
R.J. and Schaeffer A.C. [25] (see also [26,27]) dedicated to the frame properties
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of such systems in the spaces L2. That’s why there is great interest in studying
basis properties of these systems in different kinds of function spaces. First results
in this field belong probably to Paley-Wiener [1] and N. Levinson [2]. The well-
known “ Kadets 1/4 ” theorem also belongs to this field (see [3]). When λn has
a constant shift λn = n + αsignn (α ∈ R), the systems (1) and (2) arise in the
solution of mixed or elliptic type differential equations by the Fourier method
(see, e.g., [4-6]). In view of this, many authors have studied the basis properties
of the systems (1) and (2) (see, e.g., [4,6-15,23,24]). All above-mentioned works
treat basis properties in the Lebesgue spaces.

Orlicz spaces were introduced by W. Orlicz and Z. Birnbaum in the beginning
of 1930 s in connection with orthogonal decomposition. Orlicz spaces have wide
applications in different fields of mathematics such as approximation, stochastic
analysis, nonlinear differential equations, Fourier analysis, etc. Numerous facts
of classical analysis are transferred to these spaces.

In this work we consider a perturbed exponential system
{
eiλnt

}
n∈Z in the

Orlicz space LM (−π, π). We establish an analogue of classical Levinson theorem
on the replacement of a finite number of elements of this system by other elements.
We find a condition on the sequence λn, which is sufficient for this system to form
a basis for LM (−π, π). Our results are the analogues of the corresponding results
obtained for Lebesgue spaces Lp, 1 ≤ p ≤ +∞ (see, e.g., [16]). We also establish
an analogue of classical Levinson theorem on the completeness of above system
in the spaces Lp, 1 ≤ p ≤ +∞.

2. Needful information

We will use following notations. N will denote the set of positive integers,
Z+ = {0}

⋃
N ; Z = {−N}

⋃
Z+, XM (·) will be the characteristic function of the

set M ;R will stand for the set of real numbers, C will denote the set of complex
numbers, M̂ will stand for the closure of the set M in the corresponding norm
and (·) will denote the complex conjugation.

Definition 1. Continuous convex function M (u) in R is called an N -function,
if it is even and satisfies the conditions

lim
u→0

M (u)

u
= 0; lim

u→∞

M (u)

u
=∞ .

Definition 2. Let M be an N -function. The function

M∗ (v) = max
u≥0

[u |v −M (u)] ,

is called an N -function complementary to M (·).
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The function M∗ (·) can be characterized as follows. Let the function p (·) :
R+ → R+ = [0; +∞) be right continuous for t ≥ 0, positive for t > 0, non-
decreasing and satisfy the conditions p (0) = 0, p (∞) = lim

t→∞
p (t) =∞. Define

q (s) = sup
p(t)≤s

t, s ≥ 0.

The function q (·) has the same properties as the function p (·): it is positive
for s > 0, right continuous for s ≥ 0, non-decreasing and satisfies conditions
q (0) = 0, q (∞) = lim

s→∞
q (s) =∞. The functions

M (u) =

∫ |u|
0

p (t) dt, M∗ (v) =

∫ |v|
0

q (s) ds,

are called N -functions complementary to each other.

Definition 3. N -function M (·) satisfies ∆2-condition for large values of u, if
∃k > 0 ∧ ∃u0 ≥ 0:

M (2u) ≤ kM (u) , ∀u ≥ u0.

∆2-condition is equivalent to requiring that, for ∀l > 1, ∃k (l) > 0 ∧ ∃u0 ≥ 0:

M (lu) ≤ k (l)M (u) , ∀u ≥ u0.

Now let’s define the Orlicz space. Let M (·) be some N -function, G ⊂ R be
a (Lebesgue) measurable finite-dimensional set. Denote by L0 (G) the set of all
functions measurable in G. Let

ρM (u) =

∫
G
M [u (x)] dx,

and
LM (G) = {u ∈ L0 (M) : ρM (u) < +∞} .

LM (G) is called an Orlicz class.
Let M (·) and M∗ (·) be N -functions complementary to each other. Let

L∗M (G) = {u ∈ L0 (M) : |u, v| < +∞, ∀u (·) ∈ LM∗ (G)} ,

where

(u, v) =

∫
G
u (x) v (x)dx.

