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The Solution of a Mixed Problem for a Parabolic
Type Equation with General Form Coefficients
Under Unconventional Boundary Conditions

H.I. Ahmadov

Abstract. We study one-dimensional mixed problem for a parabolic type equation with
time-advance constant coefficients in the boundary conditions. Under minimum condi-
tions on the initial data we prove the existence and unigueness of the considered mixed
problem and obtain explicit analytical representation for the solution.
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1. Introduction

In this paper we consider a mixed problem for a parabolic type equation with
constant coefficients that have time-advance in the boundary conditions.

In [1], mixed problems have been considered for one-dimensional heat-conductivity
equation with partially determined boundary regime under certain conditions on
the initial data. The existence and uniqueness of the solution of the given problem
represented in the form of a contour integral have been proved.

The works [2,3] consider mixed problems for a heat-conductivity equation that
has a more general form time-advance in the boundary conditions. A unique solv-
ability of the considered problems is proved and the solutions are represented in
the form of a contour integral. In [4], a problem for a parabolic-hyperbolic equa-
tion with heat conductivity operators and strings in a rectangular domain, with
Samarskiy-Ionkin nonlocal boundary condition, has been studied. The criterion
of uniqueness of solutions has been proved by the spectral expansions method.
The paper [5] studies a boundary value problem for a mixed type equation with
Lavrentyev-Bitsadze operator in the principal part, with lead-lag arguments and
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closed-change line. A uniqueness theorem has been proved under the restric-
tion on deviation value of arguments, and explicit integral representations for the
solutions have been found.

Unlike all above-mentioned papers, in the present work we consider a more
general mixed problem for an equation with constant coefficients that have a time
deviation in the boundary conditions.

2. Problem statement

Let

L

(
∂

∂x
,
∂

∂t

)
u (x, t) = auxx (x, t) + bux (x, t) + cu (x, t)− ut(x, t)

lju (x, t) = u (x, t+ (1− j)ω) + αju (1− x, t+ jω) , j = 0, 1

lju (x, t) = aj−2u
(j−2)
x (x, t) + bj−2u

(j−2)
x (1− x, t) , j = 2, 3,

where a, b, c, ω, αj , aj , bj (j = 0, 1) are real constants, a > 0, ω > 0, α0α1 6= 0.
On the semistrip Π = {(x, t) : 0 < x < 1, t > 0}, we consider the following

mixed problem:

L u (x, t) = 0, (x, t) ∈ Π, (1)

u (x, 0) = ϕ (x) , 0 < x < 1, (2)

lju|x=0 = 0, t > 0, j = 0, 1, (3)

lju|x=0 = 0, 0 < t ≤ ω, j = 2, 3, (4)

where ϕ(x) is a given, and u(x, t) is a sought function.
The solution of the problem (1)-(4) is a function u(x, t), satisfying the fol-

lowing conditions:

1)u(x, t) ∈ C2,1(Π)∩C(0 < x < 1, t ≥ 0);
t∫

0

u(x, τ)dτ ∈ C (0 ≤ x ≤ 1, t ≥ 0) ;

2)lju (x, t) ∈ C (0 ≤ x < 1, t > 0) , j = 0, 1;
3)lju (x, t) ∈ C (0 ≤ x < 1, 0 < t ≤ ω) , j = 2, 3;
4)u(x, t) satisfies the equalities (1)-(4) in the usual sense.
As noted in [2], the stated problem can be solved step by step. First, by

solving in {(x, t) : 0 < x < 1, 0 < t < ω} the ordinary mixed problem (1), (2),
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(4), we can find the initial, and then, using conditions (3), the boundary state
for the rectangle {(x, t) : 0 < x < 1, ω < t < 2ω}, etc. But such an approach
is very cumbersome and each time requires to clarify conditions on initial and
boundary data u (x, kω) , u (0, t) , u(1, t), providing unique solbability in (0, 1)×
(kω, (k + 1)ω) (k = 1, 2, . . . ), and also preservation of smoothness when going
from one layer to another.

