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Abstract. In this work, approximation properties of matrix transforms in the weighted
variable exponent Lebesgue space of periodic functions are investigated.
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1. Introduction and Main Results

Let T := [0,2n] and let p(-) : T — [1,00) be a Lebesgue measurable 27 periodic
function. The variable exponent Lebesgue space LP() (T) is defined as the set of all
Lebesgue measurable 27 periodic functions f such that

2T
ooty () 1= / 1 @)@ dr < oo

We suppose that the exponent functions p (-) satisfy the conditions

1<p_ :=essinf p(z) <esssup p(x):=p" < oo,
zeT z€T
1
p(x)—p(y)1n<|x_y|)<c, z,yeT, 0<|z—y[<1/2 (1)

If the exponent p (-) satisfies the conditions (1), then we say that p(-) € P (T). We also
denote Py (T) := {p(-) € P(T) : p— > 1}.
From now on we suppose that p(-) € Py (T). Then, equipped with the norm

£1ly = inf {X >0 ppey (F /A) < 1},
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LPO) (T) becomes a Banach space.

For a given weight w we define the variable exponent weighted Lebesgue space
I (T) as the set of all measurable 27 periodic functions f such that fw € LPC) (T).
The norm of L2 (T) can be defined by || fl,,.) . = [[fwll,.)-

Note that Lebesgue space with variable exponent is a generalization of classical
Lebesgue space, by replacing the constant exponent p with variable exponent function

p ()

Definition 1. For a given exponent p(-) we say that w € A,y (T), if
S}lp ‘I]|71 HWXI]' Hp() HW_IXIJ- Hq() < oo, 1/]9 () + ]'/q () =1,
i

where supremum is taken over all open intervals I; C T with the characteristic
Junctions xp, .

Let f € L' (T) and

f(x)w ao(f)

f)coskx + by (f) sin kx)
k=1

be its Fourier series representation with the Fourier coefficients

ar (f): /f cos (kt) dt and by, (f /f sin (kt) d
and let .
Su ()= Sulfi) =S (F) (@), n=1,2,...
k=0

be the nth partial sum of Fourier series of f, where

uo (f) (x) :=ao (f) /2 and ug, (f) (z) := (a (f) coskx + by (f)sinkz) , k=1,2,...,

Let A = (ay,x) be an infinite matrix of real numbers a, x, such that

G > 0 for k,n=0,1,2, ..., nl;rréo an.kx = 0 and Za"=k =1.
k=0

Let also Ag = (an,k), where k,n =0,1,2, ..., be a lower triangular matrix such that

n
ani > 0fork<n, apr=0for k>nand Zan,k =1.
k=0
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The matrix transforms, produced by the matrices A = (a, ) and Ay = (anx), are
defined as

x) :Zan,ksk (f,x) , n=0,1,2,...

and

nAo Zanksk f7 7”2071527“'7
respectively.

Let (p,) be a sequence of positive real numbers and P, = >_7'_ pi. If ap i = pi/Pa,
then T, 4, [f] (z) coincides with the Riesz means R,, [f], defined as

Rn [f] (l‘) = % Zpksk (f’x)a n= 0) 1727"'7
" k=0

which in the case of p, = 1, for all n = 0,1,2, ..., reduce to the Fejér means (Cesaro
means of first order)

If An,k :pk/Pn and
B 1, forn<k<n+m
Pk = 0, for 0 < k < n,

where m,n =0,1,2,..., then T}, 4, 4, [f] coincides with the De La Vallée Poussin means
of f defined as

n+m

Vi 1] @) : m+1 Zsk )

The variable exponent Lebesgue spaces have some advantages in the solution pro-
cesses of different application problems of mathematics and mechanics. The corre-
sponding results can be found in the monographs [7, 9]. The results concerning dif-
ferent problems of approximation and constructive approximation theory, and also ba-
sicity problems of differential systems of functions in these spaces can be found in
[15, 13, 1, 2, 28, 29, 30, 16, 17, 18, 19, 32, 21, 23, 3, 4, 10, 27] .

In [13, 14, 24, 20, 31, 22, 8, 33], the approximation properties of more general aggre-
gates such as matrix transforms in the variable exponent spaces have been investigated.
The results obtained in these works are natural generalization of the results proved earlier
for the classical Lebesgue spaces (see, for example, [5, 26, 11, 12]).