L∗M (G) is called an Orlicz space. With the norm:

‖u‖M = sup
ρM∗(v)≤1

|(u, v)| ,
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L∗M (G) becomes a Banach space. Note that in L∗M (G), the following norm is
equivalent to the norm ‖u‖M :

‖u‖M = inf
{
k > 0 : ρM

(u
k

)
≤ 1
}
.

‖ · ‖M is called a Luxemburg norm. Let’s recall the following well known fact.

Statement 1. If N -function M (·) satisfies ∆2-condition, then L∗M (G) =
LM (G) and the closure of the set of bounded (including continuous) functions
coincides with L∗M (G).

Statement 2. If N -function M (·) satisfies ∆2-condition, then L∗M (G) is sepa-
rable.

More details on the above facts can be found in [17,18].

In the sequel, as G we will consider the interval G = [−π, π], and for
simplicity, we will always omit the letter G in the notations (for example
L∗M (G) = LM (G), etc.). Later we will need some facts about Fourier analy-
sis in Orlicz spaces. Let’s first define the following characteristic of the space
LM .

Let M (u) and N (v) be N -functions complementary to each other. Let v (x)
be a function in LN (−π, π) such that ρ (v;N) ≤ 1. Then according to the Jensen
integral inequality

M

{∫
G u (x) dx

mesG

}
≤
∫
GM [u (x)] dx

mesG
, u (x) ∈ LM ,

we have

N

(
1

m (En)

∫
En

v (x) dx

)
≤ 1

m (En)

∫
En

N (v (x)) dx ≤ 1

m (En)
,

from which it follows that∫
En

v (x) dx ≤ m (En)N−1
(

1

m (En)

)
, (3)

where N−1 ( · ) is the inverse function of N (·).
For the function v0 (x)N−1

(
1

m(En)

)
χEn , satisfying the condition ρ (v0;N) =

1, we have ∫
En

v0 (x) dx ≤ m (En)N−1
(

1

m (En)

)
. (4)
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By the definition of the norm, we have

‖χEn‖M = sup
ρ(v;N)≤1

∣∣∣∣∫
G
χEnv (x) dx

∣∣∣∣ = sup
ρ(v;N)≤1

∣∣∣∣∫
En

v (x) dx

∣∣∣∣ .
Hence, by virtue of (3) and (4), we obtain the formula for the norm of the
characteristic function:

‖χEn‖M = m (En)N−1
(

1

m (En)

)
.

Definition 4. We shall say that the function u ∈ L∗M has an absolute continuous
norm if for every ε > 0 one can find a δ > 0 such that

‖uχEn‖LM (−π,π) = sup
ρ(v;N)≤1

∣∣∣∣∫
En

u (x) v (x) dx

∣∣∣∣ < ε,

provided m (En) < δ (En ⊂ (−π, π)).

More details on the above facts can be found in [17,18].

So, let M (·) be some N -function and M−1 (·) be its inverse on [0,+∞) . Let

h (t) = lim sup
x→∞

M−1 (x)

M−1 (tx)
, t > 0,

and define the numbers

αM = − lim
t→∞

lnh (t)

ln t
; βM = − lim

t→0+

lnh (t)

ln t
.

The numbers αM and βM are called upper and lower Boyd indices for the Orlicz
space LM .

The following relationship holds:

0 ≤ αM ≤ βM ≤ 1;

αM + βM∗ ≡ 1; αM∗ + βM ≡ 1.

The space LM is reflexive if and only if 0 < αM ≤ βM < 1. If 1 ≤ q < 1
βM
≤

1
αM

< p ≤ +∞, then the continuous embeddings Lp (−π, π) ⊂ LM ⊂ Lq (−π, π)
hold.

We will also need the following
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Theorem 3. For every p and q such that

1 ≤ p < 1

βM
≤ 1

αM
< q ≤ +∞,

we have
Lq ⊂ LM ⊂ Lp,

with the inclusion maps being continuous.

More details regarding these concepts can be found in [19-22].
We will need some concepts and facts from the theory of Banach function

spaces (see e.g. [24,25]). Let (R;µ) be a measure space, and M+ be the cone
of µ-measurable functions on R the values of which lie in [0, +∞]. Denote the
characteristic function of a µ-measurable subset of R by χE .

