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Fractional Fourier Transform to Stability
Analysis of Fractional Differential Equations with
Prabhakar Derivatives
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Abstract. In this paper, the authors introduce the Prabhakar derivative associated
with the generalised Mittag-Leffler function. Some properties of the Prabhakar integrals,
Prabhakar derivatives and some of their extensions, like fractional Fourier transform of
Prabhakar integrals and fractional Fourier transform of Prabhakar derivatives are intro-
duced. This note aims to study the Mittag-Leffler-Hyers-Ulam stability of the linear
and nonlinear fractional differential equations with the Prabhakar derivative. Further-
more, we give a brief definition of the Mittag-Leffler-Hyers-Ulam problem and a method
for solving fractional differential equations using the fractional Fourier transform. We
show that the fractional differential equations are Mittag-Leffler-Hyers-Ulam stable in
the sense of Prabhakar derivatives.
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1. Introduction

Fractional calculus is a generalisation of ordinary calculus to non-integer dif-
ferentiation and integration. There have been a lot of contributions to the theory
of fractional calculus by famous mathematicians, such as Laplace, Fourier, Abel,
Leoville Letnikov, Heaviside, Weyl, Erdelyi, Go Renflo, Mainardi et al. FDEs
have recently become a very strong tool in many fields, such as physics, thermo-
dynamics, electrical circuit theory and seepage flow in porous media, etc. The
mathematicians [1, 2, 3, 4, 5] discussed FDEs and their applications up to date
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in their books. Also, there are many applications of fractional order models in
bio-mathematics and engineering. In [6, 7], the wavelet method was applied for
solving fractional order model of COVID-19. The fractional models have been
presented for malaria infection in [8, 9]. The fractional model of energy supply-
demand system and its stability analysis can be found in [10, 11].

The most significant benefit of using an FDE is its non-local property, which
means that the next state of a system depends not only on its current state but
also on all of its historical states. Despite describing differential, fractional, and
functional equations, finding exact solutions to physical and practical problems
is improbably difficult. If there are exact solutions, they are often so compli-
cated that it is not convenient to have numerical solutions. The conduct of
the analytical solutions of the fractional differential equation represented by the
fractional-order derivative operators is the fundamental principle in numerous
stability issues. Motivated by the usage of the Mittag-Leffler functions in many
areas of science and design, we present this paper.

Stanislaw Marcin Ulam introduced the HUS problem in 1940. Hyers [12]
provided a brilliant answer to Ulam’s question about the stability of functional
equations for the case of approximately additive mappings, where G1 and G2 were
assumed to be Banach spaces, in 1941. Rassias proved the HUS for the additive
Cauchy equation; later it was generalised by Aoki to additive mappings [13, 14].
Obbloza [15] was one of the first authors who investigated the HUS of differ-
ential equations. Wang [16] demonstrated the stability of FDEs with fractional
integrals and contributed some new concepts in FDE stability. Liu et al. [17],
established the HUS of linear Caupto-Fabinizio FDEs using the Laplace trans-
form method, and [18], discussed the Mittag-Leffler-Ulam stabilities of fractional
evolution equations. In 1948, Magnus Gosta Mittag-Leffler defined a new spe-
cial function for divergent series that is known as MLF. Pollard [19] derived one
parameter MLF. P. Humbert et al. [20, 21, 22] derived the main features of
MLF and generalised two-parameter MLF. Extension of MLF and the solution
of differential equations of non-integer order are discussed in [23, 24].

The three-parameter extension of MLF was introduced by Prabhakar [25] in
1971. In 2002, Saxena [26] developed Volterra operations involving the Prabhakar
function. D’Ovidio [27] provided a regularisation of the fractional derivative and
named it after [28], where the features of the Prabhakar derivatives and their ap-
plications were discussed. Beghin and Orisingher’s [29] studied the relationship
between Prabhakar and Wright functions. In [30], the stability region of frac-
tional differential systems was studied using Prabhakar derivative analyses with
Caputo and Riemann derivatives. Citation [31] discusses the Hilfiger-Prabhakar
derivatives and their applications in time delay, the time-fractional Poisson pro-
cess, and its renewal structure. See the discussion of Lyapunov type inequality
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for a hybrid fractional differential equation with Prabhakar derivative in [32].
A class of nonlinear variable order FDE’s in the Caputo-Prabhakar sense was
solved by using Bernteon polynomials in [33]. Recently, HUS of linear differential
equations using FT was discussed in [34, 35, 36, 37, 38].

