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On a Boundary Value Problem For a Fifth Order
Partial Integro-Differential Equation

T K. Yuldashev

Abstract. The problems of the unique classical solvability and the construction of the
solution of a multidimensional boundary value problem for a homogeneous fifth order
partial integro-differential equations with a degenerate kernel are studied. The multidi-
mensional Fourier series method, based on the separation of many variables, is used. A
system of countable systems of integral equations is derived. Iteration process of solv-
ing the problem is constructed. Sufficient coefficient conditions for the unique classical
solvability of the boundary value problem are established.
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1. Formulation of the problem

The theory of boundary value problems is currently one of the most important
directions of the theory of higher order partial differential equations. A large num-
ber of research works are dedicated to the study of this theory (see, in particular,
[1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14]). Many problems of gas dynamics, theory
of elasticity, theory of plates and shells are described by high-order partial differ-
ential equations. When the boundary of the flow domain of a physical process is
unavailable for measurements, nonlocal conditions in integral form can serve as
an information sufficient for the unique solvability of the problem [15]. Therefore,
in recent years, the study of nonlocal boundary value problems for differential
and integro-differential equations with integral conditions has been intensified
(see, for example, [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]).

In this paper, we study the regular solvability of a boundary value problem for
a fifth order integro-differential equation with an integral conditions, parameter
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and reflective time-argument. This paper is a further development of the works
[31, 32, 33]. In studying one-valued solvability and constructing solutions, the
presence of spectral parameter plays an important role.

In multi-dimensional domain €} = { —T <t<T0<xT,.c,Tyy < l}, a
partial integro-differential equation of the following form is considered

m T

Upilt, o)+ [wl(t) Ut t i (£, 1) — wo(t) / Us, 2, 2,2, (—0, )0

i=1 -7

T m
—V/K(t,s)ZUtwimei(s,x)ds, (1)
I i=1

where T and [ are the given positive real numbers, v is a nonzero real param-

k
eter, 0 < w;i(t) € C[-T;T)], i = 1,2, x € R™, 0 # K(t,s) = > a;(t)bi(s),

i=1
a;(t), bi(s) € C [=T;T). It is supposed that the system of functions a;(t), i =1, k
and the system of functions b;(s), i = 1, k are linearly independent.
Problem. Find in the domain 2 a function from the class
U(t,z) € C(Q)NCr(Q) NCE2ENT - 10(0)

t,x1,x2,...,Tm

ﬂC2+0+2+0+ B +0(Q) n...N 02+0+ .. F+0+2 (Q)

t,x1,2,23,...,T t,x1,...,Tm—1,Tm
1+440+... 40 1+04+44+0+...40 1+0+...+0+4
mctwhm,---,wm(Q) N Ct7a:1,m27w37 ---,xm(Q> n...n Ct,fch---,xmfl,xm(g)’ (2)

satisfying the integro-differential equation (1) and the following boundary condi-
tions

U(0,z) =¢(z), 0<z <], (3)
U(t,O,xg,:cg, cey ) = U, Lz, 23, .. xm)

:U(t,xl,O,xg, cee xm) = U(t,xl,l,xg, ce xm) = ...

=U(t,z1, ..., Tp—1,0) = U(t, 21, ..., Tm1,1)
=Upa, (6,0, 22,23, ..., Trm) = Upya, (6,1, 22,23, ..., T)
= Upya, (6,21,0,23,. .., Tim) = Upyo, (21, L @3, ooy @) = - .
=Upioy (6,21, .o, @1,0) = Upyay (21, -0y @1, 1) = - -
= Usppam (t:0,22,23, ..., m) = Uppa, (81,2, 23, ..., Ty)
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=Ug2m (t,xl,O,xg, e :cm) =Uszm (t,ﬂzl,l,xg, cey xm) = ...
= Uxmxm (tuxlv ey .’Em_l,O) = Uxma:m (t,fEl, ooy Tm—1, l) = 07 (5)
where ¥(x), p(x) are the given sufficiently smooth functions in the domain Q}" =
{0 <21, ..., &y, <1}, C"(Q) is the class of functions U(t,ajl, cel ZL‘m), possess-
ing the derivatives 2°Y 92U 9°U in Q, C;3(Q) is the class of functions
g Jtr> dar> o dal, v Mo
U(t,xl, ey xm), possessing the continuous derivatives %T—g, g%, ey g;gn in Q,
C; if';g+;r2 () is the class of functions U (t, T1, ..., xm), possessing the con-
: ot 9?rU - r+0+...+0+r ; :
tinuous derivative draL; N Q, .y G T 4, () ds the class of functions
. ) o 2rpy
U (t,xl, ce l‘m), possessing the continuous derivative E)ng;n in Q, r,s are ar-

