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Well-Posedness of the Mixed Problem for the
Degenerate Multi-Dimensional Elliptic Equations

S. Aldashev*, A. Tanirbergen

Abstract. The boundary-value problems for elliptic PDEs are of fundamental impor-
tance for mathematical physics. Some of their applications lead to the analysis of degen-
erate PDEs of elliptic type. The well-posedness (correctness) of boundary-value problems
for elliptic equations on the plane has been well studied using the methods of analytic
functions of a complex variable. However, fundamental problems arise when investigat-
ing similar problems if the number of independent variables exceeds two. In this paper,
we prove the unique solvability and obtain the explicit form of the classical solution
of the mixed boundary-value problem for degenerate elliptic PDEs with the Chaplygin
operator.
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1. Introduction

The boundary-value problems for elliptic PDEs are of fundamental impor-
tance for mathematical physics, mainly because the analysis of stationary pro-
cesses of various physical phenomena (such as oscillations, heat transfer, diffusion,
etc.) generally leads to obtaining a PDE of elliptic type. Key examples of their
applications are the diffusion of radiowaves through hollow metallic tubes, electro-
magnetic oscillations in hollow resonators (widely used in electrotechnics), and
the distribution of variable electric current through the section of a conductor
(the so-called ”skin effect”). Some of these applications lead to the analysis of
degenerate PDEs of elliptic type (see [11]).

The well-posedness (correctness) of boundary-value problems for elliptic equa-
tions on the plane has been well studied using the methods of analytic functions
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of a complex variable (see [1, 2]). However, fundamental problems arise when in-
vestigating similar problems under the number of independent variables greater
than two. The attractive and convenient method of singular integral equations
loses its validity due to the absence of a complete theory of multi-dimensional
singular integral equations.

This paper uses an alternative method to prove the unique solvability and
to obtain the explicit form of the classical solution of the mixed boundary-value
problem for degenerate elliptic PDEs with the Chaplygin operator.

2. Problem statement and main result

Let Dα be a cylindric domain in the Euclidean space Em+1 of points
(x1, ..., xm, t), bounded by the cylinder Γ = {(x, t) : |x| = 1} and the planes
t = α > 0 and t = 0, where |x| is the length of the vector x = (x1, ..., xm).

Let’s denote by Γα, Sα, and S0, respectively, the parts of the surfaces that
form the boundary ∂Dα of the domain Dα.

We study, in the domainDα, the mutually adjoint degenerate multi-dimensional
elliptic equations:

Lu ≡ g(t)∆xu+ utt +

m∑
i=1

ai(x, t)uxi + b(x, t)ut + c(x, t)u = 0, (1)

L∗υ ≡ g(t)∆xυ + υtt −
m∑
i=1

aiυxi − bυt + dυ = 0, (1∗)

where g(t) > 0 for t > 0, g(0) = 0, g(t) ∈ C([0, α])∩C2((0, α)), ∆x is the Laplace

operator of the variables x1, ..., xm, m ≥ 2, and d(x, t) = c−
m∑
i=1

aixi − bt.

As a preliminary step in our analysis, let us switch from the Cartesian coordi-
nates x1, ..., xm, t to the spherical ones r, θ1, ..., θm−1, t, r ≥ 0, 0 ≤ θ1 < 2π, 0 ≤
θi ≤ π, i = 2, 3, ...,m− 1.
Problem 1. Find the solution of the equation (1) in the domain Dα, belonging to
the the class C1(Dα)∩C2(Dα), that satisfies the following boundary conditions:

u| S0 = τ(r, θ), ut| S0 = ν(r, θ) u| Γα = ψ(t, θ), (2)

where τ(1, θ) = ψ(0, θ), ν(1, θ) = ψt(0, θ).
Let

{
Y k
n,m(θ)

}
be a system of linearly independent spherical functions of order

n, 1 ≤ k ≤ kn, (m− 2)!n!kn = (n+m− 3)!(2n+m− 2), θ = (θ1, ..., θm−1). Let
also W l

2(S0), l = 0, 1, ... be the Sobolev spaces.
We will need the following useful lemmas ([3]).
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Lemma 1. Let f(r, θ) ∈W l
2(S0). If l ≥ m− 1, then the series

f(r, θ) =

∞∑
n=0

kn∑
k=1

fkn(r)Y k
n,m(θ), (3)

as well as the series obtained by its differentiation of order p ≤ l−m+1, converge
absolutely and uniformly.