We establish the fractional Fourier transform and present it in integral form.
Furthermore, using the convolution concept and properties of the fractional Fourier
transform, the solution of the Mittag-Leffler-Hyers-Ulam stability conditions con-
cerning the fractional differential equation is established. In particular, we prove
the Mittag-Leffler-Hyers-Ulam stability of the following FDEs using the FrFT:{

Dø
%,ψ,σu(e) + du(e) = q(e), e ∈ (0,Q], d ∈ R

eψ−1u(e)|e=0,{
Dø
%,ψ,σu(e) + du(e) = G(e, u(e)), e ∈ (0,Q], d ∈ R

e1−ψu(e)|e=0

and {
Dø
%,ψ,σu(e) + du(e)− q(e) = F (e), e ∈ (0,Q], d ∈ R

eψ−1u(e)|e=0,{
Dø
%,ψ,σu(e) + du(e)− G(e, u(e)) = F (e), e ∈ (0,Q], d ∈ R

e1−ψu(e)|e=0.

The paper is organised as follows: In Section 2, basic definitions, theorems, and
lemmas related to fractional derivatives, MLF, Prabhakar derivatives, and FrFT
are given. In Sections 3 and 4, Mittag-Leffler-HUS of linear and nonlinear FDEs
is proved by using the FrFT. In Sections 5 and 6, examples and conclusions are
given.

2. Preliminaries

The Fourier transform (FT) was defined by the French mathematician Joseph
Fourier. The term fraction power for the Fourier operators appeared in 1929.
FrFTs represent the generalisation of the conventional FT. Victor Nami first
introduced the FrFT in 1980, which, due to its time-frequency characteristics,
produces better results for non-stationary signals than the FT. FrFT is used in
several scientific fields, such as optics, time-frequency distribution, image process-
ing, satellite image compression, signal image recovery and noise removal, image
smoothing, encryption and decryption. V. Namias as a way to solve FrFT plays a
very important role in solving ordinary and partial equations. The analytical so-
lutions of the FDE described by the fractional-order derivative operators play the
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main role in many stability problems. Motivated by the success of the application
of the MLFs in many areas of fractional calculus, we present this paper.

In this section, we state some essential definitions and lemmas used in this
study.

Definition 1. The Riemann–Liouville derivative operator of order θ is defined
by

Dθf(e) =

{
1

Γ(n−θ)
dn

den

∫ e
a

f(Q)
(e−Q)θ+1−n , n− 1 < θ < n, n ∈ N

dn

den f(e), θ = n ∈ N,

where θ > 0,Q > a, θ, a, e ∈ R.

Definition 2. The Mittag–Leffler function can be defined in terms of a power
series as

Eθ(x) =
∞∑
k=0

xk

Γ(θk + 1)
, θ > 0, (one parameter) (1)

Eθ,τ (x) =

∞∑
k=0

xk

Γ(τ + θk)
, τ > 0, θ > 0 (two parameters). (2)

Definition 3. The generalized MLF with three-parameters was introduced by
Prabhakar (known as the Prabhakar function) as

Eø
ς,τ (z) =

∞∑
k=0

(ø)kz
k

Γ(ςk + τ)

or

Eø
ς,τ (z) =

1

Γ(ø)

∞∑
k=0

Γ(ø + k)

k!Γ(ςk + τ)
zk,

where z, ς, τ, ø ∈ C, Re(ς) > 0, Re(τ) > 0, Re(ø) > 0. Here

(ø)k = ø(ø + 1)(ø + 2)......(ø + k − 1) =
Γ(ø + k)

Γ(ø)
, (ø)0 = 1, ø 6= 0

is a Pochhammer symbol.

Definition 4. The Prabhakar integral operator and Prabhakar derivative includ-
ing the generalized MLF are defined as follows:

Eø
%,ψ,w.0+f(e) =

∫ e

0
(e− u)u−1Eø

%,ψ(w(e− u)%)f(u)du
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and

Dø
%,ψ,w.0+f(e) =

dm

dem
E−ø
%,m−ψ,w.0+f(e),

where 0 < e < b ≤ ∞; %, ψ,w, ø ∈ C, R(%), R(ψ) > 0.

Lemma 1. Let ø, %, ψ, σ ∈ C with R(ψ) > 0. Then the differentiation of the
generalized MLF is given by(

d

dx

)n [
xψ−1Eø

%,ψ (σxp)
]

= xψ−n−1Eø
%,ψ−n(σxp), for any n ∈ N.

Lemma 2. The generalized MLF

S =

∞∑
n=0

eψnEøn+ø
%,ψn+ψ(σe%), e ∈ C, w, % ∈ R

is absolutely convergent, where R(%),R(ψ) > 0.

Lemma 3. Let

C1−ψ[a,Q] =
{
u(e) ∈ C[a,Q]; e1−ψu(e) ∈ C[a,Q]

}
, 0 < ψ < 1

and
lim
e→a+

[(t− a)1−ψu(e)] = c, c ∈ C.