bitrary natural numbers, ) = {-T<t<T, 0<xi,.c,xm <Il}.

2. Formal solution of the problem

Taking into account the Dirichlet conditions (5), the nontrivial solutions of
the problem (1)—(5) are sought as a following Fourier sine series

U(t,z) = Z Uny, . (8) Oy, (), (6)

where

QF =10, ny, .., nm=1,2, ...
We also suppose that the following functions can be expanded into Fourier series

o0

p(z) = Z i, mm g, (T), (8)

Niy...,Nm=1

(e 9]

T;Z)(:E): Z @Z}nh“.,nm ﬂnl,...,nm(l')y (9)

Niy...,Nm=1
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where
Pnreeans = [ 90) Do) d, (10)
am
¢n1,,..,nm: /¢($)ﬁn1,,nm(x)dx (11)
Qr

Substituting Fourier series (6) into partial integro-differential equation (1), we
obtain the countable system of ordinary integro-differential equations of second

order
T

uxl,...,nm@)—Ail,.._,nm@)/um,...,nm<—e>d9
=T

T

—uX2 () / S i) bi(s) s () ds, (12)
I i=1

O - .

where A2 L (t) = 1:11(;;#1%’1 ’’’’’ S g =T n?+ ... +n2, Using
the notation .

Tim,.... o = / bi(s) o (s)ds, (13)
-7

the countable system (12) can be rewritten as

ugl’“'vnm(t) = V)\ilvynm(t)zaz(t) Tiynlw-'vnm

=1
T
+)‘311,-..,nm(t)/unl,...,nm(—e) de. (14)
=T

The second order countable system of integro-differential equations (14) is
solved by the method of variation of arbitrary constants

un1,~-~7nm(t) = Al,n1,~~~7nmt+A2,n1,~.~,nm +77n1,~~~,nm(t)’ (15)

where we have used the following notations:

k T
nnl,...,nm(t) =V ZTi,nl,...,nm hi,nl,...,nm(t)+5n1,...,nm(t) /Unl,...,nm(_a) do,
i=1 _T
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¢
Ring,. .. o0 (t) = /(t —8) Ay, (8) ai(s)ds, i=1,k,
0

t
6m,...,nm<t>=/<t—s>Am,...,nm<s>ds.
0

By virtue of the Fourier coefficients (7), (10) and (11), the conditions (3) and (4)
take the forms

= /¢(x> Uny,. .., 1 () dx = Vny, .. - (17)
o
To find the unknown Fourier coefficients Aj ... n,, and Az, .. n,, in (15), we

use the boundary value conditions (16) and (17). Applying (16) to representation
(15), we find

A2,n1,...,nm =Pn1,....,0m" (18)
After differentiating (15) once, by condition (17) we have

uil,l,...,nm(t) - A17n17"'7nm+

k T
+v Tini,...,nm h'/in (D) +5;1 @) [ Uuny o, (—0) dO, (19)
’ ) ) 311y s 'tm, 1, s m ) )
i=1 -7

where
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By virtue of condition (17), from (19) we obtain

