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Strong Solvability of a Nonlocal Problem for the
Laplace Equation inWeighted Grand Sobolev Spaces

T.J. Mammadov

Abstract. We consider a nonlocal boundary value problem for the Laplace equation in
an unbounded domain in Sobolev spaces generated by the norm of the weighted grand
Lebesgue space. The notion of strong solvability of this problem is defined and its correct
solvability is proved. At the same time, the basis property of one trigonometric system
in separable weighted grand Lebesgue spaces is proved, and this fact is used to establish
the correct solvability. Note that earlier this problem was considered by E.I.Moiseev [10]
in the classical formulation.
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1. Introduction

The theory of elliptic equations for classical spaces (Hölder classes, Lebesgue
spaces) is well developed, and detailed information about it can be found, for
example, in [1, 4, 5]. At the same time, there are boundary value problems (for
example, nonlocal problems, etc.) that do not fit this theory, but still have a
scientific interest in the context of applications. One of such problems is the
following (which has been considered formally):

ymuxx + uyy = 0, 0 < x < 2π, y > 0, (1)

u (x; 0) = f (x) , u (0; y) = u (2π; y) ,
ux (0; y) = 0, 0 < x < 2π, y > 0,

}
(2)

where m > −2 is some number. It is easy to see that this problem is nonlocal, the
boundary condition are supported by semi-infinite lines, and a normal derivative
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is given on one of them. Therefore, such problems have specific features com-
pared to with problems with local conditions. Problems with nonlocal conditions
were previously considered by F.I. Franklin, [6], [7, pp.453-456] for mixed type
equations and by Bitsadze-Samarskii [8] for elliptic equations. N.I. Ionkin and
E.I. Moiseev [9] considered a boundary value problem with a nonlocal condition
of the form (2) for a multidimensional parabolic equation. In the classical formu-
lation, problem (1), (2) was also considered by E.I. Moiseev [10] and M.E. Lerner
& O.A.Repin [11].

Lately, interest in nonstandard function spaces has greatly increased in con-
nection with their applications in mechanics, mathematical physics and pure
mathematical problems. Such spaces include Lebesgue spaces with variable summa-
bility index, Morrey spaces, grand Lebesgue spaces, Orlicz, Lorents, Martsinke-
vich, etc.. Numerous works have been dedicated to this field, and this trend
is increasing over time. More detailed information can be found, for example,
in [12, 13, 14, 15, 16]. Problems of the theory of partial differential equations
in Sobolev spaces generated by the norms of the above spaces also began to be
studied (see, e.g., [2, 3, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]).
This article is also dedicated to this field.

In this work, we consider a nonlocal boundary value problem for the Laplace
equation in an unbounded domain in Sobolev spaces generated by the norm of the
weighted grand Lebesgue space. The notion of strong solvability of this problem
is defined and its correct solvability is proved. At the same time, the basis prop-
erty of one trigonometric system in separable weighted grand Lebesgue spaces is
proved, and this fact is used to establish the correct solvability. Note that earlier
this problem was considered by E.I.Moiseev [10] in the classical formulation.

2. Needful information

We will use the following notations. Let N be natural numbers and Z+ =

{0}
⋃
N . Let α = (α1;α2) ∈ Z+ × Z+ be a multiindex and ∂αu = ∂|α|u

∂x
α1
1 ∂x

α2
2

,

where |α| = α1 + α2. Let |M | denote the Lebesgue measure of the set M ⊂ R
(R is a real axis). p′ be the number conjugate to p: 1

p′ + 1
p = 1. We also denote

pε = p− ε. Also, let X∗ denote the dual space of X.

Let ν : R→ R+ = (0, +∞) be some weight function, that is
∣∣ν−1 {0; +∞}

∣∣ =
0. We say that ν (·) belongs to the Muckenhoupt class Ap (J) (J = (0, 2π)) if it
is periodic on R with period 2π and satisfies the condition

sup
I⊂J

(
1

|I|

∫
I
ν (t) dt

)(
1

|I|

∫
I
|ν (t)|−

1
p−1 dt

)p−1

< +∞,
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where sup is taken over all intervals I ⊂ J . Assume that Π = J × R+ and
J0 = {(0; y) : y > 0} , J2π = {(2π; y) : y > 0}.

Let us define the spaces we need. The (weighted) grand Lebesgue space
Lp),ν (J) is the Banach space of measurable (in the Lebesgue sense ) functions on
J with the norm

‖f‖Lp),ν(J) = sup
0<ε<p−1

(
ε

∫
J
|f |p−ε νdx

) 1
p−ε

, 1 < p < +∞.