Then (
E−ø
%1−,ψ,σ,a+u

)
(a+) = cΓ(ψ)

holds. Also, let (
E−ø
%1−,ψ,σ,a+u

)
(a+) = χ, χ ∈ C

and lime→a+ [(t− a)1−ψu(e)]. Then

lim
e→a+

[(t− a)1−ψu(e)] =
b

Γ(ψ)
.

Definition 5. For a function u ∈ φ ∈ (R), the FrFT of the order ς(0 < ς ≤ 1), ûς
is defined as

ûς = (Fςu)(Ω) =

∫ ∞
−∞

u(e)Eς(Ω, e)de, Ω ∈ R,

where

Eς(Ω, e) =

e−i|Ω|
1
ς e, Ω ≤ 0

ei|Ω|
1
ς e, Ω ≥ 0.
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If ς = 1, the kernel Eς is defined by the kernel of the conventional FT

E1(Ω, e) =

{
e−i|Ω|e, Ω ≤ 0

ei|Ω|e, Ω ≥ 0,
= eiΩt, Ω, e ∈ R.

This means that the FrFT of the order 1 is a conventional FT .

Definition 6. Let f, g ∈ R → F be continuous and f∗.g∗ be piece-wise continu-
ous. If F (f(x)) = F (g(x)), then f(x) = g(x) for every x.

Definition 7. The FrFT of the convolution of f(x) and g(x) is a product of the
FrFT of f(x) and g(x). Let k, u ∈ φ(R) and ς > 0. Then for any Ω ∈ R,

(Fς(k ∗ u)(Ω)) = (Fςk)(Ω)(Fςu).

In particular

(F(k ∗ u))(Ω) = (Fk)(Ω)(Fu)(Ω), (Ω ∈ R).

The convolution in the time domain is equivalent to the multiplication in the
frequency domain.

Remark 1. Let τ ∈ C,R(τ) > 0,Q > 0. Then

Fς(eτ ) =
Γ(τ + 1)(
−iΩ1/ς

)τ+1 .

Theorem 1. Let ø, τC,R(ø) > 0,R(τ) > 0, σ ∈ R. Then

Fς
(
eøm+τ−1E(m)

ø.τ (σeø)
)

=

(
−iΩ1/ς

)ø−τ
m![(

−iΩ1/ς
)ø − σ]m+1

holds.

Lemma 4. The FrFT of Prabhakar integral is given by

Fς

[
Eø
%,ψ,σ.0+f(e)

]
=
(
−iΩ1/ς

)−ψ [
1− σ(−iΩ1/ς)−øFς(−iΩ1/ς)

]
.

Proof. We know that the Prabhakar integral operator including the general-
ized MLF is

Eø
%,ψ,σ.0+f(e) =

∫ e

0
(e− u)u−1Eø

%,ψ(σ(e− u)%)f(u)du, e > 0.
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Taking FrFT on both sides, we have

Fς

[
Eø
%,ψ,σ.0+f(e)

]
= Fς

[∫ e

0
(e− u)ψ−1Eø

%,ψ[σ(e− u)%]f(u)du

]
= Fς

[
eψ−1Eø

%,ψ(σe%)
]
Fς [f(e)]

= Fς

[
eψ−1

∞∑
k=0

(øk)

k!

(σe%)k

Γ(%k + ψ)

]
Fς [f(e)]

=

∞∑
k=0

(øk)

k!
σk
Fς [e

ψ+%k−1]

Γ(%k + ψ)
Fς [f(e)]

=

∞∑
k=0

(øk)

k!

σk

Γ(%k + ψ)

Γ(%k + ψ)(
−iΩ

1
ς

)%k+ψ
Fς [f(e)]

=
∞∑
k=0

(øk)

k!
σk
(
−iΩ

1
ς

)−%k (
−iΩ

1
ς

)−ψ
Fς [f(e)]

=
(
−iΩ

1
ς

)−ψ [ ∞∑
k=0

(øk)

k!
σk
(
−iΩ

1
ς

)−%k]
Fς [f(e)].

Expanding the summation, we have

Fς

[
Eø
%,ψ,σ.0+f(e)

]
=
(
−iΩ

1
ς

)−ψ [
1− σ

(
−iΩ

1
ς

)−%]−ø

Fς [f(e)].

J

Lemma 5. The FrFT of Prabhakar derivative has the form

Fς

[
Dø
%,ψ,σ.0+f(e)

]
=
(
−iΩ

1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

Fς [f(e)], m− 1 ≤ ψ ≤ m.

Proof. We know that, the Prabhakar derivative is

Dø
%,ψ,σ.0+f(e) =

dm

dem
E−ø
%,m−ψ,σ.0+f(e).