In this work, approximation properties of the matrix transforms T), 4 [f] and T}, 4, [f]
in the variable exponent weighted Lebesgue spaces are investigated and the errors
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If =T, a [fUlly 0 and [[f = Tn,a0 [fll,),, in terms of the modulus of smoothness con-

structed via Steklov means of f € e (T) are estimated.
Definition 2. Let f € A (T), p(-) € Po(T), w(-) € Apy (T). We define the

modulus of smoothness as

Q(f, 5)p(.)7w ‘= Ssup

0<h<d

, 0>0.
p(')vw

h
P reen-sona

This definition is correct. Indeed, the maximal operator

M(f): ] - M (@ —sup|1|/|f )

Isz

is bounded in LE") (T) if w(-) € Apy (T) and p(-) € Py (T) (see, [6]) and there exists a
positive constant ¢(p) such that the inequality

IM ()0 < €@l (2)

holds for every f € LA (T). Hence, by (2) we obtain

1 h 1 [oth
[ rern-r@ia| <2 rod] . <l
p(-)w * p(-)w
and then from the inequality
Qf,0)p(yw < @ 1l (3)

we obtain Correctness of Definition 2.
If f,g € L) (T), then applying techniques used in [18] we get

Q (f + g, 5);0(,)’“, S Q (fv 6)1;(-),0,; + Q (ga 5)p(-),w and %1_1;%9 (f7 5)p(-),w =0.

We use the notation m = O (n) if there exists a positive constant ¢ such that m < cn
throughout this work.
Below we state our main results.

Theorem 1. Let f € L7 (T), p(-) € Po(T) and w(-) € Ay (T). If the

conditions

an,k an,k—i—l

k+1)"  (k+2)°

k:O
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for some 8 >0 and

> (k+1)ans=0(n+1) (5)
k=

(=)

hold, then

1f = Toa Al = O <Q <f’ 711) 0 o <f’ ’1> S ) '
P()w k=0 pi)w

Theorem 2. Let f € 7 (T), p(-) € Po(T) and w(-) € Ap.y(T). If the
conditions

n—1
k B Qn, K _ Qp k41 -0 o
kzzo( PGP T et = Ol ©)
for some 8 >0 and
n+1)an,=0(1) (7)

hold, then

n 1
k=0 p()w

In particular, Theorems 1 and 2 in the case of w = 1 were proved in [24].
Theorem 2 implies

Corollary 1. Let f € b (T), p(-) € Po(T) and w(-) € Ay (T). If the

conditions

n—1
B Dk _ Pr+1 _
;)(k+1) (k‘—l—l)ﬁ (k—|-2)f5 —O(pn) (8)
for some B >0 and
(n+1)p, = O(Py) )

hold, then
1 1
If = B )l = O (Pn S (f, k) | ) .
k=0 p()w

Since n = O (m) implies that (n +m + 1) = O (m + 1), applying Corollary 1
we obtain

Corollary 2. Let f € b (T), p(-) € Po(T) and w(-) € Ay (T). If the
condition n = O (m) holds, then

vm =0 : n+mQ 1
1= V2" [ ey = THZ <f’k‘)p(->,w '

k=n
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Corollary 2 was proved for w =1 in [30].

Corollary 3. Let f € v (T), p(-) € Po(T) and w(-) € Ay (T). Then

1 < 1
f—onlf ~w:O m 1 Q<f7> )
1£ = n [l <n+1k20 © e

In some special subclasses of LA (T), the estimations obtained in Theorems 2 and
3 can be further simplified.

Let w* () be a nondecreasing continuous function defined on T and satisfying the
conditions:

i) w*(0)=0,
11) w* (61 + 52) § w* (51) +w* (52) for any 0 § 51 S 52 § 51 +§2 § 27,
Let also
Lipy( (", M) := {f € L2O (T) : Q(f,6),,, < Mw* (5), 6> o}
with some positive constant M. Then we have
Theorem 3. Let Lippy.y,, (W*, M), p(:) € Po(T) and w(-) € Apy(T). If the
conditions (4) for some 8 >0 and (5) hold, then
1 = Tua lfll ) = O (" (1/n))
Theorem 4. Let Lip,.,, (W, M), p(-) € Po(T) and w(-) € Ay (T). If the
conditions (6) for some 5 >0 and (7) hold, then
1 = Toao 1l = O (w5 (1/m) .
When w = 1, Theorems 3 and 4 were proved in [24]. If w*(§) = 6%, § > 0 and
a € (0,1], then under different assumptions on the given matrix Ay = (ay, 1) Theorem 4
in non weighted and weighted cases was proved in [14] and [20], respectively. The case
p(-) = const and w = 1 was considered in [26] and [25].
Theorem 4 implies
Corollary 4. Let Lipy.) ., (w*, M), p(-) € Po(T) and w(-) € Ay (T). If the
conditions (8) for some 5 >0 and (9) hold, then

