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A Padé–Legendre Reconstruction Approach in
Capturing Shock Behaviour

H. Tunc, M. Sari∗, S.H. Mussa

Abstract. Many numerical methods for solving partial differential equations having
shock behaviour produce unphysical oscillations. This study aims to prove the efficiency
of applying Padé-Legendre reconstruction technique for stabilization of these oscilla-
tions. To get better, physically acceptable solutions of the advection dominated Burgers
equation, the fourth-order finite difference method (FD4) and the Padé-Legendre re-
construction technique (PLR) are combined. The PLR is designed for the stabilization
process of discrete solutions produced by the FD4 with the use of suitable composite
numerical integrations. It has been proved that the present approach can capture shock
behaviours as well as minimize the maximum errors produced by FD4. Two challenging
test problems having shock behaviours are considered, and the positive effect of the PLR
is illustrated.
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1. Introduction

The numerical investigation of the nonlinear partial differential equations
(PDEs) plays a crucial role in gaining a deeper understanding of many real-world
phenomena. As differential equations usually describe the behaviour of events
that occur in space and time, modeling of physical problems is often represented
by partial differential equations most of which can only be solved numerically
[1]. One of the challenging partial differential equations in applied science is the
Burgers equation, which represents the nonlinear advection-diffusion mechanism.
These types of equations have some analytical solutions which involve infinite
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series, but they are not practical enough due to their slow convergence or di-
vergence for advection dominated problems. Generally, analytical solutions of
nonlinear PDEs are extremely challenging ones, and therefore, many numerical
methods have been derived and developed to understand correctly the physical
process of models [2]. In this work, we pay our attention to accurately capture the
behaviour of nonlinear advection-diffusion processes represented by the Burgers
equation given as follows:

∂u

∂t
+ u

∂u

∂x
= v

∂2u

∂x2
, x ∈ (a, b) , t ∈ (0, T ] , (1)

with initial condition

u(x, 0) = f(x), x ∈ (a, b) (2)

and boundary conditions

u(a, t) = h(t), and u(b, t) = g(t), (3)

where v is the kinematic viscosity constant for v > 0 and the functions f, g and
h are sufficiently smooth on the considered space-time domain.

In trying to get the accurate results of the model equation (1), several finite
difference methods have been explored under various conditions. Sari and Gu-
rarslan [3] proposed a sixth-order compact finite difference scheme for the spatial
derivative and a strong stability preserving Runge-Kutta (SSPRK3) method for
the time integration. A fourth-order compact finite difference scheme was pro-
posed by Liao [4] using the Padé reconstruction of difference operators. Gulsu
[5] applied restrictive Padé approximation of classical implicit finite difference
schemes. Xie et al. [6] also solved the Burgers equation by reproducing kernel
method with the help of the Hopf-Cole transformation. Hassanien et al. [7] came
up with a finite difference method for solving the model equation (1) by the aid
of a scheme of order four. Besides these studies, a restrictive Taylor approxima-
tion algorithm [8], compact difference scheme [9], and explicit finite difference
techniques [10] have been recommended in the literature.

Many of these methods fail to produce non-oscillatory results for especially
advection dominated cases of the model. In such cases, the spatial meshes need
to be well defined for detecting the regions in which the solutions have steep
gradients. It is known that shock behaviours are seen in nonlinear conservation
laws represented by hyperbolic PDEs. In recent decades, weighted essentially
non-oscillatory (WENO) schemes based on finite differences gained great impor-
tance for solving such stiff PDEs [11], [12], [13], [14]. The WENO schemes are
used either in the FDM form or in finite volume method (FVM) form to remove
unwanted oscillations via local reconstructions. In solving advection dominated
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fluid problems, discontinuous Galerkin methods (DGM) also accurately capture
behaviours [15], [16], [17], [18]. As an extension of finite element methods (FEM),
the DGM satisfies the high accuracy property of the FEM and shock-capturing
property of the FVM. Detailed implementation of some reconstruction techniques
such as flux limiting, filtering, and rational reconstructions to DGM solutions are
explained in [19].