Not dividing the problem (1)-(4) into numerous problems, by combining the
contour integral method and Rasulov residue method [6, 7], the existence and
uniqueness of the solution were proved, and analytic representation was obtained
for it.

3. Uniqueness of the solution

We call the problem

L

(
d

dx
, µ2

)
y (x, µ) = 0, ljy|x=0 = 0, j = 2, 3 (5)

the first spectral problem with a complex parameter µ, corresponding to the
problem (1), (2), (4).

It is known that [8] if a0b1 + a1b0 6= 0, then for all complex values of µ,
not belonging to the set S = {µν : ν = 1, 2, ...}, there exists the Green function
G1(x, ξ, µ) of the problem (5), analytic everywhere with respect to µ except for
the points of the set S, that are its poles and have the asymptotic representation

µν =
√
a πνi+

(−1)ν(a0a1 + b0b1)

2(a0b1 + a1b0)
+O

(
1

ν

)
, ν →∞.

Renumbering the points in S in an ascending order of their modules taking
into account their multiplicity, we denote S = {µν , ν = 1, 2, . . . }, with |µ1| ≤
|µ2| ≤ . . . , µν has the multiplicity χν , with χν = 1 or χν = 2. It is clear that
|µν | → ∞ (ν →∞). There exist h, δ > 0 such that

−h < Re µν < h, |µν+1 − µν | > 2δ (ν = 1, 2, . . . ) . (6)

Outside the δ neighnbourhood of the points µν , the following estimations are
valid: ∣∣∣∣∂kG1(x, ξ, µ)

∂xk

∣∣∣∣ ≤ c|µ|k−1, c > 0, k = 0, 1, 2. (7)

For any function f(x) from the domain of the operator of the first spectral
problem, we have
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f (x) = −
1∫

0

G1 (x, ξ, µ)ϕ (ξ) dξ =

= −
1∫

0

G1(x, ξ, µ)(af ′′(ξ) + bf ′(ξ) + cf(ξ)− µ2f(ξ))dξ.

Hence we obtain

1∫
0

G1 (x, ξ, µ) f (ξ) dξ =
f(x)

µ2
+

c

µ2

1∫
0

G1 (x, ξ, µ) f (ξ) dξ+

+
1

µ2

1∫
0

G1 (x, ξ, µ) (af ′′ (ξ) + bf ′ (ξ))dξ. (8)

Let us accept some notations that will be used later: let c > 0, r > 0 be some
numbers, z be a complex variable, =c = {z : Rez2 = c} be a hyperbola with the
branches =±c = {z : Rez2 = c, ±Rez > 0}, Ωz = {z : |z| = r}, Ωr(θ1, θ2) be
an arch of the circle Ωr, enclosed between the rays z = σ eiθj (0 ≤ σ < ∞, i =√
−1, j = 1, 2). Note that the arches connecting the branches and the sides of

the hyperbola =c {z : |z| = r, Rez2 ≥ c, Rez > 0}, {z : |z| = r,
Rez2 ≤ c, Imz > 0}, {z : |z| = r, Rez2 ≥ c, Rez < 0} and {z : |z| = r, Rez2 ≤
c, Imz < 0}, in our notations will be

Ωr (−θc,r, θc,r) , Ωr (θc,r, −θc,r + π) , Ωr (−θc,r + π, θc,r + π) ,

Ωr (θc,r + π, −θc,r + 2π) ,

where θc,r = arctg
√

r2−c
r2+c

.

