Improvements of Some Numerical Radius Inequalities

M.W. Alomari

Abstract. In this work, we improve and refine some numerical radius inequalities. In particular, for all Hilbert space operators T, the famous Kittaneh inequality reads:

$$\frac{1}{4} \|T^*T + TT^*\| \leq w^2(T) \leq \frac{1}{2} \|T^*T + TT^*\|.$$

In this work we provide some important refinements for the upper bound of the Kittaneh inequality. Namely, we establish

$$w^2(T) \leq \frac{1}{2} \|T^*T + TT^*\| - \frac{1}{4} \inf_{\|x\|=1} \left(\langle |T|x,x \rangle - \langle |T^*|x,x \rangle \right)^2,$$

which is also refined and improved as

$$w^2(T) \leq \frac{1}{2} \|T^*T + TT^*\| - \frac{1}{2} \inf_{\|x\|=1} \left(\langle |T|x,x \rangle - \langle |T^*|x,x \rangle \right)^2,$$

with the third improvement

$$w^2(T) \leq \frac{1}{4} \| |T| + |T^*|| \|^{2} - \frac{1}{4} \inf_{\|x\|=1} \left(\langle |T|x,x \rangle - \langle |T^*|x,x \rangle \right)^2.$$

Other related results are also obtained.

Key Words and Phrases: mixed Schwarz inequality, numerical radius, Furuta inequality.

2010 Mathematics Subject Classifications: 47A30, 47A12, 15A60, 47A63

1. Introduction

Let $B(H)$ be the Banach algebra of all bounded linear operators defined on a complex Hilbert space $(H; \langle \cdot, \cdot \rangle)$ with the identity operator 1_H in $B(H)$. A
bounded linear operator A defined on \mathcal{H} is selfadjoint if and only if $\langle Ax, x \rangle \in \mathbb{R}$ for all $x \in \mathcal{H}$. Consider the real vector space $\mathcal{B}(\mathcal{H})_{sa}$ of selfadjoint operators on \mathcal{H} and its positive cone $\mathcal{B}(\mathcal{H})^+$ of positive operators on \mathcal{H}. A partial order is naturally equipped on $\mathcal{B}(\mathcal{H})_{sa}$ by defining $A \leq B$ if and only if $B - A \in \mathcal{B}(\mathcal{H})^+$. We write $A > 0$ to mean that A is a strictly positive operator, or equivalently, $A \geq 0$ and A is invertible.

The Schwarz inequality for positive operators reads that if A is a positive operator in $\mathcal{B}(\mathcal{H})$, then
\begin{equation}
|\langle Ax, y \rangle|^2 \leq \langle Ax, x \rangle \langle Ay, y \rangle
\end{equation}
for any vectors $x, y \in \mathcal{H}$.

In 1951, Reid [13] proved an inequality which in some sense was a variant of the Schwarz inequality. In fact, he proved that for all operators $A \in \mathcal{B}(\mathcal{H})$ such that A is positive and AB is selfadjoint the relation
\begin{equation}
|\langle ABx, y \rangle| \leq \|B\| \langle Ax, x \rangle
\end{equation}
holds for all $x \in \mathcal{H}$. In [7], Halmos presented the stronger version of the Reid inequality (2) by replacing $\|B\|$ with $r(B)$.

In 1952, Kato [11] introduced a companion inequality of (1), called the mixed Schwarz inequality, which asserts
\begin{equation}
|\langle Ax, y \rangle|^2 \leq \left| |A|^{2\alpha} x, x \right| \left| |A^*|^{2(1-\alpha)} y, y \right|, \quad 0 \leq \alpha \leq 1.
\end{equation}
for every operator $A \in \mathcal{B}(\mathcal{H})$ and any vectors $x, y \in \mathcal{H}$, where $|A| = (A^*A)^{1/2}$.