To get rid of unwanted oscillatory of the classical approximations, Padé ap-
proximation based rational reconstruction techniques have been studied [20], [21],
[22], [23], [24]. Driscoll and Fornberg [20] explained the problem of jumps or
singularities in a global sense. They come up with a Padé-based algorithm to
eliminate unwanted oscillations in case discontinuity positions are known. It was
shown that the method works well for equally spaced data or truncated Fourier
series sum. A Padé-Legendre interpolation technique was studied in [21], and the
implementation procedure was explained as a pure interpolation of continuous
functions. Legendre polynomials based quadratures were used to minimize com-
putational cost, and it has been shown that the proposed method has ability to
minimize numerical errors near the discontinuities. A filtering technique based on
rational functions was presented by Emmel et al. [23] for spectral approximations
of discontinuous solutions. In their study, the computed results were then post-
processed to extract meaningful physical solutions using the Padé-Jacobi rational
approximants. In the work of Min at el [24], to regulate the oscillatory solutions
obtained by a pseudospectral method, the Fourier-Padé rational approximations
were applied to the produced results. The algorithms were applied as a filter
to get convergent solutions in the absence of diffusion for the inviscid Burgers
equation and incompressible Boussinesq convection models. Besides these recon-
struction techniques, modal and space filtering techniques are also useful when
the positions of the shocks are known [25], [26].

In this study, the FD4 and the PLR are combined to stabilize the numer-
ical solution of the nonlinear advection-diffusion equation in the presence of a
small viscosity constant. The procedure of stabilizing the FD4 solutions via the
Padé-Legendre reconstruction has been derived in detail. A semi-analytical inte-
gration scheme has been proposed to evaluate the Legendre coefficients occurring
in rational approximations. Two challenging examples of the Burgers equation
have been used to test the efficiency of the present FD4-PLR algorithm. It has
been shown that the present approach both removes the unwanted oscillations
and minimizes the maximum errors of the FD4 solutions.
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2. Method of Solution

Let us rewrite the model equation (1) in terms of the nonlinear operator G
and linear operator L as follows:

∂u

∂t
+G[u]− L[u] = 0, (4)

where

G[u] = u
∂u

∂x

and

L[u] = ν
∂2u

∂x2
.

For the spatial discretization process, a compact finite difference algorithm is
produced to analyze the model equation numerically. We consider a mesh a =
x0 < x1 < ... < xK = b as a uniform partition of the solution domain a ≤ x ≤ b
by the nodes xi and h = xi − xi−1 for all i = 1, ...,K. Fourth order spatial
discretization operators yield

G(ui) = ui

(
1

12h

(
δ4xui

))
(5)

and

L(ui) = ν

(
1

12h2
(
δ4xxui

))
, (6)

where δ4xui and δ4xxui are given by

δ4xui = ui−2 − 8ui−1 + 8ui+1 − ui+2 (7)

and
δ4xxui = −ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+2, (8)

where i = 2, · · · ,K − 2 and ui = u(xi, t).
Defining the vector U = [u1, u1, u2, · · · , uK−1]

T and applying the boundary con-
ditions (3), the equation (4) reduces to the following ODE system:

dU

dt
+ 〈U,BU〉 − νAU = 0, (9)

where A and B are (K − 1) × (K − 1) square matrices and the operator 〈·, ·〉 is
defined for element-wise product of column vectors. We use the SSPRK3 method
to solve the system of ODEs (9) and the required formula of the SSPRK3 can be
found in [3].
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2.1. The Padé-Legendre Approximation

For given integers M and L, the pair of polynomials (P,Q) ∈ PM×PL is said
to be a solution of the N , M , L Padé-Legendre interpolation problem of a given
function u if the conditions [21]

∀x ∈ [−1, 1]; Q(x) > 0 (10)

and

∀ϕ ∈ PN : 〈P− Qu, ϕ〉N = 0 (11)

are satisfied. N = M + L is considered here to get consistent system (11). We
define a rational function P/Q which approximates a given function u at N + 1
collocation points uniquely. The rational Padé-Legendre approximation of any
function u(x) is then given by

u(x) =
PM (x)

QL(x)
. (12)

The parts of the rational approximation can be stored in terms of the Legendre
polynomials as follows:

P(x) =

M∑
n=0

p̃nPn (13)

and

Q(x) =

L∑
n=0

q̃nPn. (14)

An important question comes out here to investigate how to determine the coeffi-
cients p̃n and q̃n if the function u(x) is known only at some discrete points. In the
following subsection, the procedure to solve the mentioned problem is explained.