Lemma 2. For f(r, θ) ∈ W l
2(S0), it is necessary and sufficient that the coeffi-

cients of the series (3) satisfy the inequalities

|f1
0 (r)| ≤ c1,

∞∑
n=0

kn∑
k=1

n2l|fkn(r)|2 ≤ c2, c1, c2 = const.

Let’s denote by ãkin(r, t), akin(r, t), b̃kn(r, t), c̃kn(r, t), d̃kn(r, t), ρkn, τ̄kn(r), ν̄kn(r),
ψkn(t), the coefficients of the series (3) of the functions ai(r, θ, t)ρ(θ), ai

xi
r ρ,

b(r, θ, t)ρ, c(r, θ, t)ρ, d(r, θ, t)ρ, ρ(θ), i = 1, ...,m, τ(r, θ), ν(t, θ), ψ(r, θ), respec-
tively, where ρ(θ) ∈ C∞(H) and H is a unit sphere in Em.

Let ai(r, θ, t), b(r, θ, t), c(r, θ, t) ∈ W l
2(Dα) ⊂ C(Dα), l ≥ m + 1, i = 1, ...,m

and c(r, θ, t) ≤ 0, ∀(r, θ, t) ∈ Dα.
The following theorem is the main result of this paper:

Theorem 1. Let the functions τ(r, θ), ν(r, θ) ∈ W l
2(S0), ψ(t, θ) ∈ W l

2(Γα), l >
3m
2 . Then, the Problem 1 has a unique solution.

3. Solvability of Problem 1

First, we show that Problem 1 has a solution. In the spherical coordinates,
the equation (1) takes the form

Lu ≡ g(t)

(
urr +

m− 1

r
ur −

δu

r2

)
+

+utt +
m∑
i=1

ai(r, θ, t)uxi + b(r, θ, t)ut + c(r, θ, t)u = 0, (4)

δ ≡ −
m−1∑
j=1

1

gj sinm−j−1 θj

∂

∂θj

(
sinm−j−1 θj

∂

∂θj

)
,

g1 = 1, gj = (sin θ1... sin θj−1)2, j > 1.
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A well-known result (see [3]) states that the spectrum of the operator δ con-
sists of eigenvalues λn = n(n+m− 2), n = 0, 1, ..., to each of which correspond
kn orthonormalized eigenfunctions Y k

n,m(θ).
Hence, we can search for the solution of Problem 1 in the form of the series

u(r, θ, t) =

∞∑
n=0

kn∑
k=1

ukn(r, t)Y k
n,m(θ), (5)

where we need to determine the functions ukn(r, t).
Let’s substitute (5) into (4) and multiply the obtained expression by ρ(θ) 6= 0.

If we then integrate over the unit sphere H, we obtain for ukn (see [4]-[6] for the
detailed derivation):

g(t)ρ1
0u

1
0rr + ρ1

0u
1
0tt +

(
m− 1

r
g(t)ρ1

0 +

m∑
i=1

a1
i0

)
u1

0r + b̃10u
1
0t + c̃1

0u
1
0+

+

∞∑
n=0

kn∑
k=1

{
g(t)ρknu

k
nrr + ρknu

k
ntt +

(
m− 1

r
g(t)ρkn +

m∑
i=1

akin

)
uknr + b̃knu

k
nt + (6)

+

[
c̃kn − λn

ρkn
r2
g(t) +

m∑
i=1

(ãkin−1 − nakin)

]
ukn

}
= 0.