We introduce the contours (broken)

=̂c = =̂+
c ∪ =̂−c , =̂±c =

{
z : ±z = σ e−

3π
8
i, σ ∈

(
2c

√
1 +
√

2, ∞
] }
∪

{
z : ±z = c(1 + iη), η ∈

[
−1−

√
2, 1 +

√
2
] }
∪

∪
{
z : ±z = σ e−

3π
8
i, σ ∈

[
2c

√
1 +
√

2, ∞
]}

.
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We denote a part of contours =c, =̂±c , =̂c, =̂±c , enclosed inside the circle Ωr,

by =c,r, =±c,r, =̂c,r, =̂±c,r. Finally, by Γc,r, Γ+
c,r, Γ̂c,r, Γ̂+

c,r for r ≥ 2c

√
1 +

√
2

2 we
denote the closed contours

Γc,r = Ωr (θc,r + π, −θc,r + 2π) ∪ =+
c,r ∪ Ωr (θc,r, −θc,r + π ) ∪ =−c,r,

Γ+
c,r = =+

c,r ∪ Ωr (−θc,r, θc,r) , Γ̂+
c,r = =̂+

c,r ∪ Ωr

(
−3π

8
,
3π

8

)
,

Γ̂c,r = Ωr

(
−5π

8
,−3π

8

)
∪ =̂+

c,r ∪ Ω

(
3π

8
,
5π

8

)
∪ =̂−c,r.

In the sequel, we will consider the counter-clockwise direction as a positive direc-
tion.

Let {rn} be a sequence of numbers such that

0 < r1 < r2 < · · · < rn < . . . , lim
n→∞

rn =∞,

The circles Ωrn do not intersect the δ-vicinity (δ is a rather small, fixed number)
of the points µν ∈ S. In view of the structure of S, the existence of such a number
δ and such a sequence {rn} in undeniable. We denote the number of the points
µν lying inside to Γ̂h,rn by mn. It is seen from (8) that for any function f(x) from
the domain of the operator of the first spectral problem, i.e. f(x) ∈ c2 [0, 1],
ljf |x=0 = 0 (j = 2, 3), we have the following relation:

1

2πi

∫
Γ̂h,rn

µdµ

1∫
0

G1 (x, ξ, µ) f (ξ) dξ =
1

2πi

∫
Γ̂h,rn

µ−1f(x)dµ+

c

2πi

∫
Γ̂h,rn

µ−1dµ

1∫
0

G1 (x, ξ, µ) f (ξ) dξ+

+
1

2πi

∫
Γ̂h,rn

µ−1dµ

1∫
0

G1 (x, ξ, µ) (af ′′ (ξ) + bf ′(ξ))dξ,

lim
n→∞

1

2πi

∫
Γ̂h,rn

µ−1f(x)dµ =
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=
f(x)

2πi
lim
n→∞

∫
Ωrn

dµ

µ
=
f(x)

2πi
lim
n→∞

2π∫
0

irne
iϕdϕ

rneiϕ
=
f(x)

2π
· 2π = f (x) .

lim
n→∞

∫
Γ̂h,rn

µ−1dµ

1∫
0

G1(x, ξ, µ)f(ξ)dξ = lim
n→∞

∫
Ωrn

µ−1dµ

1∫
0

G1(x, ξ, µ)f(ξ)dξ,

∣∣∣∣∣∣
∫

Ωn

µ−1dµ

1∫
0

G1(x, ξ, µ)f(ξ)dξ

∣∣∣∣∣∣ ≤
2π∫
0

∣∣∣∣dµµ
∣∣∣∣ · c|µ| · c0 ≤

c1

2π∫
0

∣∣∣∣ dµ|µ|2
∣∣∣∣ = c1

2π∫
0

∣∣∣∣ irneiϕdϕr2
ne

2iϕ

∣∣∣∣ = c1

2π∫
0

1

rn
dϕ→ 0 (n→∞)

consequently.

In the similar way we prove

lim
n→∞

∫
Γ̂h,rn

µ−1dµ

1∫
0

G1 (x, ξ, λ) (af ′′ (ξ) + bf ′(ξ))dξ = 0,

consequently,

f (x) = lim
n→∞

1

2πi

∫
Γ̂h,rn

µdµ

1∫
0

G1 (x, ξ, λ) dξ =
∞∑
ν=1

res
µν
µ

1∫
0

G1 (x, ξ, µ) f(ξ)dξ

(9)

We have the following theorem.