Definition 5. A mapping ρ : M+ → [0, +∞] is called a Banach function norm
(or simply a function norm) if, for all f, g, fn, n ∈ N in M+, for all constants
a ≥ 0 and for all µ-measurable subsets E ⊂ R, the following properties hold:

(P1) ρ (f) = 0⇔ f = 0 µ-a.e.; ρ (af) = aρ (f); ρ (f + g) ≤ ρ (f) + ρ (g);
(P2) 0 ≤ g ≤ f µ-a.e.⇒ ρ (g) ≤ ρ (f);
(P3) 0 ≤ fn ↑ fµ-a.e.⇒ ρ (fn) ↑ ρ (f);
(P4) µ (E) < +∞⇒ ρ (χE) < +∞;
(P5) µ (E) < +∞ ⇒

∫
E fdµ ≤ CEρ (f), for some constant CE : 0 < CE <

+∞ depending on E and ρ, but independent of f .

Let M denote the set of all extended scalar-valued (real or complex) µ-
measurable functions and M0 ⊂ M denote the subclass of functions that are
finite µ-a.e. .

Definition 6. Let ρ be a function norm. The set X = X (ρ) of all functions f
in M for which ρ (|f |) < +∞ is called a Banach function space. For each f ∈ X,
define ‖f‖X = ρ (|f |).

The following theorem is true.

Theorem 4. Let ρ be a function norm and let X = X (ρ) and ‖ · ‖X be as above.
Then under the natural vector space operations, (X; ‖ · ‖X) is a normed linear
space for which the inclusions

Ms ⊂ X ⊂M

hold, where Ms is the set of µ-simple functions. In particular, if fn → f in X,
then fn → f in measure on sets of finite measure, and hence some subsequence
converges pointwise µ-a.e. to f .
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Let

ρ (g) = sup

{∫
γ
f (τ) g (τ) |dt| : f ∈M+; ρ (f) ≤ 1

}
, ∀g ∈M+.

A space

X ′ =
{
g ∈M : ρ′ (|g|) < +∞

}
is called an associate space (Kothe dual) of X.

The functions f ; g ∈M0 are called equimeasurable if

|{τ ∈ γ : |f (τ)| > λ} = {τ ∈ γ : |g (τ)| > λ}| , ∀λ ≥ 0.

Banach function norm ρ : M+ → [0, ∞] is called rearrangement invariant if for
arbitrary equimeasurable functions f ; g ∈ M0 the relation ρ (f) = ρ (g) holds.
In this case, Banach function space X with the norm ‖ · ‖X = ρ (| · |) is said to
be rearrangement invariant function space (r.i.s. for short). Classical Lebesgue,
Orlicz, Lorentz, Lorentz-Orlicz spaces are r.i.s.

Theorem 5. The Banach space dual X∗ of a b.f.s. X is canonically isometrically
isomorphic to the associate space X ′ if and only if X has absolutely continuous
norm.

We will also use the following statement from [22, p.14].

Statement 6. Let X be a b.f.s. over (M ; µ)with norm ‖ · ‖X . A function f ∈ X
has absolutely continuous norm if and only if

∥∥fχEn

∥∥ ↓ 0 for every sequence
{En}n∈N satisfying En ↓ ∅ µ-a.e. .

For more details about these facts see, e.g., [22].

We will also need the following fact concerning the basicity properties of
systems from the [27] (see also [11]).

Statement 7. Suppose a finite number of elements in the basis of some Ba-
nach space are replaced by the other elements of this space. Then the following
properties are equivalent for the newly obtained system:

i) it forms a basis;

ii) it is complete;

iii) it is minimal.

3. Sufficient condition for separation of {λn}

For obtaining our main results, we need some concepts and facts.
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Definition 7. A system {fn}n∈N ⊂ LM (−π, π) is called-Hilbert (q > 0) if there
exists absolute constant m > 0 such that for every finite set of complex numbers
{Cn} the inequality (∑

n

|Cn|q
) 1

q

≤ m

∥∥∥∥∥∑
n

Cnfn

∥∥∥∥∥
M

holds.

Definition 8. A sequence {λn} is called separated if inf
i 6=j
|λn − λk| > 0.

The following simple lemma is true.

Lemma 1. Let {λn}n∈Z ⊂ R be some sequence of real numbers. If the system{
eiλnt

}
n∈Z is q -Hilbert in LM (−π, π), then {λn}n∈Z is separated.