Next, let’s analyze the infinite system of differential equations

ρ1
0g(t)u1

0rr + ρ1
0u

1
0tt +

m− 1

r
g(t)ρ1

0u
1
0r = 0, (7)

ρk1g(t)uk1rr + ρk1u
k
1tt +

m− 1

r
g(t)ρk1u

k
1r −

λ1

r2
g(t)ρk1u

k
1 =

= − 1

k1

(
m∑
i=1

a1
i0u

1
0r + b̃10u

1
0t + c̃1

0u
1
0

)
, n = 1, k = 1, k1, (8)

ρkng(t)uknrr + ρknu
k
ntt +

m− 1

r
g(t)ρknu

k
nr −

λn
r2
g(t)ρknu

k
n =

= − 1

kn

kn−1∑
k=1

{
m∑
i=1

akin−1u
k
n−1r + b̃kn−1u

k
n−1t+

+

[
c̃kn−1 +

m∑
i=1

(ãkin−2 − (n− 1)akin−1)

]
ukn−1

}
, (9)

k = 1, kn, n = 2, 3, ....

Clearly, if {ukn}, k = 1, kn, n = 0, 1, ... is the solution of the system (7)-(9),
then it is also the solution of the equation (6).
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It is easy to see that each equation of the system (7)-(9) can be represented
in the form

g(t)

(
uknrr +

m− 1

r
uknr −

λn
r2
ukn

)
+ ukntt = fkn(r, t), (10)

where fkn(r, t) are determined from the previous equations of this system, with
f1

0 (r, t) ≡ 0.
Next, from the boundary conditions (2), taking into account (5) and Lemma

1, we obtain

ukn(r, 0) = τkn(r), uknt(r, 0) = νkn(r), ukn(1, t) = ψkn(t), k = 1, kn, n = 0, 1, ...
(11)

In (10), (11), making a change of variables

υkn(r, t) = ukn(r, t)− ψkn(t),

we get

g(t)

(
υknrr +

m− 1

r
υknr −

λn
r2
υkn

)
+ υkntt = f

k
n(r, t), (12)

υkn(r, 0) = τkn(r), υknt(r, 0) = νkn(r), υkn(1, t) = 0, k = 1, kn, n = 0, 1, ..., (13)

f
k
n(r, t) = fkn(r, t) +

λn
r2
g(t)ψkn − ψkntt, τkn(r) = τkn(r)− ψkn(0),

νkn(r) = νkn(r)− ψknt(0).

Making a change of variable υkn(r, t) = r(1−m)/2υkn(r, t), we can reduce the
problem (12), (13) to the following problem:

Lυkn ≡ g(t)

(
υknrr +

λn
r2
υkn

)
+ υkntt = f̃kn(r, t), (14)

υkn(r, 0) = τ̃kn(r), υknt(r, 0) = ν̃kn(r), υkn(1, t) = 0, (15)

λn =
[(m− 1)(3−m)− 4λn]

4
, f̃kn(r, t) = r

(m−1)
2 f

k
n(r, t),

τ̃kn(r) = r(m−1)/2τkn(r), ν̃kn(r) = r(m−1)/2νkn(r).

We search for the solution of the problem (14), (15) in the form

υkn(r, t) = υk1n(r, t) + υk2n(r, t), (16)

where υk1n(r, t) is the solution of the problem

Lυk1n = f̃kn(r, t), (17)
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υk1n(r, 0) = υk1nt(r, 0) = 0, υk1n(1, t) = 0, (18)

and υk2n(r, t) is the solution of the problem

Lυk2n = 0, (19)

υk2n(r, 0) = τ̃kn(r), υk2nt(r, 0) = ν̃kn(r), υk2n(1, t) = 0. (20)

We analyze the solutions of the above problems in the form

υkn(r, t) =

∞∑
s=1

Rs(r)Ts(t). (21)

Moreover, let

f̃kn(r, t) =

∞∑
s=1

akns(t)Rs(r), τ̃
k
n(r) =

∞∑
s=1

bknsRs(r), ν̃
k
n(r) =

∞∑
s=1

eknsRs(r). (22)

Substituting (21) into (17), (18), and taking into account (22), we come to
the problem

Rsrr +
λn
r2
Rs + µRs = 0, 0 < r < 1, (23)

Rs(1) = 0, |Rs(0)| <∞, (24)

Tstt − µg(t)Ts(t) = ans(t), 0 < t < α, (25)

Ts(0) = 0, Tst(0) = 0. (26)

The bounded solution of the problem (24), (25) is (see [7])

Rs(r) =
√
rJν(µs,nr), (27)

where ν = n+(m−2)
2 , and µs,n are the zeros of the Bessel function of the first kind,

µ = µ2
s,n.