Theorem 1. Let a0b1 + a1b0 6= 0, ϕ(x) ∈ C2 [0, 1] and ljϕ|x=0 = 0 (j = 2, 3).
The problem (1)-(4) may have at most one solution.

Proof. We introduce the operators

Aνsf (x) = res
µν
µ2S+1

1∫
0

G1 (x, ξ, µ) f(ξ)dξ = fνs (x) , (10)
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mapping every function f(x) ∈ C [0, 1] to fνS(x) ∈ C2 [0, 1], ljfνs|x=0 = 0
(j = 2, 3). It is seen from (9) that if f(x) ∈ C2 [0, 1] and ljf |x=0 = 0 (j = 2, 3),
then

∞∑
ν=1

fν0(x) = f (x) . (11)

Obviously, if the problem (1)-(4) has some solution u(x, t), then this function
is also the solution of the problem (1), (2), (4) in the domain {(x, t) : 0 < x < 1;
0 < t ≤ ω}. Applying the operators Aνs to (1), (2) we obtain

∂uνs(x,t)
∂t = res

µν
µ2s+1

1∫
0

G1 (x, ξ, µ)µ2u(ξ, t)dξ =

= res
µν
µ2(S+1)+1

1∫
0

G1 (x, ξ, µ)u(ξ, t)dξ = uνs+1 (x, t) ,

(12)

uνs(x, 0) = ϕνs(x). (13)

If µν is a simple pole (χν = 1) of the function G1(x, ξ, µ), then

res
µν
µ2s+1

(
µ2 − µ2

ν

) 1∫
0

G1 (x, ξ, µ)µ2u(ξ, t)dξ = 0,

i.e.

uνs+1 (x, t) = µ2
νuνs (x, t) . (14)

But if χ2 = 2, then

res
µν
µ2s+1

(
µ2 − µ2

ν

)2 1∫
0

G1 (x, ξ, µ)u(ξ, t)dξ = 0.

Consequently,

uνs+2 (x, t)− 2µ2
νuνs+1 (x, t) + µνuνs (x, t) = 0. (15)

For χν = 1 from (13), (14) we obtain

∂uν0(x,t)
∂t = µ2

νuν0 (x, t)

uν0 (x, 0) = ϕν0 (x) .

(16)
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But if χν = 2, assuming in (12) s = 0 and s = 1, while in (15) s = 0, we have

∂uν0(x,t)
∂t = uν1 (x, t) , ∂uν1(x,t)

∂t = −µ4uν0 (x, t) + 2µ2
νuν1 (x, t) ,

uν0(x, 0) = ϕν0(x), uν1 (x, 0) = ϕν1(x).

(17)

Obviously, the problems (16) and (17) have a unique solution

uνs(x, t) = res
µν
µ2s+1 eµ

2t

1∫
0

G1 (x, ξ, µ)ϕ(ξ)dξ,

where s = 0 for the problem (16) and s = 0, 1 for the problem (17).
The allowing for (11), we find

u (x, t) =
∞∑
ν=1

resµ eµ
2t

1∫
0

G1 (x, ξ, µ)ϕ(ξ)dξ (18)

for 0 ≤ x ≤ 1, 0 ≤ t ≤ ω. This implies the validity of the theorem statement.
Indeed, if the problem (1)-(4) had two solutions u1(x, t), u2(x, t), then their
difference would be the solution of the problem (1)-(4) υ (x, t) = u1 (x, t)−u2(x, t)
with ϕ (x) ≡ 0, and υ (0, t) ≡ υ (1, t) = 0, for t ≥ 0. In connection with this and
condition 1), it is easy to see that the function

w (x, t) =

t∫
0

υ (x, τ) dτ

is the solution of the homogeneous problem wt = a2wxx (0 < x < 1, t ≥ ω) ,
w (x, ω) = 0 (0 ≤ x ≤ 1), w (0, t) = w (1, t) = 0 (t > ω), continuous in
{0 ≤ x ≤ 1, t ≥ ω}, whence, by the maximum principle [9, 10] we conclude that
w(x, t) ≡ 0, (0 ≤ x ≤ 1, t ≥ ω), consequently, υ (x, t) = 0 (0 ≤ x ≤ 1, t ≥ 0).