Proof. From the definition of q-Hilbertness, we obtain

(2)
1
q ≤ m

∥∥∥eiλnx − eiλkx∥∥∥
LM (−π,π)

, k 6= n. (5)

Taking into account the inequality∣∣∣eiλnx − eiλkx∣∣∣ ≤ ∣∣∣∣2 sin

(
λn − λk

2
x

)∣∣∣∣ ≤ π |λn − λk| ,
we have∥∥∥eiλnx − eiλkx∥∥∥

LM (−π,π)
= sup

ρ(v;N)≤1

∣∣∣∣∫ π

−π

(
eiλnx − eiλkx

)
v (x) dx

∣∣∣∣ ≤
≤ sup

ρ(v;N)≤1

∫ π

−π

∣∣∣(eiλnx − eiλkx)∣∣∣ |v (x)| dx ≤

≤ sup
ρ(v;N)≤1

∫ π

−π
π |λn − λk| |v (x)| dx = π |λn − λk| sup

ρ(v;N)≤1

∫ π

−π
|v (x)| dx =

= 2π2N−1
(

1

2π

)
|λn − λk| .

Consequently

(2)
1
q ≤ 2π2mN−1

(
1

2π

)
|λn − λk| ,

δ =
(2)

1
q

2π2mN−1
(

1
2π

) ⇒ |λn − λk| > δ.
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The rest follows directly from (5).

The lemma is proved. J

The lemma below can be proved in exactly the same way.

Lemma 2. Let {λn}n∈Z ⊂ R be some sequence. If the system (1) (or (2)) is
q-Hilbert in LM (−π, π), then {λn}n∈Z is separated.

4. The LM -analogue of Levinson theorem

In this section, we establish an analogue of Levinson theorem in LM . Denote
by L′M the associate space of LM , i.e.

(LM (a, b))
′

=
{
g ∈ F (a, b) : ρ′M (|g|) < +∞

}
,

where

ρ′M (g) = sup

{∫ b

a
fgdt : f ∈ F+ (a, b) ; ‖f‖M ≤ 1

}
,

F (a, b) are Lebesgue-measurable functions on (a, b) and F+ (a, b) =
{f ∈ F (a, b) : f ≥ 0}.
The following analogue of Levinson theorem is true.

Theorem 8. Suppose that the N -function M (u) satisfies the ∆2 − condition.
Let {λk}k∈N ⊂ C be some sequence. In order for the exponential system{
eiλkx

}
k∈N to be not complete in LM (−π, π), it is necessary and sufficient that

there exist an entire function F (λ) vanishing at all points λk, k ∈ N and admit-
ting representation

F (λ) =

∫ π

−π
eiλxv (x)dx,

where v (x) ∈ LN (−π;π) is some function.

Proof. Let the system
{
eiλkx

}
k∈N be not complete in LM (−π, π). Then it is

clear that there exists a non-zero functional V ∈ LN (−π, π) such that

V
(
eiλkx

)
=

∫ π

−π
eiλkxv (x)dx = 0, ∀k ∈ N.

Let’s show that the spaces LN (−π, π) and L′M (−π, π) are isometrically iso-
morphic, i.e. they can be equated with each other. By Theorem 5, to show
this, it suffices to prove that LM (−π, π) has absolutely continuous norm. Let
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u ∈ LM (−π, π) be an arbitrary function. As C [−π, π] (a space of continuous
functions on [−π, π]) is dense in LM (−π, π), for ∀ε > 0, ∃u0 ∈ C [−π, π] we have

‖u− u0‖LM (−π,π) < ε.

Let {En}n∈N ⊂ (−π, π) be an arbitrary sequence of (Lebesgue) measurable
sets such that En ↓ ∅ m-a.e. (m is a Lebesgue measure.) Recall that En ↓ ∅
m-a.e. means χEn ↓ 0 m-a.e.

Let’s show that ‖uχEn‖LM (−π;π) ↓ 0. So, let ε > 0 be an arbitrary number.
We have

‖uχEn‖LM (−π,π) = ‖(u− u0)χEn + u0χEn‖LM (−π,π) ≤

≤ ‖(u− u0)χEn‖LM (−π,π) + ‖u0χEn‖LM (−π,π) ≤

≤ ε+ ‖u0χEn‖LM (−π,π) .