In 1988, Kittaneh [10] proved a very interesting extension combining both the Halmos–Reid inequality (2) and the mixed Schwarz inequality (3). His result reads that
\begin{equation}
|\langle ABx, y \rangle| \leq r(B) \|f(|A|) x\| \|g(|A^*|) y\|
\end{equation}
for any vectors $x, y \in \mathcal{H}$, where $A, B \in \mathcal{B}(\mathcal{H})$ are such that $|A|B = B^*|A|$ and f, g are nonnegative continuous functions defined on $[0, \infty)$ satisfying $f(t)g(t) = t$ ($t \geq 0$). For instance, if we set $f(t) = t^\alpha$ and $g(t) = t^{1-\alpha}$ ($0 \leq \alpha \leq 1$) with $B = 1$ in (4), we recapture Kato’s inequality (3). Also, as noticed in [12], if in the inequality (4) A is assumed to be positive, then the condition $AB = B^*A$ is equivalent to saying that AB is self-adjoint. In this case, letting $f(t) = g(t) = t^{1/2}$ and $x = y$, we obtain the generalized Reid inequality (2) as a special case. A non-trivial improvement of (4) was established very recently by the author of this paper in [1]. The Cartesian decomposition form of (4) was also recently proved by Alomari in [2].
In 1994, Furuta [6] proved the following generalization of Kato’s inequality (3):

\[
\left| \langle T \left| T \right|^{\alpha + \beta - 1} x, y \rangle \right|^2 \leq \langle \left| T \right|^{2\alpha} x, x \rangle \langle \left| T \right|^{2\beta} y, y \rangle
\]

(5)

for any \(x, y \in \mathcal{H} \) and \(\alpha, \beta \in [0, 1] \) with \(\alpha + \beta \geq 1 \).

The inequality (5) was generalized for any \(\alpha, \beta \geq 0 \) with \(\alpha + \beta \geq 1 \) by Dragomir in [5]. As noted by Dragomir, the condition \(\alpha, \beta \in [0, 1] \) was assumed by Furuta to fit with the Heinz–Kato inequality, which reads:

\[
|\langle Tx, y \rangle| \leq \|A^\alpha x\| \|B^{1-\alpha} y\|
\]

for any \(x, y \in \mathcal{H} \) and \(\alpha \in [0, 1] \), where \(A \) and \(B \) are positive operators such that \(\|Tx\| \leq \|Ax\| \) and \(\|T^* y\| \leq \|By\| \) for any \(x, y \in \mathcal{H} \).

For a bounded linear operator \(T \) on a Hilbert space \(\mathcal{H} \), the numerical range \(W (T) \) is the image of the unit sphere of \(\mathcal{H} \) under the quadratic form \(x \rightarrow \langle Tx, x \rangle \) associated with the operator. More precisely,

\[
W (T) = \{ \langle Tx, x \rangle : x \in \mathcal{H}, \|x\| = 1 \}.
\]

Also, the numerical radius is defined to be

\[
w (T) = \sup_{\|x\|=1} \{ |\lambda| : \lambda \in W (T) \} = \sup_{\|x\|=1} |\langle Tx, x \rangle|.
\]

The spectral radius of an operator \(T \) is defined to be

\[
r (T) = \sup \{ |\lambda| : \lambda \in sp (T) \}.
\]

We recall that the usual operator norm of an operator \(T \) is defined to be

\[
\|T\| = \sup \{ \|Tx\| : x \in H, \|x\| = 1 \}.
\]

It is well known that \(w (\cdot) \) defines an operator norm on \(\mathcal{B} (\mathcal{H}) \) which is equivalent to operator norm \(\| \cdot \| \), and for every \(T \in \mathcal{B} (T) \), we have

\[
\frac{1}{2} \|T\| \leq w (T) \leq \|T\|.
\]

(6)

Thus, the usual operator norm and the numerical radius norm are equivalent. The inequalities in (6) are sharp: if \(T^2 = 0 \), then the first inequality becomes an equality, while the second inequality becomes an equality if \(T \) is normal.

In 2003, Kittaneh [10] refined the right-hand side of (6), by proving that

\[
w (T) \leq \frac{1}{2} \left(\|T\| + \|T^2\|^{1/2} \right)
\]

(7)
for any $T \in \mathcal{B} (\mathcal{H})$.

After that in 2005, the same author in [8] proved that

$$
\frac{1}{4} \| A^*A + AA^* \| \leq w^2 (A) \leq \frac{1}{2} \| A^*A + AA^* \|. \quad (8)
$$

The inequality is sharp.