Al,nl,‘..,nm = Tz)nl,...,nm

k T
_VZTi,nly---7nm hg’nh”.’nm(T)—57/117”.’nm(T)/un17.._7nm(—0) da (20)
i=1 T

Substituting the determined Fourier coefficients (18) and (20) into presentation
(15), we find
Uny, . () = Py, T Vo, EF

k T
0> Timns o Migr, (1) +Nm,...,nm<t>/um,...,nm<—0> ab,  (21)
i=1 T

where
Mi7n17~~~:nm(t) = hi,nl,...,nm(t) —t- h;,nl,.A.,nm(T)7
=4

an’”wnm(t) n17~~~7nm(t> —1 '5g,n1,...,nm(T)7

t
S - /(t—s> Mo () ai(s)ds, i=T,F,
0

t

0

After differentiating (21) once, we have

U{nl,...,nm(t) = ¢n1,...,nm+

-----

Mi/,n1,...,nm(t) = h; ni Nom, (t) - h;,nl,...,nm(T)v
N/ ,...,nm(t):é, 7nm(t)_(s/ (T)’

,N1, .- Mm

Ani, ... nm(8)ds.

>
=
3
=
3
3
—
~
N—
I
o —
S
3
=
3
3
—
»
N—
)
S
—~
V)
N—
QL
\'CIJ
[e%)
: ~
=
3
3
—
~
N—
I
o —
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Substituting the derivative (22) into (13), we obtain the system of algebraic
equations (SAE)

k
Ting, ..., nm +v E :Ti>n17-~~:nm Hiijnlv--wnm
Jj=1

where .
Higonoeoo = [ 006) M, ()1,
“r
T T
Diing, .. = /bi(s)ds, D2imng, .. = /bz‘(S)Nfu,...,nm(S)ds-
-T -T

We recall that the systems of functions a;(t), i = 1, k and b;(s), i = 1, k
are linearly independent. Hence it follows that H; j,,... n, # 0. The SAE (23)
is uniquely solvable for every bounded right-hand side of SAE, if the following
Fredholm condition is fulfilled

1+vHiq v Hio vHi
A(V): v Hyq 1+vHyy ... v Hyyp %0 (24)
v Hpq v Ho ... 14+ vHg

The values of the parameter v, at which the condition (24) is satisfied, are called
regular. On the set of regular values of the parameter v, the solutions of the SAE
(23) can be written as

T
. Al,i(l/) Az,i(y)
Timng,...,nm —wnl,u.,nm A(I/) + A(I/) /unl,.

o (—0) O, (25)

where

1+I/H11 VHl(i—l) @ml Z/Hl(i"rl) VHlk;
Ay =| VHr e vHyany Pme vy e v Hag

v Hiq VHk(ifl) D,k VHk(iJrl) coo 1+ v Hpgyg
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i=1,k m=1,2.
Substituting the solutions (25) into representation (21), we obtain the count-

able system of integral equations (CSIE)

Unl,...,nm(t) = Pny,...,nm

T
+ny, . Vnh---,nm(t) + Wm,---,nm(t) /Um,---,nm(_e) do, (26)
r

where

S AL(Y)
an,...,nm(t):t+yz Alizl/) Mi,nl,...,nm(t)a

~ Ai(0)
2,1
th’nm(t):N(t)—‘—VZ A(l/) M’L7n17)nm(t)7
=1

Ony. ..o a0d Py, are Fourier coefficients in series (8), (9), and are deter-
mined from (10), (11), respectively.

Now, to obtain an expansion of the formal solution to the problem (1)—(5),
we substitute the representation (26) into the Fourier series (6):

U(t,a:) = Z 19711,...7nm(x)

X 90n17---7nm + @Z)nl,...,nm an’mynm (t) + Wn1,...,nm (t)

|
SS~—
e
3
5
3
\
=
Q
I
_
—
)
-

One-valued solvability of CSIE (26)

We consider the concepts of the following well-known Banach spaces: the
o

space Ba(T') of sequences of continuous functions {un,,... n,(t)},  , _ on
the segment [—T';T] with norm
e 2
le® sy = X (2, T @)]) <o
Niy...,Nm=1
the Hilbert coordinate space ¢ of number sequences {¢n,. .. n,. }Z‘i T with

norm

o

2
||30”£2: Z | Pny, .. | ” < 005

Niy...,Nm=1
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the space Lo (£]") of square-summable functions on the domain Q] = [0;{]™ with

norm

1962) g0y =

Assume that for the smooth functions V,,, ... n..(t), Wy, . . n.,.(t) from (26)
it follows that the conditions