Therefore

‖uχEn‖LM (−π,π) ≤ ε+ ‖u0χEn‖LM (−π;π) . (6)

Let c = ‖u0‖L∞(−π;π). We have

‖u0χEn‖LM (−π;π) = sup
ρ(v;N)≤1

∣∣∣∣∫ π

−π
u0χEnv (x) dx

∣∣∣∣ ≤
≤ ‖u0‖L∞(−π,π) ‖χEn‖M = c ‖χEn‖M =

= c sup
ρ(v;N)≤1

∣∣∣∣∫ π

−π
χEnv (x) dx

∣∣∣∣ = c sup
ρ(v;N)≤1

∣∣∣∣∫
En

v (x) dx

∣∣∣∣ =

= cm (En)N−1
(

1

m (En)

)
,

where m is a Lebesgue measure. Obviously, lim
n→∞

En =
⋂∞
n=1En = ∅, m-a.e.

Consequently,

lim
n→∞

|En| =
∣∣∣ lim
n→∞

En

∣∣∣ = 0.

Then from (6) it follows that ‖uχEn‖LM (−π,π) → 0, n→∞.

Thus, by Statement 6, the space LM (−π, π) has absolutely continuous norm.
Then from Theorem 5 it follows that LN (−π, π) = L′M (−π, π). Hence, it is clear
that

∃v (x) ∈ LN (−π, π) : V (f) =

∫ π

−π
f (x) v (x)dx, ∀f ∈ LM (−π, π) .



206 J.A. Asadzadeh, A.N. Jabrailova

Let

F (λ) =

∫ π

−π
eiλxv (x)dx, λ ∈ C. (7)

Obviously, F ( · ) is an entire function and F (λk) = 0, ∀k ∈ N .
The theorem is proved. J

Theorem 9. Suppose that the N -function M (u) satisfies the ∆2-condition. If
the entire function F ( · ) is represented in the form (7), v (x) ∈ LN (−π, π),
F (λ0) = 0 and µ ∈ C is an arbitrary number, then the function

F1 (λ) =
λ− µ
λ− λ0

F (λ)

is also represented in the form (7).

Proof. Absolutely similar to the proof of Levinson theorem, let

ϕ (x) = v (x) + i (µ− λ0) e−iλ0x
∫ x

−π
eiλ0yv (y) dy. (8)

By multiplying both sides by eiλx and integrating from −π to π, we obtain∫ π

−π
eiλxϕ (x) dx = F (λ) + i (µ− λ0)

∫ π

−π
ei(λ−λ0)x

(∫ π

y
eiλ0yv (y) dy

)
dx.

Changing the order of integration, we have
∫ π
−π e

iλxϕ (x) dx = λ−µ
λ−λ0F (λ) = F1 (λ)

(for more details about these facts see, e.g., [2]). So we have

F1 (λ) =

∫ π

−π
eiλxϕ (x) dx.

It remains to show that ϕ (x) ∈ LN (−π, π). It is absolutely clear that
∣∣eiλx∣∣ ≤

const ≤ ∞, ∀x ∈ [−π, π]. Therefore, from the expression (8) for ϕ ( · ) it follows
that it now suffices to prove

∫ x
−π |v (y)| dy ∈ LN (−π, π). But this is obvious,

because
∫ x
−π |v (y)| dy ∈ C (−π, π).

The theorem is proved. J

This theorem has the following direct corollary.

Corollary 1. Let the system
{
eiλkx

}
k∈N be complete in LM (−π, π). If n ar-

bitrary functions are removed from this system and n other functions
{
eiµjx

}
,

j = 1, 2, ..., n, where µ1, ..., µn are arbitrary complex numbers different from any
of λk, are added instead of them, then the newly obtained system will be complete
in LM (−π, π).
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5. On stability of exponential bases in LM .

The following main theorem is true.

Theorem 10. Suppose that the N -function M (u) satisfies the ∆2-condition.
Let M ( · ), M∗ ( · ) be N -functions complementary to each other and the numbers
αM and βM are upper and lower Boyd indices for the Orlicz space LM . Let
{λn}n∈Z ; {µn}n∈Z ⊂ R be some sequences, λi 6= λj , µi 6= µj for i 6= j. Let

n=+∞∑
n=−∞

|λn − µn|γ < +∞,

where γ = min
(

1
βM

; 1
βM∗

)
, αM + βM∗ ≡ 1, αM∗ + βM ≡ 1.