In 2007, Yamazaki [16] improved (8) by proving that

$$
w (T) \leq \frac{1}{2} \left(\| T \| + w \left(\tilde{T} \right) \right) \leq \frac{1}{2} \left(\| T \| + \| T^2 \|^{1/2} \right),
$$
where $\tilde{T} = |T|^{1/2} U |T|^{1/2}$ and U is the unitary operator in the polar decomposition T of the form $T = U |T|$.

In 2008, Dragomir [4] used Buzano inequality to improve (1), by proving that

$$
w^2 (T) \leq \frac{1}{2} (\| T \| + w (T^2)).
$$

This result was also recently generalized by Sattari et al. in [14] and Alomari in [2]. For more recent results about the numerical radius see the recent monograph [3].

In this work, we improve and refine some numerical radius inequalities. In particular, for all Hilbert space operators T, the famous Kittaneh inequality reads:

$$
\frac{1}{4} \| T^*T + TT^* \| \leq w^2 (T) \leq \frac{1}{2} \| T^*T + TT^* \|.
$$

In this work we provide some important refinements for the upper bound of the Kittaneh inequality. Namely, we establish

$$
w^2 (T) \leq \frac{1}{2} \| T^*T + TT^* \| - \frac{1}{4} \inf_{\| x \|=1} (\langle |T| x, x \rangle - \langle |T^*| x, x \rangle)^2,
$$
which is also refined and improved as

$$
w^2 (T) \leq \frac{1}{2} \| T^*T + TT^* \| - \frac{1}{2} \inf_{\| x \|=1} (\langle |T| x, x \rangle - \langle |T^*| x, x \rangle)^2,
$$

and

$$
w^2 (T) \leq \frac{1}{2} \| T^*T + TT^* \| - \frac{1}{2} \inf_{\| x \|=1} \left(\langle |T|^2 x, x \rangle^{\frac{1}{2}} - \langle |T^*|^2 x, x \rangle^{\frac{1}{2}} \right)^2,
$$

with the third improvement

$$
w^2 (T) \leq \frac{1}{4} \| |T| + |T^*| \|^2 - \frac{1}{4} \inf_{\| x \|=1} (\langle |T| x, x \rangle - \langle |T^*| x, x \rangle)^2.
$$

Other related results are also obtained.

2. Numerical Radius Inequalities

In order to prove our main result we need the following lemmas:

Lemma 1. Let $S \in \mathcal{B}(\mathcal{H})$, $S \geq 0$ and $x \in \mathcal{H}$ be a unit vector. Then, the Jensen’s operator inequality

$$\langle Sx, x \rangle^r \leq \langle S^r x, x \rangle, \quad r \geq 1$$

and

$$\langle S^r x, x \rangle \leq \langle Sx, x \rangle^r, \quad r \in [0, 1].$$

Kittaneh and Manasrah [9] obtained the following result which is a refinement of the scalar Young inequality.

Lemma 2. Let $a, b \geq 0$, and $p, q > 1$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$ab + \min \left\{ \frac{1}{p}, \frac{1}{q} \right\} \left(a^{\frac{p}{2}} - b^{\frac{q}{2}} \right)^2 \leq \frac{a^p}{p} + \frac{b^q}{q}.$$

(11)

Recently, Sheikhhosseini et al. [15] have obtained the following generalization of (11).

Lemma 3. If $a, b > 0$, and $p, q > 1$ are such that $\frac{1}{p} + \frac{1}{q} = 1$, then for $m = 1, 2, 3, \ldots$,

$$\left(a^{\frac{p}{2}} b^{\frac{q}{2}} \right)^m + r_0^m \left(a^{\frac{m}{2}} - b^{\frac{m}{2}} \right)^2 \leq \left(\frac{a^r}{p} + \frac{b^r}{q} \right)^{\frac{m}{r}}, \quad r \geq 1,$$

(12)

where $r_0 = \min \left\{ \frac{1}{p}, \frac{1}{q} \right\}$. In particular, if $p = q = 2$, then

$$\left(a^{\frac{1}{2}} b^{\frac{1}{2}} \right)^m + \frac{1}{2^m} \left(a^{\frac{m}{2}} - b^{\frac{m}{2}} \right)^2 \leq 2^{-m} \left(a^r + b^r \right)^{\frac{m}{r}}.$$