1f = B [flll )0 = O (w" (1/n)).
Corollary 5. Let Lippy.y ., (w*, M), p(-) € Po(T) and w(-) € Apy (T). Ifn =
O (m), then
1f = Va" [Flll ey = O (@7 (1/n)) -
Corollary 6. Let Lipy.) ., (w*, M), p(-) € Po(T) and w(-) € Ap) (T). Then

1f = 0n [l = © (@* (1/n)).
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2. Auxiliary Results

Let IT,, be the class of trigonometric polynomials of degree not exceeding n. The best
approzimation number of f € ) (T) is defined as

Ep (f)(, = inf {||f Tl T € Hn}  n=0,1,2,.. .

Lemma 1. (/20]) Let p(-) € Po(T), w () € Apy (T). If f € LEO(T), then for
everyn = 1,2, ..., the inequality

En (f)p(.),w =0 <Q (f7 1/n)p(),w>
holds.

Lemma 2. ([24]) If (4) for some >0 and (5) hold,then

00 k T
Z (n k <1 + Z P cos wf)
k=0 v=1

8

dt=0(1).

™
1
27
—T
If the trigonometric polynomial T;' := T (f) € II,, satisfies the inequality

Hf - T;;”p(),w S CEn (f)p(.),w , = Oa 17 27 )

for some positive constant ¢ independent of n, then T is called near-best approximating
polynomial to f € Lf,(')(’]I‘).

Lemma 3. Let f € eV (T), p(-) € Po(T), w(-) € Ap( (T) and let T}, be near-
best approximating polynomial to f. If the conditions (4) for some 8> 0 and (5)

hold, then
:0(9 (r.2) )
n p(')vw

f(y+t)dy. Then ag (fn) = ao (f) and after

Z an,kSn (f —T7)

k=0

p(')vw

—=

Proof. We define fj, (t) = 5

>

simple calculations we have

s h
ay (fn) 1/ 21h/f(y+t)dy cos (vt) dt
“h

m
-
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h h
= 7r2h (/f (y+1) cosz/tdt) dy— —— (/f )cosv(t — )dt) dy

™ —h

h
- 11 (/ f(t) (cos (vt) cos (vy) + sin (vt) sin (vy)) dt) dy

7 2h
h

h - i
= % (cos (vy) % /f (t) cos (vt) dt + sin (vy) % /f (t) sin (vt) dt) dy

—h

h h '
= ay,(f) % /COS (vy) dy + by, (f) % /sin (vy)dy = av, (f) Slny(}l:h)
—h “h

for every v = 1,2, ..., and similarly we can show that
sin (vh)
v = bu .
by (fn) ()=
Hence,
k k
Sk (f, ) Z v (fn) cos (vx) v (fr) sin (vz)
k
= — /fh )dt + Z sn ( Vh v (fn) cos (vz) > v (fn) sin (vz)

= 2177/fh (t)dt—i—Z::lSinV(Vmi/fh(t)cos(yt)dtcos(ya:)
k

vh 1 [ . .
+;sin(1/h)7r/fh (t) sin (vt) dt sin (vz)

= /fh dt+zsm ) T /fh cos (v (t—ux))dt

cos (vt) dt

k
= /fh t+.’L’ dt + — /fh t+£17 ZSln
v=1
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k

- 1 vh
= ﬂ[ fn(t+ ) (2 + ; S (oh) cos (mf)) dt.

Let T;; be near-best approximating polynomial to f € Lf,(')(T). Denoting

h
(F=Ton 0= 5 [ (=T D)y
“h

we obtain

k
S -1 =1 [(F=TD+) (; + 30 o <ut>) dt

and
o) o) n k
;)an’kSk (f=1T,)() = 2 anyk% / (f=1T7), t+") (; + ; siny(i;h) CoS (ut)) dt

Now choosing h = ¢ for v = 1,2, ..., without lost of generality, by (2), Lemmas 1 and 2
we have

Z an, 1Sk (f —T)

k

p(-),w

dt

p()w

=0
< ;/WHU—T;);U(H-)H

00 k

1 T
Z an, k <2 + BsinZ Zcos (yt))
k=0 v=1

T Sly Jore) k
1 4v 1 T
Sl ) R CIRS R L S 7k<2+8sing;cos<u>>
o Ta p(-)w
n sp i 00 k
1 4v T
< — — - T d n 1 t dt
< o (1% [ -t > ( * g 2o v >>
T PO )
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7/||f Tollpe),w Zank<1+ 3 Zcos I/t>