If the system
{
eiλnx

}
n∈N forms a basis for LM (−π, π), equivalent to the

basis
{
einx

}
n∈Z , then the system

{
eiµnx

}
n∈Z also forms a basis for LM (−π, π),

equivalent to
{
einx

}
n∈Z .

Proof. We first consider the case 1
βM∗
≥ 2 .

0 < αM ≤ βM < 1⇒ 1 <
1

βM
≤ 1

αM
< +∞⇒

0 < 1− βM∗ ≤ 1− αM∗ < 1⇒ 0 < αM∗ ≤ βM∗ < 1⇒

1

βM∗
≥ 2⇒ 1

2
≥ βM∗ ≥ αM∗ ⇒ 0 < αM∗ ≤

1

2
⇒

1

2
≤ 1− αM∗ < 1⇒ 1

2
≤ βM < 1⇒ 1 <

1

βM
≤ 2.

Then it is clear that γ = 1
βM

. Let ϕn (x) = eiλnx, ψn (x) = eiµnx. We have

|ϕn (x)− ψn (x)| ≤ π |λn − λk|

‖ϕn (x)− ψn (x)‖pLM (−π,π) ≤ c |λn − λk|
p ,

where c > 0 is a constant independent of n. We choose p = 1
βM

, then 1 < p ≤ 2.

Consequently
n=+∞∑
n=−∞

‖ϕn (x)− ψn (x)‖pLM (−π,π) < +∞.
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Let {Cn} be an arbitrary finite set of numbers Cn ∈ C. Then from the Hausdorff-
Young theorem we obtain

‖{Cn}‖lq ≤ C

∥∥∥∥∥∑
n

Cne
inx

∥∥∥∥∥
Lp(−π,π)

,

where C > 0 is a constant independent of Cn. We choose numbers p, q ∈ [1, +∞]
such that

1 ≤ p < 1

βM
≤ 1

αM
< q ≤ +∞.

Then according to Theorem 3 we have

Lq ⊂ LM ⊂ Lp,

with the inclusion maps being continuous. Consequently ∀f ∈ LM , ‖f‖p ≤
C ‖f‖M .

Therefore

‖{Cn}‖lq ≤ C

∥∥∥∥∥∑
n

Cne
inx

∥∥∥∥∥
LM (−π,π)

. (9)

As the bases {ϕn (x)} and
{
einx

}
n∈Z are equivalent, from (9) it follows∥∥∥∥∥∑

n

Cne
inx

∥∥∥∥∥
LM (−π,π)

≤ C

∥∥∥∥∥∑
n

Cnϕn (x)

∥∥∥∥∥
LM (−π,π)

⇒

‖{Cn}‖lq ≤ C

∥∥∥∥∥∑
n

Cnϕn (x)

∥∥∥∥∥
LM (−π,π)

.

Let’s take some number m ∈ N and let

fn =

{
ϕn, |n| < m,
ψn, |n| ≥ m.

We have ∥∥∥∥∥∑
n

Cn (fn − ϕn)

∥∥∥∥∥
LM (−π,π)

≤
∑
n

|Cn| ‖fn − ϕn‖LM (−π,π) ≤

≤ ‖{Cn}‖lq

(∑
n

‖fn − ϕn‖pLM (−π,π)

) 1
p

≤
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≤ C

 ∑
|n|≥m

‖ψn − ϕn‖pLM (−π,π)

 1
p
∥∥∥∥∥∑

n

Cnϕn (x)

∥∥∥∥∥
LM (−π,π)

= C (m)

∥∥∥∥∥∑
n

Cnϕn (x)

∥∥∥∥∥
LM (−π,π)

, (10)

where

C (m) = C

 ∑
|n|≥m

‖ψn − ϕn‖pLM (−π,π)

 1
p

.

It is absolutely clear that lim
m→∞

C (m) = 0, and therefore, for large m we have

0 < c (m) < 1. Then from Paley-Wiener theorem (for Banach case; see, e.g., [27,
p. 187] and the relation (10) it follows that the system {fn}n∈Z forms a basis
for LM (−π, π), equivalent to {ϕn}n∈Z . From the completeness of the system
{fn}n∈Z in LM (−π, π) and Corollary 1 it follows that the system {ψn}n∈Z is
also complete in LM (−π, π). Then, by Statement 7, the system {ψn}n∈Z also
forms a basis for LM (−π, π), equivalent to {ϕn}n∈Z .