For $m = 1$

$$\left(a^{\frac{1}{2}} b^{\frac{1}{2}} \right)^1 + \frac{1}{2} \left(a^{\frac{1}{2}} - b^{\frac{1}{2}} \right)^2 \leq 2^{-1} \left(a^r + b^r \right)^{\frac{1}{r}}.$$

In what follows, we establish some numerical radius inequalities by providing some refinements of well-known numerical radius inequalities. Let us begin with the following result.
Theorem 1. Let $T \in B(\mathcal{H})$, $\alpha, \beta \geq 0$ be such that $\alpha + \beta \geq 1$. Then

$$w^m \left(T |T|^{\alpha + \beta - 1} \right) \leq \frac{1}{2^m} \left\| T |T|^{2r\alpha} + |T^*|^{2r\beta} \right\|^m - \frac{1}{2^m} \inf_{\|x\| = 1} \left(\frac{\langle |T|^{2\alpha} x, x \rangle^{\frac{m}{2}}}{2} - \frac{\langle |T^*|^{2\beta} x, x \rangle^{\frac{m}{2}}}{2} \right)^2$$

(13)

Proof. Let $y = x$ in (5). Then for all $m \geq 1$ we have

$$\left(\frac{\langle |T|^{2\alpha} x, x \rangle r + \langle |T^*|^{2\beta} x, x \rangle r}{2} \right)^{\frac{m}{2}} \leq \frac{1}{2^m} \left(\frac{\langle |T|^{2\alpha} x, x \rangle}{2} - \frac{\langle |T^*|^{2\beta} x, x \rangle}{2} \right)^2$$

(by (12))

$$\leq \frac{\langle |T|^{2r\alpha} x, x \rangle + \langle |T^*|^{2r\beta} x, x \rangle}{2}$$

(by Lemma 1)

$$- \frac{1}{2^m} \left(\frac{\langle |T|^{2\alpha} x, x \rangle}{2} - \frac{\langle |T^*|^{2\beta} x, x \rangle}{2} \right)^2.$$

Taking the supremum over all unit vectors $x \in \mathcal{H}$, we get the desired result. ▷

Corollary 1. Let $T \in B(\mathcal{H})$, $\alpha, \beta \geq 0$ be such that $\alpha + \beta \geq 1$. Then

$$w^2 \left(T |T|^{\alpha + \beta - 1} \right) \leq \frac{1}{2^2} \left\| T |T|^{2r\alpha} + |T^*|^{2r\beta} \right\|^2 - \frac{1}{4} \inf_{\|x\| = 1} \left(\frac{\langle |T|^{2\alpha} x, x \rangle}{2} - \frac{\langle |T^*|^{2\beta} x, x \rangle}{2} \right)^2$$

(14)

Proof. Setting $m = 1$ in (13) we get the desired result. ▷

Remark 1. Setting $r = 1$ in (14), we get

$$w^2 \left(T |T|^{\alpha + \beta - 1} \right) \leq \frac{1}{4} \left\| T |T|^{2\alpha} + |T^*|^{2\beta} \right\|^2 - \frac{1}{4} \inf_{\|x\| = 1} \left(\frac{\langle |T|^{2\alpha} x, x \rangle}{2} - \frac{\langle |T^*|^{2\beta} x, x \rangle}{2} \right)^2$$

for all $\alpha, \beta \geq 0$ such that $\alpha + \beta \geq 1$.
Choosing \(\alpha = \beta = \frac{1}{2} \), we get

\[
\omega^2(T) \leq \frac{1}{4} \| T \| + \| T^* \| \leq \frac{1}{4} \inf_{\| x \| = 1} \left(\| T \| x, x \| - \langle |T^*| x, x \rangle \right)^2.
\]

However, if we choose \(\alpha = \beta = 1 \), we get

\[
\omega^2(T) \leq \frac{1}{4} \| T \|^2 + \| T^* \|^2 - \frac{1}{4} \inf_{\| x \| = 1} \left(\| T \|^2 x, x \| - \langle |T^*|^2 x, x \rangle \right)^2,
\]

or it can be rewritten as

\[
\omega^2(T) \leq \frac{1}{4} \| T^* T + T T^* \|^2 - \frac{1}{4} \inf_{\| x \| = 1} \langle \langle |T^*| T - T T^* \rangle x, x \rangle^2.
\]

