
Azerbaijan Journal of Mathematics
V. 13 , No 1, 2023, January
ISSN 2218-6816

A New Theorem on Generalized Absolute Matrix
Summability
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Abstract. In this paper, a general theorem dealing with ϕ − |A, pn|k summability of
an infinite series has been proved by using an almost increasing sequence. Also, some
results have been obtained.
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1. Introduction

A positive sequence (bn) is said to be almost increasing if there exist a
positive increasing sequence (cn) and two positive constants K and L such that
Kcn ≤ bn ≤ Lcn (see [1]). Obviously, every increasing sequence is almost
increasing. However, the converse need not be true as can be seen by taking an
example, say, bn = ne(−1)

n
. For any sequence (λn) we write ∆λn = λn − λn+1.

Let
∑
an be a given infinite series with the partial sums (sn). Let (pn) be a

sequence of positive numbers such that

Pn =

n∑
v=0

pv →∞ as (n→∞), (P−i = p−i = 0, i ≥ 1) .

The sequence-to-sequence transformation

σn =
1

Pn

n∑
v=0

pvsv
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defines the sequence (σn) of the
(
N̄ , pn

)
mean of the sequence (sn), generated by

the sequence of coefficients (pn) (see [10]). The series
∑
an is said to be summable∣∣N̄ , pn∣∣k , k ≥ 1, if (see [2])

∞∑
n=1

(
Pn

pn

)k−1
|σn − σn−1|k <∞.

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero
diagonal entries. Then A defines the sequence-to-sequence transformation, map-
ping the sequence s = (sn) to As = (An(s)), where

An(s) =
n∑

v=0

anvsv, n = 0, 1, ...

Let (ϕn) be any sequence of positive real numbers. The series
∑
an is said to be

summable ϕ− |A, pn|k, k ≥ 1, if (see [16])

∞∑
n=1

ϕk−1
n |An(s)−An−1(s)|k <∞.

If we take ϕn = Pn
pn

, then ϕ − |A, pn|k summability reduces to |A, pn|k summa-

bility (see [25]). Also, if we take ϕn = Pn
pn

and anv = pv
Pn

, then we get |N̄ , pn|k
summability. Furthermore, if we take ϕn = n, anv = pv

Pn
and pn = 1 for all values

of n, then ϕ−|A, pn|k summability reduces to |C, 1|k summability (see [9]). Given
a normal matrix A = (anv), two lower semimatrices Ā = (ānv) and Â = (ânv) are
defined as follows:

ānv =
n∑

i=v

ani, n, v = 0, 1, ... (1)

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (2)

and

An (s) =
n∑

v=0

anvsv =
n∑

i=0

āniai (3)

∆̄An (s) =

n∑
i=0

âniai. (4)
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2. Known Result

In [8], Bor has proved the following theorem for
∣∣N̄ , pn∣∣k summability factors

of an infinite series. For more studies on Riesz summability of infinite series, we
can refer to [3, 4, 5, 6, 7].

Theorem 1. Let (Xn) be an almost increasing sequence and let there be sequences
(βn), (λn) such that

|∆λn| ≤ βn, (5)

βn → 0 as n→∞, (6)

∞∑
n=1

n |∆βn|Xn <∞, (7)

|λn|Xn = O(1). (8)

If

m∑
n=1

|λn|
n

= O(1) as m→∞, (9)

m∑
n=1

1

n
|tn|k = O(Xm) as m→∞ (10)

and (pn) is a sequence such that

m∑
n=1

pn
Pn
|tn|k = O (Xm) as m→∞, (11)

where (tn) is the nth (C, 1) mean of the sequence (nan), then the series
∑
anλn

is summable
∣∣N̄ , pn∣∣k , k ≥ 1.

3. Main Result

Many studies have been done for absolute matrix summability methods of an
infinite series (see [12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24]). The aim of this
paper is to generalize Theorem 1 for absolute matrix summability. Now we shall
prove the following theorem.
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Theorem 2. Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (12)

an−1,v ≥ anv for n ≥ v + 1, (13)

ann = O

(
pn
Pn

)
. (14)

Let (Xn) be an almost increasing sequence and (ϕnpn
Pn

) be a non-increasing se-
quence. If conditions (5)-(9) of Theorem 1 and

m∑
n=1

ϕk−1
n

(
pn
Pn

)k−1 1

n
|tn|k = O(Xm) as m→∞, (15)

m∑
n=1

ϕk−1
n

(
pn
Pn

)k

|tn|k = O(Xm) as m→∞ (16)

are satisfied, then the series
∑
anλn is summable ϕ− |A, pn|k, k ≥ 1.