We also define a weighted space Lp),ν (Π) with the norm

‖u‖Lp),ν(Π) = sup
0<ε<p−1

∫ +∞

0

(
ε

∫
J
|u (x; y)|p−ε ν (x) dx

) 1
p−ε

dy.

The corresponding Sobolev space Wm
p),ν (Π) is defined by the norm

‖u‖Wm
p),ν

(Π) =
∑
|α|≤m

‖∂αu‖Lp),ν(Π) .

These spaces are nonseparable, and therefore, the method of biorthogonal ex-
pansion (essentially the spectral method) is not applicable for studying the solv-
ability of differential equations for these spaces. Then we select the subspace
Np),ν (Π) ⊂ Lp),ν (Π) (separable) based on the shift operator Tδ:

(Tδu) (x; y) =

{
u (x+ δ; y) , (x+ δ; y) ∈ Π,

0 , (x+ δ; y) /∈ Π.

So, let us assume

Nm
p),ν (Π) =

u ∈Wm
p),ν (Π) :

∑
|α|≤m

‖Tδ (∂αu)− ∂αu‖Lp),ν(Π) → 0, δ → 0

 .

Let N0
p),ν (Π) = Np),ν (Π). In a similar way, we define the Sobolev space

Nm
p),ν (J) (N0

p),ν (J) = Np),ν (J) on the interval J . Let Vp) (J) denote the following
class of weights:

Vp) (J) =
⋃

ε∈(0,p−1)

L
p′
′
ε−1

(J) .

The following lemma is true.

Lemma 1. [29] Let ν ∈ L1 (J) &ν−1 ∈ Vp) (J) , 1 < p < +∞. Then the following
statements are true: i) there is a continuous inclusion Lp),ν (J) ⊂ L1 (J); ii)

C∞0 (J) = Np),ν (J), where the closure is taken in the norm of ‖·‖Lp),ν(J).
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We will largely use the following result from [32].

Theorem 1. Let ν ∈ Ap (J) , 1 < p < +∞. Then the trigonometric system
{1; cosnx; sinnx}n∈N forms a basis for Np),ν (J).

Let us consider the following systems of functions:

{1, cosnx;x sinnx}n∈N , (3)

{u0 (x) ;un (x) ;ϑn (x)}n∈N , (4)

where
u0 (x) = 1

2π (2π − x) ; un (x) = 1
π2 (2π − x) cosnx;

ϑn (x) = 1
π sinnx, n ∈ N.

The following theorem is true.

Theorem 2. Let ν ∈ Ap (J) , 1 < p < +∞. Then the system (3) forms a basis
for Np),ν (J).

Proof. Let us assume

(g; f) =

∫
J
f (x) g (x) dx,

and denote the functional generated by the function g by bg, that is, bg (f) =
(g, f) . Let us consider the functionals {bu0 ; bun ; bϑn}n∈N . Let ε0 ∈ (0, p− 1) be
some number. We have

|bun (f)| ≤
∫
J
|f | ν

1
pε0 ν

− 1
pε0 dx ≤ /Hölder’s inequality/ ≤

≤
(∫

J
|f |pε0 νdx

) 1
pε0

∫
J
ν
−
p
′
ε0
pε dx

− 1

p
′
ε0

≤

≤ ε
− 1
pε0

0

(∫
J
ν
− 1
pε0−1dx

)− 1

p
′
ε0 ‖f‖Lp),ν(J) . (5)

It is well known that (see, e.g., [33, p.395]) if ν ∈ Ap (J), then ∃ε0 > 0 (sufficiently
small): ν ∈ Apε0 (J). Choosing ε0 in (5) based on the condition ν ∈ Apε0 (J),

we obtain bun ∈
(
Lp),ν (J)

)∗
, ∀n ≥ 0. Similar considerations also imply bϑn ∈(

Lp),ν (J)
)∗
, ∀n ≥ 1. Therefore, according to the results of [10], system (4) is

biorthogonal to system (3) in Lp),ν (J), and therefore, system (3) is minimal in
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Lp),ν (J). Let us prove that it is also complete in Np),ν (J). From ν ∈ Ap (J) ⇒
ν ∈ L1 (J) &ν−1 ∈ Vp) (J). Then Lemma 1 implies that C∞0 (J) is dense in
Np),ν (J). Therefore, it suffices to prove that an arbitrary function from C∞0 (J)
can be approximated by linear combinations of the system (4) in Lp),ν (J).

So, let f ∈ C∞0 (J) be an arbitrary function and let us assume that g (x) =
2π−x
π2 f (x). It is clear that g ∈ C∞0 (J). We have

f+
n = 1

π2

∫ 2π
0 f (x) (2π − x) cosnxdx =

∫
J g (x) cosnxdx = 1

n

∫ 2π
0 g′ (x) sinnxdx =

= − 1
n2

∫ 2π
0 g′′ (x) cosnxdx⇒ |f+

n | ≤ c
n2 , ∀n ∈ N.