Under the conditions of Theorem 1 and allowing for the equality (8), we can
reduce the formula (18) to the following form:

u (x, t) = lim
n→∞

1
2πi

∫
Γ̂h,rn

µeµ
2tdµ

1∫
0

G1 (x, ξ, µ)ϕ (ξ) dξ =

ϕ (x) + lim
n→∞

1
2πi

∫
Γ̂h,rn

µ−1eµ
2tdµ

1∫
0

G1 (x, ξ, µ) [aϕ′′ (ξ) + bϕ′(ξ) + cϕ(ξ)] dξ.

(19)
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It is known that Γ̂h,rn = Ωrn

(
−5π

8 ,−
3π
8

)
∪ =̂+

h,rn
∪ Ωrn

(
3π
8 ,

5π
8

)
∪ =̂−h,rn .

On the archs Ωrn

(
−5π

8 + jπ,−3π
8 + jπ

)
(j = 0, 1)

Reµ2t = |µ|2tcos

(
−3π

4

)
≤ −|µ|

2t
√

2

2
= −
√

2

2
|µ|2t.

So,

lim
n→∞

∫
Ωrn(− 5π

8
+jπ,− 3π

8
+jπ)

µ−1eµ
2tdµ

1∫
0

G1 (x, ξ, µ) [aϕ′′ (ξ) +

+bϕ′(ξ) + cϕ(ξ)]dξ = 0, (j = 0, 1).

Consequently,

u (x, t) = ϕ (x) +
1

2πi

∫
=̂h

µ−1eµ
2tdµ

1∫
0

G1 (x, ξ, µ)
[
aϕ′′ (ξ) + bϕ′(ξ) + cϕ(ξ)

]
dξ,

and using the property G1 (x, ξ,−µ) ≡ G1 (x, ξ, µ), the solution of the problem
(1), (2), (4) can be represented by the formula

u (x, t) = ϕ (x) +
1

πi

∫
=̂+
h

µ−1eµ
2tdµ

1∫
0

G1 (x, ξ, µ)
[
aϕ′′ (ξ) + bϕ′ξ) + cϕ(ξ)

]
dξ

(20)

For |µ| > 2h

√
1 +

√
2

2 , i.e. on the distant parts of the contour Ẑ+
h , the follow-

ing inequality is fulfilled:∣∣∣∣ ∂k+m∂tk∂xm
µ−1eµ

2t
1∫
0

G1 (x, ξ, µ) [aϕ′′ (ξ) + bϕ′(ξ) + cϕ(ξ)] dξ

∣∣∣∣ ≤
C|µ|2k+m−2e−

√
2

2
t|µ|2 (2k +m ≤ 2) .

(21)

Then for 0 ≤ x ≤ 1, 0 ≤ t ≤ ω the operators L
(
∂
∂x ,

∂
∂t

)
, lju|x=0 (j = 2, 3) can

be taken under the integral sign in (18), and allowing for (5) we have

L

(
∂

∂x
,
∂

∂t

)
u(x, t) = L

(
∂

∂x
,
∂

∂t

)
×
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ϕ(x) +
1

πi

∫
=̂+
h

µ−1eµ
2t
dµ

1∫
0

G1(x, ξ, µ)[aϕ′′(ξ) + bϕ′(ξ) + cϕ(ξ)]dξ

 =

= −(aϕ′′ + bϕ′ + cϕ) +
aϕ′′ + bϕ′ + cϕ

πi

∫
=̂+
h

µ−1eµ
2t
dµ =

= −(aϕ′′ + bϕ′ + cϕ) +
aϕ′′ + bϕ′ + cϕ

2πi
lim
r→∞

∫
Γ̂h,r

µ−1eµ
2tdµ =

= −(aϕ′′ + bϕ′ + cϕ) + aϕ′′ + bϕ′ + cϕ = 0,

lju (x, t)|x→0 = ljϕ (x)|x→0 +
1

πi

∫
=̂+
h

µ−1eµ
2t
dµ×

×
1∫

0

ljG1 (x, ξ, µ)|x=0

[
aϕ′′ (ξ) + bϕ′(ξ) + cϕ(ξ)

]
dξ = 0, (j = 2, 3) .