Taking FrFT on both sides, we have

Fς

[
Dø
%,ψ,σ.0+f(e)

]
= Fς

[
dm

dem
E−ø
%,m−ψ,σ.0+f(e)

]
= Fς

[
dm

dem

∫ e

0
(e− u)m−ψ−1E−ø

%,m−ψ,σ.0+σ(e− ψ)%f(u)du

]
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= Fς

[
em−ψ−1−mE−ø

%,m−ψ−m.,0+σe
%
]
Fς [f(u)]

= Fς

[
eψ−1E−ø

%,−ψσe
%
]
Fς [f(u)]

= Fς

[
e−ψ−1

∞∑
k=0

(−ø)k
k!

(σe%)k

Γ(%k + ψ)

]
Fς [f(e)]

=

∞∑
k=0

(−ø)k
k!

σk
Fς [e

−ψ+%k−1]

Γ(%k + (−ψ))
Fς [f(e)]

=

∞∑
k=0

(−ø)k
k!

σk

Γ(%k + (−ψ))

Γ(%k + (−ψ))(
−iΩ

1
ς

)%k−ψ Fς [f(e)]

=
∞∑
k=0

(−ø)k
k!

σk
(
−iΩ

1
ς

)−%k (
−iΩ

1
ς

)ψ
Fς [f(e)]

=
(
−iΩ

1
ς

)ψ [ ∞∑
k=0

(−ø)k
k!

σk
(
−iΩ

1
ς

)−%k]
Fς [f(e)].

Expanding the summation, we have

Fς

[
Dø
%,ψ,σ.0+f(e)

]
=
(
−iΩ

1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

Fς [f(e)].

J

3. Mittag-Leffler-Hyers–Ulam Stability of fractional differential
equations using fractional Fourier transform

In this section, we are going to prove Mittag-Leffler HUS for linear and non-
linear FDEs {

Dø
%,ψ,σu(e) + du(e) = q(e), e ∈ (0,Q], d ∈ R

eψ−1u(e)|e=0,{
Dø
%,ψ,σu(e) + du(e) = G(t, u(e)), e ∈ (0,Q], d ∈ R

e1−ψu(e)|e=0

with Prabhakar derivatives using FrFT.
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3.1. Stability of linear FDE Dø
%,ψ,σu(e)+du(e) = q(e), e ∈ (0,Q], d ∈ R

and eψ−1u(e)|e=0

Definition 8. The FDE

ϕ
{
q(e), u(e),Dø1

%1,ψ1,σ
u, ...,Døn

%n,ψn,σ.0+u
}

= 0, øi ≥ 0, i = 1 to n

has HUS if∣∣∣ϕ{q(e), u(e),Dø1
%1,ψ1,σ

u, ...,Døn
%n,ψn,σ.0+u

}∣∣∣ ≤ ε, for any ε > 0.

Then there exists a solution ua of the FDE such that

|u(e)− ua(e)| ≤ K(ε)

and
limε→0K(ε) = 0.

Theorem 2. Let u(e) ∈ C1−ψ[0,Q] and u(e) satisfy

|Dø1
%,ψ,wu+ du(e)− q(e)| ≤ ε, 0 < ψ < 1, d ∈ R. (3)

Then there exists a solution ua(e) : (0,Q]→ C of FDE

Dø1
%,ψ,wu+ du(e) = q(e) (4)

such that

|u(e)− ua(e)| ≤
εeψ

|d|

∞∑
n=0

eψnEøn+ø
%,ψn+ψ+1(|σ|e%)
|d|n

,

where Eøn+ø
%,ψn+ψ+1(|σ|e%) is the generalized MLF.

Proof. For all e ∈ (0,Q], we consider

y(e) = Dø1
%,ψ,wu+ du(e)− q(e).

Taking FrFT on both sides, we get

Fς [y(e)] = Fς [Dø1
%,ψ,wu] + Fς [du(e)]− Fς [q(e)]

=
(
−iΩ

1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

Fς [u(e)]

−
(
E−ø
%,1−u,σ,0+u

)
(0) + dFς [u(e)]− Fς [q(e)].
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By using Lemma 3 and considering b = du0Γ(ψ) and c = b
dΓ(ψ) , we get

Fς [y(e)] =
(
−iΩ

1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

Fς [u(e)]− du0Γ(u) + dFς [u(e)]− Fς [q(e)]

Fς [y(e)] =

{(
−iΩ

1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

+ d

}
Fς [u(e)]− du0Γ(u)− Fς [q(e)]

Fς [u(e)] =
Fς [y(e)]{(

−iΩ
1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

+ d

} (5)

+
du0Γ(u) + Fς [q(e)]{(

−iΩ
1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

+ d

} .