Similarly, ∣∣f−n ∣∣ ≤ c

n2
, ∀n ∈ N,

where

f−n =
1

π

∫ 2π

0
f (x) sinnxdx.

As a result, the series

F (x) =
1

2π

∫ 2π

0
(2π − x) f (x) dx+

∞∑
n=1

(
f+
n cosnx+ f−n x sinnx

)
, (6)

converges uniformly on J . According to the results of [10], system (3) forms
a basis for L2 (J), and therefore, it is clear that F = f . It follows from the
uniform convergence that the series (6) converges to f in Lp),ν (J). This implies
the completeness of system (3) in Np),ν (J).

Let us prove that the system (3) is a basis in Np),ν (J). Consider the following
projectors:

Sn;m (f) =
n∑
k=0

(uk; f) cos kx+
m∑
k=1

(ϑk; f)x sin kx, ∀n ∈ Z+; ∀m ∈ N.

We have

(u0; f) =

(
1

2π
;F

)
, (uk; f) =

(
1

π2
cos kx;F

)
,

where F (x) = (2π − x) f (x). Taking into account these relations for Sn;m, we
obtain the following estimate:

‖Sn;m (f)‖Lp),ν(J) ≤

∥∥∥∥∥
(

1

2π
;F

)
+

n∑
k=1

(
1

π2
cos kx;F

)
cos kx

∥∥∥∥∥
Lp),ν(J)

+
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+

∥∥∥∥∥x
m∑
k=1

(
1

π
sin kx; 4πf

)
sin kx

∥∥∥∥∥
Lp),ν(J)

≤

≤ /from the basicity of system {1; cosnx; sinnx}n∈N in Np),ν (J) / ≤

≤ c
(
‖F‖Lp),ν(J) + 2π ‖4πF‖Lp),ν(J)

)
≤

≤ c ‖f‖Lp),ν(J) , ∀n ∈ Z+; ∀m ∈ N,

where c > 0 is a constant which is independent of f and may be different in
different places. This implies that the projectors {Sn;m} are uniformly bounded
in Lp),ν (J) and, as a result, system (3) forms a basis for Np),ν (J).

Theorem is proved. J

In what follows, we will use an analog of Minkowski’s integral inequality with
respect to the grand Lebesgue norm. For this purpose, we need some concepts
and facts from the theory of Banach function spaces (see, e.g., [34]).

So, let Sp),ν be the unit ball in Lp),ν (J), that is

Sp),ν =
{
f ∈ Lp),ν (J) : ‖f‖Lp),ν(J) ≤ 1

}
.

We denote the associative space of Lp),ν (J) by L
′

p),ν (J), i.e.

L
′

p),ν (J) =

{
g ∈ F (J) : sup

f∈Sp),ν

∣∣∣∣∫
J
f (x) g (x) dx

∣∣∣∣ < +∞

}
,

with the norm

‖g‖
L
′
p),ν

(J)
= sup

f∈Sp),ν

∣∣∣∣∫
J
fgdx

∣∣∣∣ ,
where F (J) is the set of all measurable functions (in the sense of Lebesgue) on
J . Let S

′

p),ν be the unit ball in L
′

p),ν (J), i.e.

S
′

p),ν =

{
g ∈ L′p),ν (J) : ‖g‖

L
′
p),ν

(J)
≤ 1

}
.

As established in the monograph [34] (Theorem 2.9; p.13),

‖f‖Lp),ν(J) = sup
g∈S′

p),ν

∣∣∣∣∫
J
fgdx

∣∣∣∣ .
Let us prove the following
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Proposition 1. (Minkowski’s inequality) Let f ∈ F (J ×R+) (F (J ×R+) be the
set of Lebesgue measurable functions on J × R+). Then the following inequality
holds: ∥∥∥∥∫

R+

f (·; y) dy

∥∥∥∥
Lp),ν(J)

≤
∫
R+

‖f (·; y)‖Lp),ν(J) dy. (7)

Proof. Let g ∈ S′p),ν be an arbitrary function. We have

∫
J

∣∣∣∫R+
f (x; y) dyg (x)

∣∣∣ dx ≤ ∫J ∫R+
|f (x; y) g (x)| dydx =

= /Fubini′s theorem/ =
∫
R+

∫
J |f (x; y) g (x)| dxdy ≤

≤
∫
R+

sup
g∈S′

p),ν

∫
J |f (x; y) g (x)| dxdy =

∫
R+
‖f (·; y)‖Lp),ν(J) dy.