A generalization of the above results could be embodied as follows:

Theorem 2. Let \(T \in \mathcal{B}(\mathcal{H}) \), \(\alpha, \beta \geq 0 \) be such that \(\alpha + \beta \geq 1 \). Then

\[
\omega^{2s}(T | T |^{\alpha+\beta-1}) \leq 2^{-\frac{s}{2}} \left(\| T \|^2 r^s \| T^* \|^{2s} \right)^{\frac{2}{7}} - \frac{1}{4} \inf_{\| x \| = 1} \left(\left(\langle |T|^{2sr} x, x \rangle - \langle |T^*|^{2sr} x, x \rangle \right)^2 \right)
\]

for all \(r, s \geq 1 \).

Proof. Let \(y = x \) in (5). By applying Lemma 3 with \(p = q = 2 \) and \(m = 2 \), we get

\[
\left(\langle |T|^{\alpha+\beta-1} x, x \rangle \right)^{2s}
\]

\[
\leq \langle |T|^{2\alpha} x, x \rangle^{s} \langle |T^*|^{2\beta} x, x \rangle^{s} \quad (t^s \text{ increasing})
\]

\[
\leq \langle |T|^{2\alpha} x, x \rangle \langle |T^*|^{2\beta} x, x \rangle \quad (\text{by convexity of } t^s)
\]

\[
\leq 2^{-\frac{s}{2}} \left(\langle |T|^{2sr} x, x \rangle^s + \langle |T^*|^{2sr} x, x \rangle^s \right)^{\frac{2}{7}} \quad (\text{by Lemma 3})
\]

\[
- \frac{1}{4} \left(\langle |T|^{2sr} x, x \rangle - \langle |T^*|^{2sr} x, x \rangle \right)
\]

\[
\leq 2^{-\frac{s}{2}} \left(\langle |T|^{2sr} x, x \rangle + \langle |T^*|^{2sr} x, x \rangle \right)^{\frac{2}{7}} \quad (\text{by Lemma 1})
\]

\[
- \frac{1}{4} \left(\langle |T|^{2sr} x, x \rangle - \langle |T^*|^{2sr} x, x \rangle \right).
\]

Taking the supremum over all unit vectors \(x \in \mathcal{H} \), we get the desired result. ▷
Corollary 2. Let $T \in \mathcal{B}(\mathcal{H})$, $\alpha, \beta \geq 0$ be such that $\alpha + \beta \geq 1$. Then
\[
w^{2s}\left(T|T|^{\alpha + \beta - 1}\right) \leq \frac{1}{4} \left\| |T|^{2\alpha} + |T^*|^{2\beta}\right\|^2 - \frac{1}{4} \sup_{\|x\|=1} \left[\langle |T|^{2\alpha} x, x \rangle - \langle |T^*|^{2\beta} x, x \rangle \right] \tag{16}
\]
for all $s \geq 1$.

Proof. Setting $r = 1$ in (15). ◀

Remark 2. Setting $\alpha = \beta = \frac{1}{2}$ in (16), we get
\[
w^{2s}(T) \leq \frac{1}{4} \| |T|^s + |T^*|^s \|^2 - \frac{1}{4} \sup_{\|x\|=1} \left[\langle |T|^s x, x \rangle - \langle |T^*|^s x, x \rangle \right]
\]
for all $s \geq 1$. In particular case, choosing $s = 1$ we get
\[
w^2(T) \leq \frac{1}{4} \| |T| + |T^*| \|^2 - \frac{1}{4} \sup_{\|x\|=1} \left[\langle |T| x, x \rangle - \langle |T^*| x, x \rangle \right].
\]

Remark 3. Setting $\alpha = \beta = \frac{1}{s}$, $s \geq 1$, we get
\[
w^{2s}\left(T|T|^{\frac{2}{s}-1}\right) \leq \frac{1}{4} \left\| |T|^2 + |T^*|^2\right\|^2 - \frac{1}{4} \sup_{\|x\|=1} \left[\langle |T|^2 x, x \rangle - \langle |T^*|^2 x, x \rangle \right].
\]
(17)