At this point, by setting

ua(e) =
du0Γ(u)

∑∞
n=0

(−1
d

)n
eψn+ψ−1Eøn+ø

%,ψn+ψ(σe%)

d

+

∑∞
n=0

(−1
d

)n ∫ e
0 q(x)(e− x)ψn+ψ−1Eøn+ø

%,ψn+ψ(σ(e− x)%)dx

d
, (6)

we have

e1−ψua(e) =
du0Γ(u)

∑∞
n=0

(−1
d

)n
eψnEøn+ø

%,ψn+ψ(σe%)

d

+
e1−ψ∑∞

n=0

(−1
d

)n ∫ e
0 q(x)(e− x)ψn+ψ−1Eøn+ø

%,ψn+ψ(σ(e− x)%)dx

d
.

This implies that ua(e) satisfies

e1−ψua(e)|e=0.

Now, applying FrFT and using the convolution property, we have

Fς [ua(e)] = Fς

[
du0Γ(u)

∑∞
n=0

(−1
d

)n
eψn+ψ−1Eøn+ø

%,ψn+ψ(σe%)

d

]

+ Fς

[∑∞
n=0

(−1
d

)n ∫ e
0 q(x)(e− x)ψn+ψ−1Eøn+ø

%,ψn+ψ(σ(e− x)%)dx

d

]
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=
du0Γ(u)

∑∞
n=0

(−1
d

)n
d

Fς

[
eψn+ψ−1Eøn+ø

%,ψn+ψ(σe%)
]

+

∑∞
n=0

(−1
d

)n
d

Fς

[∫ e

0
q(x)(e− x)ψn+ψ−1Eøn+ø

%,ψn+ψ(σ(e− x)%)dx

]
=
du0Γ(u)

∑∞
n=0

(−1
d

)n
d

Fς

[
eψn+ψ−1Eøn+ø

%,ψn+ψ(σe%)
]

+

∑∞
n=0

(−1
d

)n
d

Fς

[
eψn+ψ−1Eøn+ø

%,ψn+ψ(σe%)
]
Fς [q(e)]

= du0Γ(u) + Fς [q(e)]

∑∞n=0

(−1
d

)n
Fς

[
eψn+ψ−1Eøn+ø

%,ψn+ψ(σe%)
]

d


= du0Γ(u) + Fς [q(e)]


∑∞

n=0

(−1
d

)n (−iΩ 1
ς

)%(øn+ø)−(ψn+ψ)

[(
−iΩ

1
ς

)%
− σ

]øn+ø



= du0Γ(u) + Fς [q(e)]


∑∞

n=0

(−1
d

)n (−iΩ 1
ς

)%(øn+ø)−(ψn+ψ)

(
−iΩ

1
ς

)% [
1− σ

(
−iΩ

1
ς

)−%]øn+ø

 .

Expanding the summation, we get

Fς [ua(e)] =
du0Γ(u) + Fς [q(e)]{(

−iΩ
1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

+ d

} . (7)

Taking (7) into account, we deduce that ua(e) is a solution of (4).
By subtracting (5) and (7) from each other, we have

Fς [u(e)] + Fς [ua(e)] =
Fς [y(e)] + du0Γ(u) + Fς [q(e)]− [du0Γ(u) + Fς [q(e)]]{(

−iΩ
1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

+ d

}
Fς [u(e)] + Fς [ua(e)] =

Fς [y(e)]{(
−iΩ

1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

+ d

} . (8)
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By Lemma 4, the LHS of (8) implies

Fς

[∑∞
n=0

(−1
d

)n
eψnEøn+ø

%,ψn+ψ(σe%)

d
∗ y(e)

]

= Fς

[∑∞
n=0

(−1
d

)n
eψnEøn+ø

%,ψn+ψ(σe%)

d

]
Fς [y(e)]

=
Fς [y(e)]{(

−iΩ
1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

+ d

} .
Hence, (8) can be written as

Fς [u(e)] + Fς [ua(e)] = Fς

[∑∞
n=0

(−1
d

)n
eψnEøn+ø

%,ψn+ψ(σe%)

d
∗ y(e)

]
.

Finally, (3) implies

|u(e) + ua(e)| =

∣∣∣∣∣
∑∞

n=0

(−1
d

)n
eψnEøn+ø

%,ψn+ψ(σe%)

d
∗ y(e)

∣∣∣∣∣
=
εeψ

|d|

∞∑
n=0

eψnEøn+ø
%,ψn+ψ+1(|σ|e%)
|d|n

,

where Eøn+ø
%,ψn+ψ(σe%) is the generalized MLF.