Now let’s consider the case 1
βM

> 2.

αM + βM∗ ≡ 1, αM∗ + βM ≡ 1.

0 < αM ≤ βM < 1⇒ 1 <
1

βM
≤ 1

αM
< +∞⇒

β∗M = 1− αM ⇒
1

β∗M
=

1

1− αM
⇒

1

βM
> 2⇒ 1

αM
> 2⇒ αM <

1

2

αM <
1

2
⇒ −αM > −1

2
⇒ 1− αM >

1

2
⇒ 1

1− αM
< 2⇒ 1

β∗M
< 2.

Then we have 1
β∗M

< 2 and γ = 1
β∗M

. We choose q = 1
β
M∗

. Then we have q < 1
βM

.

Let {Cn} be an arbitrary finite set of numbers Cn ∈ C. Then from the Hausdorff-
Young theorem we obtain

‖{Cn}‖lp ≤ C

∥∥∥∥∥∑
n

Cne
inx

∥∥∥∥∥
Lq(−π,π)

,
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where C > 0 is a constant independent of Cn. We choose numbers p, q ∈ [1, +∞]
such that

1 ≤ q < 1

βM
≤ 1

αM
< p ≤ +∞.

Then according to Theorem 3 we have

Lp ⊂ LM ⊂ Lq,

with the inclusion maps being continuous. Consequently, ∀f ∈ LM , ‖f‖q ≤
C ‖f‖M .

Then ∥∥∥∥∥∑
n

Cne
inx

∥∥∥∥∥
Lq(−π,π)

≤ C

∥∥∥∥∥∑
n

Cne
inx

∥∥∥∥∥
LM (−π,π)

, C > 0.

As the bases {ϕn (x)} and
{
einx

}
n∈Z are equivalent, we have∥∥∥∥∥∑

n

Cne
inx

∥∥∥∥∥
LM (−π,π)

≤ C

∥∥∥∥∥∑
n

Cnϕn (x)

∥∥∥∥∥
LM (−π,π)

.

Let’s take some number m∈N and let

fn =

{
ϕn, |n| < m
ψn, |n| ≥ m

We have ∥∥∥∥∥∑
n

Cn (fn − ϕn)

∥∥∥∥∥
LM (−π,π)

≤
∑
n

|Cn| ‖fn − ϕn‖LM (−π,π) ≤

≤ ‖{Cn}‖lp

(∑
n

‖fn − ϕn‖qLM (−π,π)

) 1
q

≤

≤ C

 ∑
|n|≥m

‖ψn − ϕn‖qLM (−π,π)

 1
q
∥∥∥∥∥∑

n

Cne
inx

∥∥∥∥∥
Lq(−π,π)

≤

≤ C

 ∑
|n|≥m

‖ψn − ϕn‖qLM (−π,π)

 1
q
∥∥∥∥∥∑

n

Cne
inx

∥∥∥∥∥
LM (−π,π)

≤
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≤ C

 ∑
|n|≥m

‖ψn − ϕn‖qLM (−π,π)

 1
q
∥∥∥∥∥∑

n

Cnϕn (x)

∥∥∥∥∥
LM (−π,π)

≤ C (m)

∥∥∥∥∥∑
n

Cnϕn (x)

∥∥∥∥∥
LM (−π,π)

. (11)

It is absolutely clear that lim
m→∞

C (m) = 0 and therefore, for large m we have

0 < c (m) < 1. Then from Paley-Wiener theorem (for Banach case; see, e.g., [27,
p. 187] and the relation (11) it follows that the system {fn}n∈Z forms a basis
for LM (−π, π), equivalent to {ϕn}n∈Z . From the completeness of the system
{fn}n∈Z in LM (−π, π) and Corollary 1 it follows that the system {ψn}n∈Z is
also complete in LM (−π, π). Then, by Statement 7, the system {ψn}n∈Z also
forms a basis for LM (−π, π), equivalent to {ϕn}n∈Z .

Proceeding absolutely similar to case 1
βM
≤ 2, we now establish the basicity

of the system {ψn}n∈Z for LM (−π, π).

The theorem is proved. J
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