In particular case, choosing $s = 1$ in (17), we get
\[
w^2(T|T|) \leq \frac{1}{4} \| |T|^2 + |T^*|^2 \|^2 - \frac{1}{4} \sup_{\|x\|=1} \left[\langle |T|^2 x, x \rangle - \langle |T^*|^2 x, x \rangle \right],
\]
which can be rewritten as
\[
w^2(T|T|) \leq \frac{1}{4} \| T^*T + TT^* \|^2 - \frac{1}{4} \sup_{\|x\|=1} \left[\langle |T|^2 x, x \rangle - \langle |T^*|^2 x, x \rangle \right],
\]

Remark 4. Setting $\alpha = \beta = \frac{1}{2}$, $s = 1$, $r = 2$, we get
\[
w^2(T) \leq \frac{1}{2} \left\| |T|^2 + |T|^2\right\|^2 - \frac{1}{4} \sup_{\|x\|=1} \left[\langle |T|^2 x, x \rangle - \langle |T^*|^2 x, x \rangle \right],
\]
or
\[
w^2(T) \leq \frac{1}{2} \| T^*T + TT^* \|^2 - \frac{1}{4} \sup_{\|x\|=1} \left[\langle |T|^2 x, x \rangle - \langle |T^*|^2 x, x \rangle \right],
\]
(19)
and this refines the upper bound in the Kittaneh inequality (7).
Theorem 3. Let $T \in \mathcal{B}(\mathcal{H})$, $\alpha, \beta \geq 0$ be such that $\alpha + \beta \geq 1$. Then

$$w^{2s} \left(T |T|^{\alpha+\beta-1} \right) \leq \left\| \frac{1}{p} |T|^{2sp\alpha} + \frac{1}{q} |T^*|^{2sq\beta} \right\|$$

$$- r_0 \inf_{\|x\|=1} \left(\langle |T|^{2s\alpha} x, x \rangle^{\frac{p}{2}} - \langle |T^*|^{2s\beta} x, x \rangle^{\frac{q}{2}} \right)^2$$

for all $s \geq 1$ and $p, q > 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$, where $r_0 := \min\left\{ \frac{1}{p}, \frac{1}{q} \right\}$.

In particular case, we have

$$w^{2s} \left(T |T|^{\alpha+\beta-1} \right) \leq \frac{1}{2} \left\| |T|^{4s\alpha} + |T^*|^{4s\beta} \right\|$$

$$- \frac{1}{2} \inf_{\|x\|=1} \left(\langle |T|^{2s\alpha} x, x \rangle - \langle |T^*|^{2s\beta} x, x \rangle \right)^2$$

Proof. Let $s \geq 1$. Setting $y = x$ in (5), we get

$$\left\| T |T|^{\alpha+\beta-1} x, x \right\|^{2s} \leq \left\| T^{2s\alpha} x, x \right\|^{s} \left\| T^*^{2s\beta} x, x \right\|^{s}$$

(by (5))

$$\leq \left\| T^{2s\alpha} x, x \right\| \left\| T^*^{2s\beta} x, x \right\|$$

(by convexity of t^s)

$$\leq \frac{1}{p} \left\| T^{2s\alpha} x, x \right\|^{p} + \frac{1}{q} \left\| T^*^{2s\beta} x, x \right\|^{q}$$

(by Lemma 2)

$$- r_0 \left(\left\| T^{2s\alpha} x, x \right\|^{\frac{p}{2}} - \left\| T^*^{2s\beta} x, x \right\|^{\frac{q}{2}} \right)^2$$

(by Lemma 1)

Taking the supremum over all unit vectors $x \in \mathcal{H}$, we get the required result. The particular case follows by setting $p = q = 2$. ▷

Various interesting special cases could be deduced from (13). In what follows, we give some of these cases in remarks.

Remark 5. Setting $\alpha = \beta = \frac{1}{2}$ in (14), we have

$$w^{2s} (T) \leq \frac{1}{2} \left\| T^{2s} + |T^*|^{2s} \right\| - \frac{1}{2} \inf_{\|x\|=1} \left(\langle |T|^s x, x \rangle - \langle |T^*|^s x, x \rangle \right)^2$$

for all $s \geq 1$. In particular, for $s = 1$ we get

$$w^2 (T) \leq \frac{1}{2} \left\| T^2 + |T^*|^2 \right\| - \frac{1}{2} \inf_{\|x\|=1} \left(\langle |T| x, x \rangle - \langle |T^*| x, x \rangle \right)^2,$$
which can be rewritten as

\[w^2(T) \leq \frac{1}{2} \|T^*T + TT^*\| - \frac{1}{2} \inf_{\|x\|=1} (\|T\| x, x) - (\|T^*\| x, x))^2. \]

(22)

This refines the upper bound of the refinement of Kittaneh inequality (19). Clearly, (22) is better than (19), which, in turn, is better than (7).