It is seen from the estimate (21) that limit as t→ 0 can also be taken under the
integral sign for all x ∈ [0, 1]:

u (x, 0) = lim
t→0

u(x, t) = ϕ (x) +
1

πi

∫
=̂+
h

µ−1dµ×

×
1∫

0

G1 (x, ξ, µ)
[
aϕ′′ (ξ) + bϕ′(ξ) + cϕ(ξ)

]
dξ = ϕ (x) +

+
1

πi
lim
r→∞

∫
Ωr(− 3π

8
, 3π
8 )

µ−1dµ

1∫
0

G1 (x, ξ, µ)
[
aϕ′′ (ξ) + bϕ′(ξ) + cϕ(ξ)

]
dξ = ϕ (x)
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We denote the boundary value of the solution (18) by γs(t):

γs (t) = u (s, t) = ϕ(s) +
1

πi

∫
=̂+
h

µ−1eµ
2tdµ×

×
1∫

0

G1 (s, ξ, µ)
[
aϕ′′ (ξ) + bϕ′(ξ) + cϕ(ξ)

]
dξ. (22)

Under the conditions of Theorem 1, if the problem (1)-(4) has a solution,
then on the parts {(s, t) : 0 ≤ t ≤ ω, s = 0, 1} of the lateral side of the domain
{(x, t) : 0 < x < 1, t > 0}, it takes boundary values γs(t) ∈ c [0, ω]

⋂
C∞(0, ω)

(s = 0, 1), determined by formula (19). J

4. Studying the existence of the solution of the main mixed
problem

Applying the integral operator A [f ] =
∞∫
0

e−λ
2tf (t) dt (see [11]) to the equa-

tion (1) and boundary condition (3), we obtain the following second spectral
problem with a complex parameter λ:

L

(
d

dx
, λ2

)
z (x, λ) = −ϕ (x) , (23)


eλ

2ωz (0, λ) + α0z (1, λ) = A (λ) ,

z (0, λ) + α1e
λ2ωz (1, λ) = B (λ) ,

(24)

where

L

(
d

dx
, λ2

)
z (x, λ) = az′′ + bz′ + (c− λ2)z,

A (λ) = eλ
2ω

ω∫
0

e−λ
2tu (0, t) dt,

B (λ) = α1e
λ2ω

ω∫
0

e−λ
2tu (1, t) dt.
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The boundary conditions (24) can be reduced to the form

z (0, λ) = m (λ) , z (1, λ) = n (λ) , (25)

where
m (λ) = z0 (λ) =

[
α1e

2λ2ω − α0

]−1 (
A (λ)α1e

2λ2ω − α0B (λ)
)

n (λ) = z1 (λ) =
[
α1e

2λ2ω − α0

]−1 (
B (λ) eλ

2ω −A (λ)
)
.

(26)

The solution of the problem (23),(24) can be represented as a sum of solutions of
two problems:
A. L

(
d
dx , λ

2
)
z (x, λ) = 0, z (0, λ) = m(λ), z (1, λ) = n(λ);

B. L
(
d
dx , λ

2
)
z (x, λ) = −ϕ(x), z (0, λ) = 0, z (1, λ) = 0.