Crm s, 4 Voo 015 s V0] <20 09

oo
2
Z (n%n%...nﬁlCin,,.,7nm) < 00, (29)
Niy...,Nm=1
hold,whereC’gm,,_qnm:max{ max |Wy,, . n.(t)]; max |W7/1,1 )|
te[—T;T) te[—T;T)

Conditions of smoothness. Let the multidimensional functlons o(z), w(x) €
ct (Q;") in the given domain ;" have piecewise continuous derivatives up to the

fifth order and

go((),acg,xg, el ;rm) = go(l,:vz,:vg, e xm)
= go(xl,(),xg, ey xm) = go(xl,l,mg, ceey :cm)
= ... =¢(@1, ..., Bm-1,0) = (21, ..., Tp—1,1)
= Prya (O,xg,xg, e :cm) = Vz, 31 (l,l‘g,.’l)g, ce :zm)
= goxlzl(azl,O,xg, ey xm) :cpxlxl(xl,l,xg, ey xm) = ...
= Qz, 2, (xl, e xm_l,O) = Yz, 2, (xl, cen xm_l,l) =
= P Tm (O,xg,xg, el xm) = Pz T (l,:cQ,xg, e xm)
:@xmxm(x1707x37 e a:m) = gpxmrm(xl,l,xg, ce acm) = ...
:%cmmm(lj, e ajm,l,O) ZQOxmxm(a?l, ,a:m,l,l)
= Oz, 21 2121 (O,mg,xg, el :cm) = QOpy 212111 (l,xg,xg, e J:m)
:cpmxlxlxl(xl,o,xg, e xm) = SOxlxlxlxl(ﬂflyl,fES, ey xm) = ...
:goxlmlxlml(a;l, e xm_l,O) = goxlxlxlxl(xl, R a:m_l,l) = ...
= P Ton Ton Tom (O,xg,xg, cee xm) = Q0 T Ton Tom (l,.%'Q,.’IJ3, e xm)

zwxmmmxmmm(xl,O,xg, e xm) = goxmmmxmzm(xl,l,:cg, cey xm) = ...
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= P T Tm Tm (331’ s ﬂ7m—170) = P Tm Tm Tm (3717 S $m—17l) = 0. (30)

Conditions similar to (30) also hold for the function v (x). Then, after integrating
the integrals (10), (11)

gom,...,nmz/so(scwm,...,nmmdx, %,...,nm:/w<:c>19m,...,nm<w>dx
Qm

o

by parts five times over the variable z1, we get

5 5
= i 5(‘021)’7’""1 W — i 5M77% (31)
Pni,...,nm T n? y Pny, ..o onm . TL? s

where o ()
plx
901(151),...,nm = 920 19711,---7Wn($) dz, (32)
1
or
P Y(x
qb'r(lsl),,nm = 837(5 ) ﬁnly:nm(x) dz. (33)
1
o

By integrating the integrals (32), (33) by parts five times over the variable
T3, we have

ol :<z>5% vin :<l>5% o
®) w) g e T Ax) ag
where 910
A= [ Gy o) e
o
1/)7(1110)717” — mﬁm,...,nm@) dz.
o

Continuing this process, we obtain

5m 5m
(p(5m 5) _ i S‘P%h-?-, (5m-5) _ l 51/’7(11,-?-7nm (35)
niy...,Nn T nm ? nl,..., T ng@ )

where

a5m
Un n dr,
80”1’ /8m18x2 Loxd, n () d
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My (x)

(5m) _

¢n1,.‘.,nm / ax?a‘rgaxaﬁnlyanm(m)dm
o

Then the Bessel inequalities are valid:

e}

2 [2\" Fmp(x) 17
(5m) < (= '
Z [Qonl""’nm} - <l> /{8@8@3:{3%] dz, (36)
Ni,...,Mm=1 an
S 2 _(2\" GO
(5m) <= de. 37
1 2 , A ] —<z> /[8:10‘;’836%...63:,5,”] = B0
MNlyeney Nm= Qm

m

From the formulas (31), (34) and (35) we obtain the following relations

o™ I\P™ B
Pni,...,nm — (> 51’77 ¢n1,...,nm = <> 51777 (38)