By the definition of the HUS theorem, the FDE (3) has Mittag-Leffler-Hyers–Ulam
Stability. J

3.2. Stability of Non-linear FDE Dø
%,ψ,σu(e) + du(e) = G(t, u(e)), e ∈

(0,Q], d ∈ R and e1−ψu(e)|e=0

Definition 9. For G : [0,Q]× R→ R, the FDE

ϕ
{
G(t, u(e)), u(e),Dø1

%1,ψ1,σ
u, ...,Døn

%n,ψn,σ.0+u
}

= 0, øi ≥ 0, i = 1 to n

has HUS if∣∣∣ϕ{G(t, u(e)), u(e),Dø1
%1,ψ1,σ

u, ...,Døn
%n,ψn,σ.0+u

}∣∣∣ ≤ ε, for anyε > 0.
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Then there exists a solution ua of the FDE such that

|u(e)− ua(e)| ≤ K(ε)

and
limε→0K(ε) = 0.

Theorem 3. Let G : [0,Q]× R→ R, u(e) ∈ C1−ψ[0,Q] and u(e) satisfy

|Dø
%,ψ,wu+ du(e)− G(t, u(e))| ≤ ε, 0 < ψ < 1, d ∈ R.

Then there exists a solution ua(e) : (0,Q]→ C of FDE such that

Dø
%,ψ,wu+ du(e) = G(t, u(e))

and

|u(e)− ua(e)| ≤
εeψ

|d|

∞∑
n=0

eψnEøn+ø
%,ψn+ψ+1(|σ|e%)
|d|n

,

where Eøn+ø
%,ψn+ψ+1(|σ|e%) is the generalized MLF.

Proof. The proof is similar to that of Theorem 2. J

4. Mittag-Leffler-Hyers-Ulam stability of fractional differential
equations

In this section, we are going to prove Mittag-Leffler-HUS for linear and non-
linear FDEs{

Dø
%,ψ,σu(e) + du(e)− q(e) = F (e), e ∈ (0,Q], d ∈ R

eψ−1u(e)|e=0,{
Dø
%,ψ,σu(e) + du(e)− G(t, u(e)) = F (e), e ∈ (0,Q], d ∈ R

e1−ψu(e)|e=0

with Prabhakar derivatives using FrFT.

4.1. Stability of linear FDE Dø
%,ψ,σu(e) + du(e) − q(e) = F (e), e ∈

(0,Q], d ∈ R and eψ−1u(e)|e=0

Theorem 4. If a function u(e) satisfies

|Dø1
%,ψ,wu+ du(e)− q(e)| ≤ F (e), 0 < ψ < 1, d ∈ R, ∀ e ∈ C1−ψ[0,Q], F (e) > 0,

(9)
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then there exists a solution ua(e) : (0,Q]→ C of FDE such that

Dø1
%,ψ,wu+ du(e)− q(e) = F (e) (10)

and

|u(e)− ua(e)| ≤
F (e)

|d|

∞∑
n=0

eψnEøn+ø
%,ψn+ψ+1(|σ|e%)
|d|n

.

Proof. Consider

y(e) = Dø1
%,ψ,wu+ du(e)− q(e)− F (e), e ∈ (0,Q].

Taking FrFT on both sides, we get

Fς [y(e)] = Fς [Dø1
%,ψ,wu] + Fς [du(e)]− Fς [q(e)]− Fς [F (e)]

=
(
−iΩ

1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

Fς [u(e)]

−
(
E−ø
%,1−u,σ,0+u

)
(0) + dFς [u(e)]− Fς [q(e)]− Fς [F (e)].

By using Lemma 3 and considering b = du0Γ(ψ) and c = b
dΓ(ψ) t, we get

Fς [y(e)] =
(
−iΩ

1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

Fς [u(e)]

− du0Γ(u) + dFς [u(e)]− Fς [q(e)]− Fς [F (e)]

Fς [y(e)] =

{(
−iΩ

1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

+ d

}
Fς [u(e)]

− du0Γ(u)− Fς [q(e)]− Fς [F (e)]

Fς [u(e)] =
Fς [y(e)]{(

−iΩ
1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

+ d

}
+

du0Γ(u) + Fς [q(e)] + Fς [F (e)]{(
−iΩ

1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

+ d

} . (11)

Let ua(e) be the solution of FDE. Then

C1−ψ[a,Q] =
{
u(e) ∈ C[a,Q]; e1−ψua(e) ∈ C[a,Q]

}
, 0 < ψ < 1
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and

lim
e→a+

[(t− a)1−ψua(e)] = c, c ∈ C.