The solution of the problem A is represented by the formula

Q (x, λ,m, n) =

[
e
−
(
b
2a

+ λ√
a

+O( 1
λ)
)
−
(
b
2a
− λ√

a
+O( 1

λ)
)]−1

×

[(
m (λ) e

−
(
b
2a

+ λ√
a

+O( 1
λ)
)
− n(λ)

)
e
−
(
b
2a
− λ√

a
+O( 1

λ)
)
x
+

(
n (λ)−m(λ)e

−
(
b
2a
− λ√

a
+O( 1

λ)
))

e
−
(
b
2a

+ λ√
a

+O( 1
λ)
)
x
]
, (27)

where m(λ) and n(λ) are determined by formula (23).
If m = z0(λ), n = z1(λ), then the function Q (x, λ, m, n) is everywhere

analytic with respect to λ except for the points λν =
√
aνπi + O

(
1
ν

)
(ν =

0, ±1, ±2, . . . ), and the points λ±m = ±
[

1
2ω

(
ln
∣∣∣α0
α1

∣∣∣+ 2πmi
)]1/2

(m = 0, ±1, . . . )

are its poles.
If m = ϕ(0), n = ϕ(1), i.e. m and n are constants, then the function

Q (x, λ, m, n) is everywhere analytic except for the points λν =
√
aνπi+O

(
1
ν

)
.

Obviously, at all the points λ, where Q (x, λ,m, n) exists, the following iden-
tities are valid:

L

(
d

dx
, λ2

)
Q (x, λ,m, n) = 0, (231)

Q (0, λ,m, n) = m, Q (1, λ,m, n) = n.

We build the solution of the problem B by means of the Green function
denoted by G2(x, ξ, λ). This function is everywhere analytic with respect to λ
except for the points λν =

√
aνπi+O

(
1
ν

)
, that are its simple poles.
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Let us note some known facts about the Green function G2(x, ξ, λ): there

exists δ > 0 such that on the λ plane outside the set
∞⋃
ν=1
{λ : |λ− λν | < δ} the

following estimate is valid:

∣∣∣∣∂kG2(x, ξ, λ)

∂xk

∣∣∣∣ ≤ c0|λ|k−1, c0 > 0, k = 0, 1, 2, for all x, ξ ∈ [0, 1];

for λ 6= λν (ν = 0, ±1, . . . )

L

(
d

dx
, λ2

) 1∫
0

G2 (x, ξ, λ)ϕ (ξ) dξ = −ϕ (x) ,

G2 (0, ξ, λ) = G2 (1, ξ, λ) = 0.

Obviously, the solution of the second spectral problem is represented by the sum
of two solutions (problem A and problem B):

z (x, λ) = −
1∫

0

G2 (x, ξ, λ)ϕ (ξ) dξ +Q (x, λ, m, n) . (28)

For any function ϕ(x) from the domain of the operator of the second spectral
problem, we have the equality :

1∫
0

G2 (x, ξ, λ)ϕ (ξ) dξ = −ϕ (x)

λ2
+

c

λ2

1∫
0

G2 (x, ξ, λ)ϕ (ξ) dξ+

+
1

λ2

1∫
0

G2 (x, ξ, λ)
[
aϕ′′ (ξ) + bϕ′(ξ)

]
dξ +

Q(x, λ, ϕ (0) , ϕ (1))

λ2
.

Then, formula (28) becomes

z (x, λ) = ϕ(x)
λ2
− c

λ2

1∫
0

G2 (x, ξ, λ)ϕ (ξ) dξ − 1
λ2

1∫
0

G2 (x, ξ, λ) [aϕ′′ (ξ) + bϕ′(ξ)] dξ−

−Q(x,λ,ϕ(0),ϕ(1))
λ2

+Q (x, λ, m, n) .
(29)

We fix the number c1 > max
(

0, ln
∣∣∣α0
α1

∣∣∣).
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Theorem 2. Let a0b1 + a1b0 6= 0, ϕ(x) ∈ C2 [0, 1] and ljϕ|x=0 = 0 (j = 2, 3).
Then the problem (1)-(4) has the solution

u(x, t) = ϕ(x) + 1
πi

∫
=̂+
c1

λ−1eλ
2t

[
1∫
0

G2(x, ξ, λ)(aϕ′′(ξ) + bϕ′(ξ) + cϕ(ξ))dξ

−Q(x, λ, ϕ(0), ϕ(1))] dλ+ 1
πi

∫
=+
c1

λeλ
2tQ(x, λ, m(λ), n(λ))dλ.