5 5
0 ny...ny, s ny...ny,

Now, let us prove the unique solvability of a countable system of linear Fred-
holm integral equations (26). We define the iterative Picard process for countable
system (26) as follows:

u7011,...,nm(t) - @nly---anm +1/}n17---7nm an?"'7n7n(t)7
T

_ 39
W =l (O W (D) [ (oyde. B9
-7

Taking into account the formulas (28), (36)—(38) and applying the Cauchy—
Schwarz and Bessel inequalities for the zero approximation, from (39) we obtain
the estimate

00
0
ma U t
Z te[fT);(T]‘ n17~~~:nm( )‘
ni,...,m=1
[e'e) )
< Z | na, i |+ z max | Vo, () [ [ ¥ng, .
te[—T;T)
Niy...,Nm=1 Niy...,Nm=1
) )
< Z |90n1,---,nm‘+01 Z ’wnl,---,nm|
Nni,...,Mm=1 Ni,...,Mm=1

(e 9]

1 5 - 1 5
< D W‘@%f’??.,nm‘JrCl > ?”’qulj’ﬁ)_,nm

n
Ni,...,Nm=1 1
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o0

1 (5m) 2
= > o > [‘Pm:---vnm}
ni,...,nm=1"1 """ "M Np o nge=1
m
+Cn | XL w2 [
ni,..o,mm=1 1 ° 7" "mM N p =1 i
<" T s | |
— \ nhm’nmzln%o...n}fg s 0x5da3... 0xd, |
l
+C / rrye 17, < (40)
X Q.
! I dx3dx5... 0xd,
l

Taking into account (29) and applying the Cauchy—Schwarz inequality for an
arbitrary difference of the approximation (39), we obtain the estimate

o0
k k—1
t) — / ‘
nh;%ﬁﬂﬁgmy%h“%4> ()
0 T
< max S (W @] [ [l 0?0
te[-T5T] -«
sy itm T
T (o]
S / Z Can,...,nm ‘Uﬁzl...,nm(*t) *ule_,?..,nm(it)‘ dt
Zr Ni,...,NMm=1
<27 ||C H F=1(_¢) — k_Q—t) k=23, . 41
<27 Call, [0 = 20| (41)
Similarly to (41), we obtain
o]
D KA G B o C)
Niy...,Mm=1
<27 ||C H O k_zt‘ k=23, . 42
<27 Call, |0 - 20|, (12)

From the estimates (41) and (42) we have

H Uk(t) — U 1(1) )

)ngU“%w—U“%a\

: (43)

By (T By(T)
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where p = 2T [|Call,, <1, | U*(t) — UF1(t) HBQ(T) -

— max { H WF () — (8 ‘

pary! [0 D]

BQ(T)} ‘

Since H uk(t) — ukil(t) HBz(T) < H Uk(t) — kal(t) HBz(T), it follows from (43)
that the operator on the right-hand side of (26) is contracting. And, from (40)
and (43) it follows that there is a unique fixed point u(t) € Bo(T') on the segment
[T T]. This implies the unique solvability of the countable system of integral
equations (26) on the interval [—T'; T, if there have been fulfilled the conditions
(24), (28), (29), smoothness and 27 [|Cqf[,, < 1. Consequently, the iterative
Picard process (39) converges absolutely and uniformly to the function wu(t) €
Bo(T'), if the conditions (24), (28), (29), smoothness and 27" ||Cal,, < 1 are
fulfilled.

3. Convergence of Fourier series

If the conditions (24), (28), (29), smoothness and 27" [|Ca||,, < 1 are fulfilled,
then we can show absolute and uniform convergence of series (27). Indeed, we
have

Ut )< D> [P (2)]
Nni,...,Mm=1
T
X ‘Pm,-..,nm‘*‘wm,m,nmvm,m,nm(t)+Wn1,.-.,nm(t)/“m, ,nm (—0) dO
-T
2\ & 2\ &
< < l) Z |80n1,...,nm|+01< l) Z |wn1,...,nm
Niy...,Mm=1 Niy...,Nm=1
N\ &
+(\[> [ X om0
r Niy...,Nm=1