ϕ − |A, pn|k summability method is more general than
∣∣N̄ , pn∣∣k summability

method. By using a positive normal matrix and some suitable conditions,
Theorem 2 on absolute matrix summability method is obtained. This indicates
the importance of the theorem. If we take ϕn = Pn

pn
and anv = pv

Pn
in Theorem

2, then we get Theorem 1. In this case, the conditions (15) and (16) reduce

to the conditions (10) and (11), respectively. Also, the condition ”
(
ϕnpn
Pn

)
is a

non-increasing sequence” and the conditions (12)-(14) are automatically satisfied.

We need the following lemma for the proof of Theorem 2.

Lemma 1. ([11]) Under the conditions on (Xn), (βn) and (λn) as taken in the
statement of Theorem 2, the following conditions hold:

nβnXn = O (1) as n→∞, (17)

∞∑
n=1

βnXn <∞. (18)
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4. Proof of Theorem 2

Let (In) denote A-transform of the series
∑
anλn. Then, by (3) and (4), we

have

∆̄In =
n∑

v=0

ânvavλv =
n∑

v=1

ânvλv
v

vav.

Applying Abel’s transformation to this sum, we get

∆̄In =
n−1∑
v=1

∆v

(
ânvλv
v

) v∑
r=1

rar +
ânnλn
n

n∑
r=1

rar

=
n+ 1

n
annλntn +

n−1∑
v=1

v + 1

v
∆v (ânv)λvtv

+

n−1∑
v=1

v + 1

v
ân,v+1∆λvtv +

n−1∑
v=1

ân,v+1λv+1
tv
v

= In,1 + In,2 + In,3 + In,4.

To complete the proof of Theorem 2, by Minkowski’s inequality, it is enough to
show that

∞∑
n=1

ϕk−1
n | In,r |k<∞, for r = 1, 2, 3, 4.

First, by using Abel’s transformation, we have

m∑
n=1

ϕk−1
n | In,1 |k = O(1)

m∑
n=1

ϕk−1
n aknn|λn|k|tn|k

= O(1)

m∑
n=1

ϕk−1
n

(
pn
Pn

)k

|λn|k−1|λn||tn|k

= O(1)
m∑

n=1

ϕk−1
n

(
pn
Pn

)k

|λn||tn|k

= O(1)

m−1∑
n=1

∆|λn|
n∑

v=1

ϕk−1
v

(
pv
Pv

)k

|tv|k

+ O(1)|λm|
m∑

n=1

ϕk−1
n

(
pn
Pn

)k

|tn|k
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= O(1)
m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm

= O(1)
m−1∑
n=1

βnXn +O(1)|λm|Xm

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 2 and Lemma 1.

Now, applying Hölder’s inequality with indices k and k′, where k > 1 and
1
k + 1

k′ = 1, we have

m+1∑
n=2

ϕk−1
n | In,2 |k = O(1)

m+1∑
n=2

ϕk−1
n

(
n−1∑
v=1

|∆v(ânv)| |λv| |tv|

)k

= O(1)
m+1∑
n=2

ϕk−1
n

(
n−1∑
v=1

|∆v(ânv)| |λv|k |tv |
k

)(
n−1∑
v=1

|∆v(ânv)|

)k−1

.

Here, by (1) and (2), we have

∆v(ânv) = ânv − ân,v+1 = ānv − ān−1,v − ān,v+1 + ān−1,v+1 = anv − an−1,v.

Then, by using (1), (12) and (13), we get

n−1∑
v=1

|∆v(ânv)| =
n−1∑
v=1

(an−1,v − anv) ≤ ann.

Thus, we have

m+1∑
n=2

ϕk−1
n | In,2 |k = O(1)

m+1∑
n=2

ϕk−1
n ak−1nn

(
n−1∑
v=1

|∆v(ânv)| |λv|k |tv |
k

)

= O(1)
m+1∑
n=2

(
ϕnpn
Pn

)k−1
(

n−1∑
v=1

|∆v(ânv)| |λv|k |tv |
k

)

= O(1)

m∑
v=1

|λv|k|tv|k
m+1∑

n=v+1

(
ϕnpn
Pn

)k−1
|∆v(ânv)|

= O(1)
m∑
v=1

(
ϕvpv
Pv

)k−1
|λv|k|tv|k

m+1∑
n=v+1

|∆v(ânv)|
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= O(1)
m∑
v=1

(
ϕvpv
Pv

)k−1
|λv|k−1|λv||tv|kavv

= O(1)

m∑
v=1

ϕk−1
v

(
pv
Pv

)k

|λv| |tv|k

= O(1) as m→∞,

as in In,1.