(30)

The three integrals contained in (30) are treated in the same way. For exam-
ple, let us consider the second integral

u2 (x, t) = − 1

πi

∫
=̂+
c1

λ−1eλ
2tQ (x, λ, ϕ (0) , ϕ (1)) dλ. (301)

On the distant parts of the contour =̂+
c1 (Re λ > c1)∣∣∣eλ2t∣∣∣ = etReλ2 = et |λ|

2cos 2 argλ = et|λ|
2cos(± 3π

4 ) = e−
√
2

2
t |λ|2 . (31)

Further, from formula (27), the function Q (x, λ, ϕ (0) , ϕ (1)) is analytic in the
domain Re λ > C1, and the following estimates are valid for it:∣∣∣∣∂kQ(x, λ, ϕ(0), ϕ(1)

∂xk

∣∣∣∣ ≤ c|λ|k +
c0

|λ|k
, (k = 0, 1, 2) for all x ∈ [0, 1] . (32)

On the distant parts of the contour =̂+
c1 (Re λ > c1) and on the arches

Ωr

(
−3π

8 ,
3π
8

)
(r > 2c1

√
1 +
√

2) we have the estimate

|Q(x, λ, ϕ (0) , ϕ (1))| ≤ C1e
−
∣∣∣ λ√

a

∣∣∣(1−x)cos 3π
8 + C2e

−
∣∣∣ λ√

a

∣∣∣xcos 3π
8 +

C3

|λ|
. (33)

(31) and (33) yield

u2 (x, t) ∈ C2,1 (0 ≤ x ≤ 1, t > 0) , (34)

In (301) for t > 0 the operators L
(
∂
∂x ,

∂
∂t

)
, as x→ 0, x→ 1, can be taken under

integral sign. Then, allowing for (231), we obtain

L

(
∂

∂x
,
∂

∂t

)
u2 (x, t) = 0,
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u2 (0, t) = −ϕ (0)

πi

∫
=̂+
c1

λ−1eλ
2tdλ = −ϕ (0)

2πi
lim
r→∞

∫
=̂+
c1,r

λ−1eλ
2tdλ = −ϕ (0) ,

u2 (1, t) = −ϕ (1)

πi

∫
=̂+
c1

λ−1eλ
2tdλ = −ϕ (1)

2πi
lim
r→∞

∫
=̂+
c1,r

λ−1eλ
2tdλ = −ϕ (1) ,

From the equality (33) it is seen that for x, belonging to any segment [x1, x2] ⊂
(0, 1), the integral (311) converges uniformly with respect to t ≥ 0.

Then

u2 (x, t) ∈ C (0 < x < 1, t ≥ 0) , (35)

while for x ∈ [x1, x2]

u2 (x, 0) =
1

πi

∫
=̂+
c1

λ−1Q (x, λ, ϕ (0) , ϕ (1)) dλ =

=
1

πi
lim
r→∞

 ∫
=̂+
c1,r

λ−1Q (x, λ, ϕ (0) , ϕ (1)) dλ+

+

∫
Ωr(− 3π

8
, 3π
8 )

λ−1Q (x, λ, ϕ (0) , ϕ (1)) dλ

 = 0 (36)

by the analyticity of Q(x, λ, ϕ (0) , ϕ (1)) inside the closed contour Γ̂+
c1,r.

Combining Theorems 1 and 2, we arrive at the final statement:

Theorem 3. Let a0b1 + a1b0 6= 0, ϕ(x) ∈ C2 [0, 1] and ljϕ|x=0 = 0 (j = 2, 3).
Then problem (1)-(4) has a unique solution represented by formula (30).
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