Remark 6. Setting \(\alpha = \beta = 1 \) in (20), we have

\[w^{2s}(T|T|) \leq \left\| \frac{1}{p} |T|^{2p} + \frac{1}{q} |T^*|^{2q} \right\|
- r_0 \inf_{\|x\|=1} \left(\left\| |T|^{2s} x, x \right\|^{\frac{p}{2}} - \left\| |T^*|^{2s} x, x \right\|^{\frac{q}{2}} \right)^2 \]

for all \(s \geq 1 \) and \(p, q > 1 \) such that \(\frac{1}{p} + \frac{1}{q} = 1 \), where \(r_0 := \min \{\frac{1}{p}, \frac{1}{q}\} \).

In particular case, choosing \(s = 1 \) and \(p = q = 2 \) in the previous inequality, we get

\[w^2(T|T|) \leq \frac{1}{2} \left\| |T|^4 + |T^*|^4 \right\| - \frac{1}{2} \inf_{\|x\|=1} \left(\left\| |T|^2 x, x \right\| - \left\| |T^*|^2 x, x \right\| \right)^2. \]

Numerical radius inequality for a special type of Hilbert space operators for commutators can be established as follows:

Theorem 4. Let \(T, S \in \mathcal{B}(\mathcal{H}) \), \(\alpha, \beta, \gamma, \delta \geq 0 \) be such that \(\alpha + \beta \geq 1 \) and \(\gamma + \delta \geq 1 \). Then

\[w \left(T|T|^{\alpha+\beta-1} + S|S|^{\gamma+\delta-1} \right) \]

\[\leq 2^{-\frac{1}{r}} \left\| T^{2\alpha} + |T^*|^{2\beta} \right\|^{\frac{1}{2}} + 2^{-\frac{1}{r}} \left\| S^{2\gamma} + |S^*|^{2\delta} \right\|^{\frac{1}{2}}
- \frac{1}{2} \inf_{\|x\|=1} \left(\left\| |T|^{2\alpha} x, x \right\|^{\frac{1}{2}} - \left\| |T^*|^{2\beta} x, x \right\|^{\frac{1}{2}} \right)^2
- \frac{1}{2} \inf_{\|x\|=1} \left(\left\| |S|^{2\gamma} x, x \right\|^{\frac{1}{2}} - \left\| |S^*|^{2\delta} x, x \right\|^{\frac{1}{2}} \right)^2 \]

for all \(r \geq 1 \).

Proof. Employing the triangle inequality, we have

\[\left\| \left(T|T|^{\alpha+\beta-1} + S|S|^{\gamma+\delta-1} \right) x, x \right\| \]
\[
\leq \left| \langle T | T |^{\alpha + \beta - 1} x, x \rangle \right| + \left| \langle S | S |^{\gamma + \delta - 1} x, x \rangle \right|
\]
\[
\leq \langle |T|^{2\alpha} x, x \rangle \frac{1}{2} \left(\langle |T|^{2\beta} x, x \rangle \frac{1}{2} + \langle |S|^{2\gamma} x, x \rangle \frac{1}{2} \right) + \left(\langle |S|^{2\delta} x, x \rangle \frac{1}{2} \right)^{\frac{1}{2}} \quad \text{(by (5))}
\]
\[
\leq 2^{-\frac{1}{2}} \left(\langle |T|^{2\alpha} x, x \rangle^r + \langle |T|^{2\beta} x, x \rangle^r \right)^{\frac{1}{2}} - \frac{1}{2} \left(\langle |T|^{2\alpha} x, x \rangle^r - \langle |T|^{2\beta} x, x \rangle^r \right) \right)^{2}. \quad \text{(by Lemma 3)}
\]
\[
\leq 2^{-\frac{1}{2}} \left(\langle |T|^{2\alpha} x, x \rangle + \langle |T|^{2\beta} x, x \rangle \right)^{\frac{1}{2}} - \frac{1}{2} \left(\langle |T|^{2\alpha} x, x \rangle - \langle |T|^{2\beta} x, x \rangle \right)^{2} \quad \text{(by Lemma 1)}
\]