Now, again using Hölder’s inequality, we have

m+1∑
n=2

ϕk−1
n | In,3 |k = O(1)

m+1∑
n=2

ϕk−1
n

(
n−1∑
v=1

|ân,v+1||∆λv||tv|

)k

= O(1)
m+1∑
n=2

ϕk−1
n

(
n−1∑
v=1

|ân,v+1|βv|tv|k
)(

n−1∑
v=1

|ân,v+1|βv

)k−1

= O(1)

m+1∑
n=2

ϕk−1
n ak−1nn

(
n−1∑
v=1

|ân,v+1|βv|tv|k
)

= O(1)
m+1∑
n=2

(
ϕnpn
Pn

)k−1
(

n−1∑
v=1

|ân,v+1|βv|tv|k
)

= O(1)

m∑
v=1

βv|tv|k
m+1∑

n=v+1

(
ϕnpn
Pn

)k−1
|ân,v+1|

= O(1)
m∑
v=1

(
ϕvpv
Pv

)k−1
βv|tv|k

m+1∑
n=v+1

|ân,v+1|.

Here, by (1), (2), (12) and (13), we have

m+1∑
n=v+1

|ân,v+1| =
m+1∑

n=v+1

v∑
i=0

(an−1,i − ani) ≤ 1.

Thus, we get

m+1∑
n=2

ϕk−1
n | In,3 |k = O(1)

m∑
v=1

ϕk−1
v

(
pv
Pv

)k−1
vβv

1

v
|tv|k

= O(1)

m−1∑
v=1

∆(vβv)
v∑

r=1

ϕk−1
r

(
pr
Pr

)k−1 1

r
|tr|k
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+ O(1)mβm

m∑
v=1

ϕk−1
v

(
pv
Pv

)k−1 1

v
|tv|k

= O(1)
m−1∑
v=1

v|∆βv|Xv +O(1)
m−1∑
v=1

βvXv +O(1)mβmXm

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 2 and Lemma 1.

Again, using Hölder’s inequality, we have

m+1∑
n=2

ϕk−1
n |In,4|k ≤

m+1∑
n=2

ϕk−1
n

(
n−1∑
v=1

|ân,v+1||λv+1|
|tv|
v

)k

≤
m+1∑
n=2

ϕk−1
n

(
n−1∑
v=1

|ân,v+1||λv+1|
|tv|k

v

)(
n−1∑
v=1

|ân,v+1|
|λv+1|
v

)k−1

≤
m+1∑
n=2

ϕk−1
n ak−1nn

(
n−1∑
v=1

|ân,v+1||λv+1|
|tv|k

v

)(
n−1∑
v=1

|λv+1|
v

)k−1

= O(1)

m+1∑
n=2

ϕk−1
n

(
pn
Pn

)k−1
(

n−1∑
v=1

|ân,v+1||λv+1|
|tv|k

v

)

= O(1)

m+1∑
n=2

(
ϕnpn
Pn

)k−1
(

n−1∑
v=1

|ân,v+1||λv+1|
|tv|k

v

)

= O(1)
m∑
v=1

|λv+1|
|tv|
v

k m+1∑
n=v+1

(
ϕnpn
Pn

)k−1
|ân,v+1|

= O(1)
m∑
v=1

(
ϕvpv
Pv

)k−1
|λv+1|

|tv|
v

k m+1∑
n=v+1

|ân,v+1|

= O(1)
m∑
v=1

ϕk−1
v

(
pv
Pv

)k−1
|λv+1|

|tv|
v

k

= O(1)

m−1∑
v=1

|∆λv+1|
v∑

r=1

ϕk−1
r

(
pr
Pr

)k−1 1

r
|tr|k

+ O(1)|λm+1|
m∑
v=1

ϕk−1
v

(
pv
Pv

)k−1 1

v
|tv|k
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= O(1)
m−1∑
v=1

βv+1Xv+1 +O(1)|λm+1|Xm+1

= O(1) as m→∞,

by virtue of hypotheses of Theorem 2 and Lemma 1.

This completes the proof of Theorem 2.

5. Corollaries

Corollary 1. If we take ϕn = Pn
pn

in Theorem 2, then we get a known theorem
dealing with |A, pn|k summability of the series

∑
anλn (see [15]).

Corollary 2. If we take ϕn = n, anv = pv
Pn

and pn = 1 for all values of n in
Theorem 2, then we get a result for |C, 1|k summability of the series

∑
anλn.

6. Conclusion

This study has a number of direct applications in rectification of signals in
FIR filter (Finite impulse response filter) and IIR filter (Infinite impulse response
filter). So, the absolute summability methods have potential in dealing with the
problems based on infinite series.
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[16] H.S. Özarslan, On generalized absolute matrix summability methods, Inter.
J. Anal. Appl., 12(1), 2016, 66-70.
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[18] H.S. Özarslan, A new study on generalized absolute matrix summability,
Commun. Math. Appl., 7(4), 2016, 303-309.
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