2.2. Computation of Rational Approximation

The Padé-Legendre approximation expressed in the last subsection can be
designed either for discrete functions or continuous functions. In this study,
we are solving a time dependent PDE with the use of discrete finite difference
method. Thus, at any time t = tn, we get the following space-discrete solution
vector

un = {un0 , un1 , un2 , · · · , unK} . (15)
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In order to stabilize the numerical solution stated in (15) with the use of Padé-
Legendre approximation, we conduct the following procedure. From the relation
(11), one can write

〈P− uQ, ϕ〉 = 0 (16)

or

〈P, ϕ〉 − 〈uQ, ϕ〉N = 0. (17)

By considering ϕ = Pn in (11) for all n = 0, 1, ..., N and using orthogonality of
the Legendre polynomials, we reach

〈P, Pn〉 = 〈uQ, Pn〉 (18)

or

p̃n =
〈uQ, Pn〉
||Pn||2L2

. (19)

The Legendre coefficients of P(x) can be calculated after evaluating the function
Q(x) with the use of (19). By considering ϕ = Pn in (11) for all n = M + 1,M +
2, ...,M + L, we obtain

〈uQ, Pn〉 = 〈P, Pn〉 =

∫ 1

−1
P(x)Pn(x)dx = 0 (20)

or

〈u
L∑

m=0

q̃mPm, Pn〉 = 0. (21)

Note that the orthogonality of the Legendre polynomials is used to obtain ex-
pression (20-21). Defining the vector QL = [q̃0, q̃1, · · · , q̃L]T , the following homo-
geneous system of linear equations

AQL = 0 (22)

with

A =

〈uP0, PM+1〉N ... 〈uPL, PM+1〉N
...

...
〈uP0, PM+L〉N ... 〈uPL, PM+L〉N

 (23)

is found. By evaluating the null space of the matrix A, the denominator function
Q(x) can be found. Thus, the numerator function P(x) is obtained from the
relation (19). The procedure above can be applied to approximate any continuous
function u(x). In our case, we only have discrete un to stabilize with the use of
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the Padé-Legendre reconstruction. Therefore, we first transform the interval [a, b]
to [−1, 1] as follows:

ψ(x) =
2x− (a+ b)

b− a
. (24)

With the use of transformation (24), we obtain a discrete solution (15) on the
interval [−1, 1] and the original nodes become x̄ = {−1 = x̄0, x̄1, ..., x̄K = 1} with
the fixed step size h̄ = x̄i+1 − x̄i. Let us consider the following composite linear
interpolation:

un(x) =
K−1∑
i=0

Li(x)Hi(x), (25)

where

Li(x) =
x̄i+1 − x

h
uni +

x− x̄i
h

uni+1, (26)

and

Hi(x) =

{
1, x̄i ≤ x ≤ x̄i+1

0, otherwise.
(27)

The rational reconstruction given in (12) can be calculated via the continuous
function un(x) defined in (25). Finally, if we apply the inverse transformation
ψ−1(x) we reach the desired reconstructed solution for the Burgers equation at
any predetermined time step.

3. Numerical Illustrations

This section analyzes the results produced by the FD4-PLR hybridization.
With the implementation of the present Padé-Legendre reconstruction, it is aimed
to both destroy the unwanted oscillations and decrease the maximum error. With
two challenging examples, the current reconstruction technique has been shown
to produce less errors and eliminate unwanted oscillations than the FD4 itself.
Problem 1: Let us consider the model equation (1) in which the exact solution
takes the following form:

u(x, t) =
x/t

1 +
√
t/t0 · exp(x2/4νt)

, t ≥ 1 0 ≤ x ≤ 1 (28)

where t0 = exp(1/8ν). The initial condition can be taken from the exact solution
(28) at time t = 1 and homogeneous Dirichlet boundary conditions are assumed.

Problem 2: As a second application, we assume the model equation (1) with
the following exact solution:



52 H. Tunc, M. Sari, S.H. Mussa

u(x, t) =
α+ µ+ (µ− α)exp(φ)

1 + exp(φ)
, t ≥ 0, 0 ≤ x ≤ 1, (29)

where φ =
α(x− µt− γ)

ν
and α, µ, γ are constants. The required initial condition

can be evaluated from the exact solution (28) at time t = 0 and the following
Dirichlet boundary conditions are assumed:

u(0, t) = 1 and u(1, t) = 0.2, t ≥ 0.