81/ 1
S CE ( p()7W2ﬂ-/

<1+4sm Zcos yt)

= O En(fyyw=0 (Q <f’ i)p<«>7w> . )

3. Proof of Main Results

39

Proof of Theorem 1 Let 1" be a near-best approximating polynomial to f €

LE)(T). Using the equality 3. an = 1 we have
k=0

n o0
1f = Toa lflllyye < Hf—Zan,kT;‘— > ansT;
k=0

k=n-+1

P(')vw
n [es)

+ Zan,kT]: + Z a'n,kT:; - Tn,A [f]
k=0 k=n+1 p(-),w

Z ank (f = 17)
k=n+1 p()w

Tt Y
k=0 k=n+1 p(-)w

Sk (f=T) + S ans (f—1T3)
k=0 k=n+1 p(-),w

k=n-+1

Since (f,2) ()
. B Sk (f,xz) =T (x), for k<n
Sk(mex){ Sy (f,z) =T (x), for k > n,

n

we get

o

Z Qn,k (f=1T3)

k=n-+1

If = Taalf ||p( +

p(~)7w

-Tp) + Z ank (Sk (f) —17)
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oo

=+ Zanyk (Sk (f - T::)) + Z Un K (Sk (f - T:))

k=0 k=n-+1

p(-),w

<D anwlllf =Ty + Do ans I = Tl +
k=0

k=n+1

(f=12)

p(-),w

D ank B (Nyrwt D ankBn (D
k=0

k=n-+1

+ 1D ank (Sk (f = T7))

p()w
y (10), Lemmas 1 and 3 we obtain

If = Toa Fll0 = © Zanm (73 )

()w

roma(ry) +O<Q<fi) ) )
PO k=nt1 p()w

=0 (1) Q (f7 1/n)p(.)7w + @ (1) Z a'n,kQ (f7 1/k)p(~)7w

k=0

=0 (Q (f,l/n)p(-)w +Za"’kQ (f’l/k)P(')aw> ' <
k=0

Proof of Theorem 2 Since lim,, o, Q2 (f, 1/n)p(_)1w =0, we have

Q(f,1/n), ZankQ (f,1/n),0. Zankﬂ (£ 1/8)p0) 0 (11)

Using the conditions (6), (7) and Abel transform, we have

An, K An k41

(k+1)°  (k+2)°

k::O
n—1 a a
_ (k_+1)5 n,k _ n,k+1 +a 7
= k+1)7 (k427 "

1
=0 (ann) + ann =0 (an,) =0 <n n 1)
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and

ik—o—l zn:k—o—l )ank < (n+1) Zank—n—Fl
k=0 k=0 k=0

Hence, the entries of Ay = (a, k) satisfy the conditions (4) and (5). Applying Theorem
1 and (11) we obtain

1 - 1
V= Toso Ul = O<Q(f,> 4 an,9<f7) )
Ao 0, "/ p() kZ:O * k) p()w
(’)(Zamkﬁ(f,]lg) | > <
k=0 p(-),w

Proof of Theorem 3 Let f € Lip,.),, (W, M), p(-) € Po(T) and w (-) € A, (T).
Since w* (nd) < nw* (0) and hence w* (AJ) < (A + 1) w* (J), we have

5 5 5
w* (83) = w* (5351) < <5j +1) “(6y) < 25—iw* (61),

where n =1,2,..., A > 0and 0 < §; < d3. Then

w* (62) _  w*(61)
5 <2 (12)

Applying (12) and (4) for 5 > 0 and Abel transform, we have

Zanvkﬁ (f,1/k) iy =0(1) Zan,kw* (1/k) =0 (1) T Tk

k=0 k=0 k=0
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Since Q (f,1/n) = O(w* (1/n)), by Theorem 1 and (13) we have

p()w
1 = Toa [fllly 00 = O (" (1/m)). «

Proof of Theorem 4 Let Lipy. ., (w*, M), p(-) € Po(T), w(-) € Apcy (T). It follows
from the proof of Theorem 2 that the conditions (6) and (7) imply that the entries of
Ao = (an,) satisfy the conditions (4) and (5). Then, applying Theorem 3 we have

1 = T [l = O (" (1/m) <
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