3m

AN 0°™ p(x)
<[z
- <l> n [Haﬁwga@

2 m
+2T ( l) 1C2lg, (=) | gy () < 00,

0> (x)

59 40 5
Oxy0xy...0x),

4

La2(9")
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o
_ 1
where v = > ———10-
ni,...,mm=1 1 m

The function (27) is formally differentiated the required number of times with
respect to the required arguments

Upe(t,x) = Z Uny,. . n (T) {wm,---,nm

T
s VO W00 [ 0)8] a0
T
Tni\4
Ul’ll’ll’lxl(t7x): Z ( l ) 19n1,...,nm(5[")|:90n1,...,nm

T
oo Vi () & Wan. o (8) /um,...,nm<—6>de]7 (45)
-T

> Tno\4
Uy 2y 2g 25 (t, ) = Z <T> §n17---,nm(aj>{¢n1,---,nm
ni,...,m=1
T
Pl Vo) W) [t -0)a0]. (10)
-T

Similar to (44)-(46), we define the expansions of the functions
Usszszszes (tal')a ooy Urppatmamam (t,:E), Uttmm(t,x)» Uttzyxs (ta :I:)v ooy Uttzmam (ta 1‘)

into Fourier series.

For the function (27), it is easy to verify that all derivatives, appearing in
the equation (1) are continuous. The proof of the convergence of functions (44)
exactly coincides with the proof of convergence of the function (27). For the
functions (45) and (46), we present a proof of the convergence

4 o
m
’U11111111<t7x)|§l7 E n;.l’unlw-wnm(t)‘.’797741’~-'7nm($)’
Nl,...,Nm=1

2\ 7 = 4
< 7 T Z ny | i,

Niy...,Nm=1
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2 m7r4 >
+Cl (\/;) l74 Z nzll’wnl,...,nm

Ni,...,Nm=1
m T
2 it >
+(\ﬂ> Y alCon i (1)
Zr Ni,...,Nm=1
> 1
<72 —— 5
m’“;m_ln%...n}g
a5m T a5m T
X[Ha P 5¢(295 i Py 5¢()a5
xl .2?2... Tim LQ(Q;”) .%'1 1'2... T LQ(Q{”)

B) mﬂ4 > 2
+ ( l) 7 Z (nilCin,.‘.,nm) | u(—t) ||B2(T) < 00,

Ni,...,Nm=1

4 oo

T
|U121212x2(t>1')|§lf4 Z ng un1,...,nm(t77/)|-|7~9n17~..,nm($)|
n17~~.,7’Lm:1
m
2 7T4 00

S( l) I > s enr

nl""unnzzl
m
Nt &

+Cl< z) 7D DR L
nl""7nm21

m T

2 71'4 00
+( l> l4/ Z néCin""’nm|un1,-..,nm(—t)| dt
=T nl""»’nmzl
- 1
<72 I
ni,. ';7'7n1 nion%néo A n}r?
a5m 65m
X H a 58 5()0(;(}) - +Cl . 5¢(.%') g
ri0x;5. .. axm L2(an) 83318332...8567” L2(Q;n)

5 mw4 e 2
n ( l) 7 Z (n‘ll sz,...,nm) | u(—t) ||B2(T) < 00,
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3m
2 7T4

where o = (%) T
The convergence of the following functions is proved in exactly the same way
as above

| Uss aszs2s (6 0) | <00, oo oy [Uspy g 2z (6,2) | <00, | Utz 2, (8, ) | < 00,

‘Uttxzxg(t;x)‘ <00, ..., \Utmmxm(t,x) ’ < 0.

Consequently, in the domain 2, the function U(¢, ), defined by the series (27),
satisfies the conditions (2) of the problem (1)-(5) for all possible n, ..., npy.

4. Formulation of the theorem

So, we have proved the following

Theorem 1. Let the conditions (24), (28), (29), smoothness and 2T ||Cal|,, < 1
be fulfilled. Then the boundary value problem (1)-(5) is uniquely solvable in the
domain Q. The solution is determined by the series (27). In this case, the
function (27) is differentiable with respect to all variables, i.e. the derivatives
of the solution (27) included in equation (1) exist and are continuous.
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