In Figures 1-5, we assumed the challenging cases of Problem 1 with the selec-
tion of relatively small viscosity constants varying from ν = 0.001 to ν = 0.0003.
As seen in the figures, the solutions have shock behaviours, and the FD4 is seen
to produce oscillating results with relatively high maximum errors. With the
effective use of the PLR for each discrete oscillatory result, as shown in Figure
1-5, both numerical solutions have been stabilized and the maximum errors have
been reduced. The maximum errors are reduced to at least half by applying the
PLR.
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Figure 1: Comparison of the FD4 and the stabi-
lized FD4-PLR solutions produced with the param-
eter values h = 0.02, dt = 0.001, tf = 2, v = 0.0005,
L = 2 and M = 6.



A Padé–Legendre Reconstruction Approach in Capturing Shock Behaviour 53

0 0.5 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

u
(x

,t
)

Maximum Error = 0.2500

FD4

0 0.5 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

u
(x

,t
)

Maximum Error = 0.1468

FD4+PLR

Figure 2: Comparison of the FD4 and the stabi-
lized FD4-PLR solutions produced with the pa-
rameter values h = 0.01, dt = 0.0001, tf = 2,
v = 0.0003, L = 2 and M = 7.
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Figure 3: Comparison of the FD4 and the stabi-
lized FD4-PLR solutions produced with the pa-
rameter values h = 0.02, dt = 0.0001, tf = 2,
ν = 0.0003, L = 2 and M = 4.
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Figure 4: Comparison of the FD4 and the stabi-
lized FD4-PLR solutions produced with the pa-
rameter values h = 0.02, dt = 0.001, tf = 2,
v = 0.001, L = 2 and M = 28.
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Figure 5: Comparison of the FD4 and the stabi-
lized FD4-PLR solutions produced with the param-
eter values h = 0.05, dt = 0.001, tf = 2, v = 0.0005,
L = 2 and M = 4.
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Quantitative stiff behaviours of Problem 2 are taken into consideration in
Figures 6-10. The kinematic viscosity constant is taken relatively small, between
ν = 0.005 and ν = 0.0003. Note that the bound of the viscosity constant is
ν = 0.0003 due to the computational bound of the FD4. Because the FD4
solution totally diverges for the less viscosity values, ν < 0.0003. As seen in the
figures, the FD4 solutions suffer from instability near the shocks and then begin
to produce numerical oscillations. It has been observed that the PLR approach
not only stabilizes the FD4 solutions, but also optimizes the maximum errors for
all cases. Note also that the PLR can be applied at any desired moment and
stabilize the solutions with a little computational cost.
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Figure 6: Comparison of the FD4 and the stabilized FD4-
PLR solutions produced with the parameter values h =
0.0125, dt = 0.001, tf = 1, v = 0.0005, L = 2 and
M = 12.
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Figure 7: Comparison of the FD4 and the stabi-
lized FD4-PLR solutions produced with the pa-
rameter values h = 0.0125, dt = 0.0004, tf = 0.4,
v = 0.0005, L = 2 and M = 8.
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Figure 8: Comparison of the FD4 and the stabilized FD4-
PLR solutions produced with the parameter values h =
0.02, dt = 0.001, tf = 1, ν = 0.0008, L = 2 and M = 7.
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Figure 9: Comparison of the FD4 and the stabi-
lized FD4-PLR solutions produced with the param-
eter values h = 0.02, dt = 0.001, tf = 1, ν = 0.001,
L = 2 and M = 8.
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Figure 10: Comparison of the FD4 and the stabilized FD4-
PLR solutions produced with the parameter values h = 0.02,
dt = 0.0002, tf = 0.2, ν = 0.005, L = 2 and M = 24.



58 H. Tunc, M. Sari, S.H. Mussa

4. Conclusions and Recommendations

In this article, an efficient hybridization of a compact finite difference scheme
and a Padé-Legendre reconstruction technique has been carried out to capture
the shock behaviour of the nonlinear Burgers equation. It has been observed
that the hybridization method, the FD4+PLR, is capable of eliminating the un-
wanted oscillations and thus significantly reduces the maximum errors. On the
other hand, the FD4 has been found to produce unstable solutions under the same
conditions. Highly accurate results have been found for advection-dominated pro-
cesses governed by the Burgers equation. Remark that the PLR reconstruction
can optionally be applied at any time step of the FD4 solution, and the recon-
struction procedure does not always need to be performed at each step. Thus, it
has been proven that the PLR approach can stabilize unstable numerical solutions
with a reasonable computational cost. As a further study, the PLR technique can
be used in the solution process of any discrete unstable solutions, especially for
hyperbolic problems.
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