Taking the supremum over all unit vectors \(x \in \mathcal{H}\), we get the desired result. ▶

Corollary 3. Let \(T, S \in \mathcal{B}(\mathcal{H})\), \(\alpha, \beta, \gamma, \delta \geq 0\) be such that \(\alpha + \beta \geq 1\) and \(\gamma + \delta \geq 1\). Then

\[
w \left(|T| |^{\alpha + \beta - 1} + |S| |^{\gamma + \delta - 1} \right) \leq \frac{1}{2} \left\| |T|^{2\alpha} + |T|^{2\beta} + |S|^{2\gamma} + |S|^{2\delta} \right\|
\]
\[
- \frac{1}{2} \inf_{\|x\|=1} \left(\langle |T|^{2\alpha} x, x \rangle \frac{1}{2} - \langle |T|^{2\beta} x, x \rangle \frac{1}{2} \right)^{2} \quad \text{(24)}
\]
\[
- \frac{1}{2} \inf_{\|x\|=1} \left(\langle |S|^{2\gamma} x, x \rangle \frac{1}{2} - \langle |S|^{2\delta} x, x \rangle \frac{1}{2} \right)^{2}.
\]

Proof. Setting \(r = 1\) in the proof of Theorem 4, and then taking the supremum over all unit vectors \(x \in \mathcal{H}\), we get the desired result. ▶

Remark 7. Setting \(\alpha = \beta = \gamma = \delta = \frac{1}{2}\) in (24), we get

\[
w (T + S) \leq \frac{1}{2} \left\| |T| + |T| + |S| + |S| \right\| - \frac{1}{2} \inf_{\|x\|=1} \left(\langle |T| x, x \rangle \frac{1}{2} - \langle |T| x, x \rangle \frac{1}{2} \right)^{2}
\]
\[-\frac{1}{2} \inf_{\|x\|=1} \left(\langle |S| x, x \rangle \frac{1}{2} - \langle |S^*| x, x \rangle \frac{1}{2} \right)^2 \]

In particular, taking \(S = T \) we get

\[w(T) \leq \frac{1}{2} \|T\| + \|T^*\| + \frac{1}{2} \inf_{\|x\|=1} \left(\langle |T| x, x \rangle \frac{1}{2} - \langle |T^*| x, x \rangle \frac{1}{2} \right)^2 . \]

Remark 8. Setting \(\alpha = \beta = \gamma = \delta = 1 \) in (24), we get

\[w(T|T| + S|S|) \leq \frac{1}{2} \|T\|^2 + |T^*|^2 + |S|^2 + |S^*|^2 \]
\[-\frac{1}{2} \inf_{\|x\|=1} \left(\langle |T|^2 x, x \rangle \frac{1}{2} - \langle |T^*|^2 x, x \rangle \frac{1}{2} \right)^2 \]
\[-\frac{1}{2} \inf_{\|x\|=1} \left(\langle |S|^2 x, x \rangle \frac{1}{2} - \langle |S^*|^2 x, x \rangle \frac{1}{2} \right)^2 \]

In particular, taking \(S = T \), we get

\[w(T|T|) \leq \frac{1}{2} \|T|T| + |T^*|^2 \| - \frac{1}{2} \inf_{\|x\|=1} \left(\langle |T|^2 x, x \rangle \frac{1}{2} - \langle |T^*|^2 x, x \rangle \frac{1}{2} \right)^2 \]
\[= \frac{1}{2} \|T^*T + TT^*\| - \frac{1}{2} \inf_{\|x\|=1} \left(\langle |T|^2 x, x \rangle \frac{1}{2} - \langle |T^*|^2 x, x \rangle \frac{1}{2} \right)^2 \]

References

M.W. Alomari
Department of Mathematics, Faculty of Science and Information Technology, Irbid National University, 2600 Irbid 21110, Jordan.

E-mail: mwomath@gmail.com

Received 17 January 2021
Accepted 25 August 2021