The problem (25), (26) reduces to the integral Volterra equation of the second
kind with respect to Ts,n(t) (see [8]):

Ts,n(t)− µ2
s,n

∫ t

0
(t− ξ)g(ξ)Ts,n(ξ)dξ =

∫ t

0
(t− ξ)ans(ξ)dξ. (28)

This equation has a solution; moreover, it is unique.
Next, substituting (27) into (22), we obtain

r−
1
2 f̃kn(r, t) =

∞∑
s=1

akns(t)Jν(µs,nr), r
− 1

2 τ̃kn(r) =
∞∑
s=1

bknsJν(µs,nr), (29)
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r−
1
2 ν̃kn(r) =

∞∑
s=1

eknsJν(µs,nr), 0 < r < 1.

The series (29) are the decompositions into the Fourier-Bessel series (see [9]),
if

akns(t) =
2

[Jν+1(µs,n)]2

∫ 1

0

√
ξf̃kn(ξ, t)Jν(µs,nξ)dξ, (30)

bkns =
2

[Jν+1(µs,n)]2

∫ 1

0

√
ξτ̃kn(ξ)Jν(µs,nξ)dξ, (31)

ekns =
2

[Jν+1(µs,n)]2

∫ 1

0

√
ξν̃kn(ξ)Jν(µs,nξ)dξ,

where µs,n, s = 1, 2, ... are the positive zeros of the Bessel functions Jν(z), put in
the increasing order.

From (27), (28) we get the solution of the problem (17), (18) in the form

υk1n(r, t) =
∞∑
s=1

√
rTs,n(t)Jν(µs,nr), (32)

where akns(t) is determined from (30).
Next, substituting (27) into (19), (20) and taking into account (22), we get

the problem

Vstt − µ2
s,ng(t)Vs(t) = 0, 0 < t < α,

Vs(0) = bkns, Vst(0) = ekns,

from which, making the substitution

Ts(t) = Vs(t)− bkns − tekns, (33)

we obtain the following, simpler, problem:

Tstt − µ2
s,ng(t)Ts = qkns(t), (34)

Ts(0) = 0, Tst(0) = 0 (35)

qkns(t) = µ2
s,ng(t)(bkns + tekns).

The problem (34), (35) also reduces to the integral equation (28), where
instead of akns(t) we use qkns(t).
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From (27), (28), (33) we find the solution of the problem (19), (20):

υk2n(r, t) =
∞∑
s=1

√
rVs,n(t)Jν(µs,nr), (36)

where bkns, e
k
ns are determined from (31).

Therefore, having first solved the problem (7), (11) (for n = 0), and then (8),
(11) (for n = 1), and so on, we can consecutively find all functions υkn(r, t) from
(16), where υk1n(r, t), υk2n(r, t) are determined from (32), (36), k = 1, kn, n =
0, 1, ....

Hence, we have shown that, in the domain Dα,∫
H
ρ(θ)LudH = 0. (37)

Next, let f(r, θ, t) = R(r)ρ(θ)T (t). Moreover, R(r) ∈ V0, V0 is dense in
L2((0, 1)), ρ(θ) ∈ C∞(H) is dense in L2(H), and T (t) ∈ V1, V1 is dense in
L2((0, α)). Then, f(r, θ, t) ∈ V, V = V0 ⊗H ⊗ V1 is dense in L2(Dα) (see [10]).

From here and from (37) it follows that∫
Dα

f(r, θ, t)LudDα = 0

and
Lu = 0,∀(r, θ, t) ∈ Dα .