Consequently (
E−ø
%1−,ψ,σ,a+u

)
(a+) = cΓ(ψ)

holds. Therefore,

ua(e) =
du0Γ(u)

∑∞
n=0

(−1
d

)n
eψn+ψ−1Eøn+ø

%,ψn+ψ(σe%)

d

+

∑∞
n=0

(−1
d

)n ∫ e
0 q(x)(e− x)ψn+ψ−1Eøn+ø

%,ψn+ψ(σ(e− x)%)dx

d

+

∑∞
n=0

(−1
d

)n ∫ e
0 F (x)(e− x)ψn+ψ−1Eøn+ø

%,ψn+ψ(σ(e− x)%)dx

d
. (12)

We have

e1−ψua(e) =
du0Γ(u)

∑∞
n=0

(−1
d

)n
eψnEøn+ø

%,ψn+ψ(σe%)

d

+
e1−ψ∑∞

n=0

(−1
d

)n ∫ e
0 q(x)(e− x)ψn+ψ−1Eøn+ø

%,ψn+ψ(σ(e− x)%)dx

d

+
e1−ψ∑∞

n=0

(−1
d

)n ∫ e
0 F (x)(e− x)ψn+ψ−1Eøn+ø

%,ψn+ψ(σ(e− x)%)dx

d
.

This implies that ua(e) satisfies e1−ψua(e)|e=0.

Now, applying FrFT and using the convolution property, we have

Fς [ua(e)] = Fς

[
du0Γ(u)

∑∞
n=0

(−1
d

)n
eψn+ψ−1Eøn+ø

%,ψn+ψ(σe%)

d

]

+ Fς

[∑∞
n=0

(−1
d

)n ∫ e
0 q(x)(e− x)ψn+ψ−1Eøn+ø

%,ψn+ψ(σ(e− x)%)dx

d

]

+ Fς

[∑∞
n=0

(−1
d

)n ∫ e
0 F (x)(e− x)ψn+ψ−1Eøn+ø

%,ψn+ψ(σ(e− x)%)dx

d

]

=
du0Γ(u)

∑∞
n=0

(−1
d

)n
d

Fς

[
eψn+ψ−1Eøn+ø

%,ψn+ψ(σe%)
]

+

∑∞
n=0

(−1
d

)n
d

Fς

[∫ e

0
q(x)(e− x)ψn+ψ−1Eøn+ø

%,ψn+ψ(σ(e− x)%)dx

]
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+

∑∞
n=0

(−1
d

)n
d

Fς

[∫ e

0
F (x)(e− x)ψn+ψ−1Eøn+ø

%,ψn+ψ(σ(e− x)%)dx

]
=
du0Γ(u)

∑∞
n=0

(−1
d

)n
d

Fς

[
eψn+ψ−1Eøn+ø

%,ψn+ψ(σe%)
]

+

∑∞
n=0

(−1
d

)n
d

Fς

[
eψn+ψ−1Eøn+ø

%,ψn+ψ(σe%)
]
Fς [q(e)]

+

∑∞
n=0

(−1
d

)n
d

Fς

[
eψn+ψ−1Eøn+ø

%,ψn+ψ(σe%)
]
Fς [F (e)]

Fς [ua(e)] =

= {du0Γ(u) + Fς [q(e)] + Fς [F (e)]}

∑∞n=0

(−1
d

)n
Fς

[
eψn+ψ−1Eøn+ø

%,ψn+ψ(σe%)
]

d



= {du0Γ(u) + Fς [q(e)] + Fς [F (e)]}


∑∞

n=0

(−1
d

)n (−iΩ 1
ς

)%(øn+ø)−(ψn+ψ)

[(
−iΩ

1
ς

)%
− σ

]øn+ø



= {du0Γ(u) + Fς [q(e)] + Fς [F (e)]}


∑∞

n=0

(−1
d

)n (−iΩ 1
ς

)%(øn+ø)−(ψn+ψ)

(
−iΩ

1
ς

)% [
1− σ

(
−iΩ

1
ς

)−%]øn+ø

 .
Expanding the summation, we get

Fς [ua(e)] =
du0Γ(u) + Fς [q(e)] + Fς [F (e)]{(
−iΩ

1
ς

)ψ {
1− σ

(
−iΩ

1
ς

)−%}ø

+ d

} . (13)

Taking (13) into account, we deduce that ua(e) is a solution of (10).

Subtracting (11) and (13) from each other, we get

Fς [u(e)] + Fς [ua(e)] =

Fς [y(e)] + du0Γ(u) + Fς [q(e)] + Fς [F (e)]− [du0Γ(u) + Fς [q(e)] + Fς [F (e)]]{(
−iΩ

1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

+ d

}
(14)
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Fς [u(e)] + Fς [ua(e)] =
Fς [y(e)]{(

−iΩ
1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

+ d

} .