Therefore, the solution of Problem (1) is the series

u(r, θ, t) =
∞∑
n=0

kn∑
k=1

{
ψkn(t) + r

(1−m)
2

[
υk1n(r, t) + υk2n(r, t)

]}
Y k
n,m(θ), (38)

where υk1n(r, t), υk2n(r, t) are determined from the expressions (32) and (36).
Taking into account the formula (see [9])

2J ′ν(z) = Jν−1(z)− Jν+1(z),

the estimates [11, 3]

|kn| ≤ c1n
m−2,

∣∣∣∣∣ ∂q∂θqj Y k
n,m(θ)

∣∣∣∣∣ ≤ c2n
m
2
−1+q, j = 1,m− 1, q = 0, 1, ..., (39)

Lemmas 1 and 2, and the bounds on the coefficients of the equation (1) and on the
given functions τ(r, θ), ν(r, θ), ψ(t, θ), we can show, using the same procedure as
in [4]-[6], that the obtained solution (38) belongs to the class C1(Dα) ∩C2(Dα).

The solvability of Problem 1 is thus established.
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4. Uniqueness of the solution of Problem 1

Now we can proceed to prove the uniqueness of the solution. For this, first,
let’s build the solution of the boundary-value problem (1∗) with the conditions

υ| Γα = 0, υ| Sα = 0, υt| Sα =ν(r, θ) =νkn(r)Y k
n,m(θ), k = 1, kn, n = 0, 1, ...,

(40)
where νkn(r) ∈ G, G is the set of functions ν(r) from the class C([0, 1])∩C1([0, 1]).
Obviously, the set G is dense everywhere in L2((0, 1)) (see [10]).

We will search for the solution of the problem (1∗),(40) in the form (5), where
we have to determine the functions υkn(r, t). Then, analogously to the previous
section, the functions υkn(r, t) satisfy the system of equations (8)-(10), where
ãkin, a

k
in, b̃

k
n are replaced with −ãkin,−akin,−b̃kn, respectively, and c̃kn is replaced

with d̃kn, i = 1, ...,m, k = 1, kn, n = 0, 1, ...
Next, from the boundary condition (40), given the form (5), we obtain

υkn(1, t) = 0, υkn(r, α) = 0, υknt(r, α) = νkn(r), k = 1, kn, n = 0, 1, ... (41)

As we explained earlier, each equation of the system (7)-(9) can be represented
in the form (10). Similarly to the previous section, it is easy to show that the
problem (10), (41) also has a unique solution.

We have thus built the solution of the problem (2), (40) in the form of the
series (38). Furthermore, given the estimates (39), this solution belongs to the
class C1(Dα) ∩ C2(Dα).

From the definition of the adjoint operators L,L∗(see [12]), we have

υLu− uL∗υ = −υP (u) + uP (υ)− uυQ,

where

P (u) = g(t)
m∑
i=1

uxi cos(N⊥, xi)− ut cos(N⊥, t),

Q =
m∑
i=1

ai cos(N⊥, xi)− b cos(N⊥, t),

and N⊥ is the inner normal to the boundary ∂Dα. Using the Green’s formula,
we obtain the equality∫

Dα

(υLu− uL∗υ)dDα =

∫
∂Dα

[(
υ
∂u

∂N
− u ∂υ

∂N

)
M + uυQ

]
ds, (42)
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where
∂

∂N
= g(t)

m∑
i=1

cos(N⊥, xi)− cos(N⊥, t)
∂

∂t
,

M2 = g2(t)
m∑
i=1

cos2(N⊥, xi) + cos2(N⊥, t).

From (42), taking into account the homogeneous boundary conditions (2) and
the conditions (40), we obtain∫

Sα

ν(r, θ)u(r, θ, α)ds = 0. (43)

Note that the linear hull of the system of the functions
{
νkn(r)Y k

n,m(θ)
}

is
dense in L2(S) (see [10]). Then, from (43), we can conclude that u(r, θ, α) = 0,
∀(r, θ) ∈ Sα.

Hence, we have come to the Dirichlet problem

Lu = 0, u| S0 = 0, u| Γα = 0, u| Sα = 0,

which has the null solution (see [13]).
Thus, the uniqueness of the solution of Problem 1 is established.
This completes the proof of the theorem.
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