By Lemma 4, the RHS of (14) implies

Fς

[∑∞
n=0

(−1
d

)n
eψnEøn+ø

%,ψn+ψ(σe%)

d
∗ y(e)

]

= Fς

[∑∞
n=0

(−1
d

)n
eψnEøn+ø

%,ψn+ψ(σe%)

d

]
Fς [y(e)]

=
Fς [y(e)]{(

−iΩ
1
ς

)ψ [
1− σ

(
−iΩ

1
ς

)−%]ø

+ d

} .
Hence, (14) can be written as

Fς [u(e)] + Fς [ua(e)] = Fς

[∑∞
n=0

(−1
d

)n
eψnEøn+ø

%,ψn+ψ(σe%)

d
∗ y(e)

]
.

Finally, from (9) we get

|u(e) + ua(e)| =

∣∣∣∣∣
∑∞

n=0

(−1
d

)n
eψnEøn+ø

%,ψn+ψ(σe%)

d
∗ y(e)

∣∣∣∣∣
=
F (e)eψ

|d|

∞∑
n=0

eψnEøn+ø
%,ψn+ψ+1(|σ|e%)
|d|n

,

where Eøn+ø
%,ψn+ψ(σe%) is the generalized MLF.

By the definition of the HUS theorem, the FDE (3) has Mittag-Leffler-Hyers–Ulam
Stability. J

4.2. Stability of Non-linear FDE Dø
%,ψ,σu(e) + du(e) − G(t, u(e)) =

F (e), e ∈ (0,Q], d ∈ R and eψ−1u(e)|e=0

Theorem 5. Let G : [0,Q]× R→ R, u(e) ∈ C1−ψ[0,Q] and u(e) satisfy

|Dø1
%,ψ,wu+ du(e)− G(t, u(e))| ≤ F (e), 0 < ψ < 1, d ∈ R. (15)
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Then there exists a solution ua(e) : (0,Q]→ C of FDE such that

Dø1
%,ψ,wu+ du(e)− G(t, u(e)) = F (e) (16)

and

|u(e)− ua(e)| ≤
F (e)eψ

|d|

∞∑
n=0

eψnEøn+ø
%,ψn+ψ+1(|σ|e%)
|d|n

.

Proof. The proof is similar to that of Theorem 4. J

5. Example

Let us consider the FDE

D1
1, 1

2
,1
u(e) + 6u(e) =

5
√
et

2
+ 6e

1
2 +

1

16
, (17)

where ψ = 1, % = 1, δ = 1 and q(e) = 5
√
et

2 + 6e
1
2 + 1

16 .
For ε = 1

8 , the function u(e) satisfies∣∣∣∣∣D1
1, 1

2
,1
u(e) + 6u(e)− 5

√
et

2
+ 6e

1
2 +

1

16

∣∣∣∣∣ ≤ 1

8

and the initial condition is e1/2u(e)|e=0. The exact solution of (17) is

uς(e) =
1

6

∞∑
n=0

(
−1

7

)n ∫ e

0

(
5
√
et

2
+ 6e

1
2 +

1

16

)
(e− x)

1
2
n− 1

2En+1
1, 1

2
n+ 3

2

(e− x)dx

and the approximate solution u1(e) is

|u1(e)− uς(e)| <
εe

1
2

|d|

∞∑
n=0

e
1
2
nEn+1

1, 1
2
n+ 3

2

(e)

|6|n
.

So

e
1
2

48

∞∑
n=0

e
1
2
nEn+1

1, 1
2
n+ 3

2

(e)

|6|n

is the control function of u1(e).
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6. Conclusion

In this paper, we investigate Prabhakar derivatives in the sense of fractional
calculus to find their generalized transforms. These derivatives are further gen-
eralization of fractional derivatives and effectively applicable for various appli-
cations like Cauchy problems, heat transfer problem. In order to explain the
obtained results, some examples were given. Also, we introduced some stan-
dard approaches to the definition of Prabhakar derivatives, fractional differential
equations, the Riemann-Liouville fractional differential operator, and the Mittag-
Leffler function and studied their basic properties. In particular, we formulate
the theorem describing the structure of the Mittag-Leffler-Hyers-Ulam problem
for linear and nonlinear fractional differential equations associated with the Prab-
hakar derivatives and derive the Prabhakar derivative step response functions of
those generalised systems. We discussed the basic properties of derivatives, in-
cluding the rules for their properties and the conditions for the equivalence of vari-
ous definitions. Finally, we proved the standard approaches to the Mittag-Leffler-
Hyers-Ulam problem of the linear and nonlinear fractional differential equations
with Prabhakar derivatives using a fractional Fourier transform.
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