Consequently,

sup
g∈S′

p),ν

∫
J

∣∣∣∣∫
R+

f (x; y) dyg (x)

∣∣∣∣ dx ≤ ∫
R+

‖f (·; y)‖Lp),ν(J) dy.

This immediately implies inequality (7).

Proposition is proved. J

3. The main results

Let us consider the following nonlocal problem for the Laplace equation:

∆u = 0, (x; y) ∈ Π; (8)

u/J = f ; u/J0 = u/J2π ; ux/J = 0. (9)

By a solution of the problem (8), (9), we mean a function u ∈ N2
p),ν (Π) satisfying

the equation (8) a.e. in Π, for which the relations (9) hold on the boundary
∂Π = J

⋃
J0
⋃
J2π (it is assumed that these relations make sense). First, we

prove the uniqueness of the solution to this problem. So, the following is true.

Theorem 3. Let ν ∈ Ap (J) , 1 < p < +∞, f ∈ W 2
p;ν (J) &f (0) = f (2π) =

f ′ (0) = 0. If problem (8), (9) is solvable in N2
p),ν (Π), then its solution is unique.
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Proof. Let all conditions of the theorem be satisfied and let u ∈ N2
p),ν (Π) be

some solution of problem (8), (9). Following the estimate (5), we establish∫ π

0
|u (x; y)| dx ≤ c ‖u (·; y)‖Lp),ν(J)

in exactly the same way, where c > 0 is a constant is independent of u (·; ·). From
this estimate we directly obtain

‖u‖W 2
1 (Π) ≤ c ‖u‖W 2

p),ν
(Π) (10)

and u ∈W 2
1 (Π). Let ξ > 0 be an arbitrary number and let us suppose that

Jξ = {(x; ξ) : x ∈ J} ; Πξ = {(x; y) : x ∈ J&y ∈ (0, ξ)} .

Denote the trace of the function (as an element of the space W 2
1 (Πξ)) u (·; ·)

on Jξ by uξ (·), i.e., uξ = u/Jξ . Let us show that uξ ∈ Lp),ν (J). It is clear that

u ∈W 2
p),ν (Πξ). Denote the closure of C∞

(
Πξ

)
in W 2

p),ν (Πξ) by N2
p),ν (Πξ). First,

let us consider the case u ∈ C∞
(
Πξ

)
. Without loss of generality, we assume that

u/J = 0. We have

uξ (x) = u (x; ξ) =

∫ ξ

0

∂u (x; y)

∂y
dy.

Applying the Minkowski inequality (Proposition 1), we obtain

‖uξ‖Lp),ν(J) ≤
∫ ξ

0

∥∥∥∥∂u (·; y)

∂y

∥∥∥∥
Lp),ν(J)

dy ≤ ‖u‖W 2
p),ν

(J) , ∀u ∈ C
∞ (Πξ

)
.

Proceeding from this estimate and using the fact that C∞
(
Πξ

)
is dense in

N2
p),ν (Πξ), we establish that the trace of an arbitrary function u ∈ N2

p),ν (Πξ)
satisfies the estimate

‖uξ‖Lp),ν(J) ≤ ‖u‖W 2
p),ν

(Π) , ∀u ∈ N
2
p),ν (Π) .

If u(·; ·) satisfies equation (8), then it is clear that u ∈ C∞ (Π) ⇒ uξ (x) =
u (x; ξ) , ∀x ∈ J .

So, let u ∈ N2
p),ν (Π) be a solution to problem (8), (9). Consider the relations

u0 (y) = 1
2π

∫ 2π
0 u (x; y) (2π − x) dx,

un (y) = 1
π2

∫ 2π
0 u (x; y) (2π − x) cosnxdx,

ϑn (y) = 1
π

∫ 2π
0 u (x; y) sinnxdx, ∀n ∈ N,
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for ∀y ∈ R+. It is clear that the Newton–Leibniz formula

u (x; y + h)− u (x; y) =

∫ y+h

y

∂u (x; t)

∂t
dt, ∀y > 0,

holds for a.e. x ∈ J . As already established, from ν ∈ Ap (J) ⇒ Lp),ν (Π) ⊂
L1 (Π). Therefore, ∂u

∂y ∈ L1 (Π), and as a result, it follows from Theorem 1.1.1
of the monograph [35, p.13] that the functions {un;ϑn} are twice differentiable
and can be differentiated under the integral sign. Let us consider ϑn, n ∈ N .
Multiplying the equation by sinnx and integrating it over J , we obtain

ϑ
′′
n (y)− n2ϑn (y) = 0, y > 0, (11)

for ϑn (·).
Let α ∈ C∞ (R) be such that α (y) ≡ 1 in a sufficiently small neighborhood

of the point y = 0 and α (y) = 0, ∀y : |y| ≥ 1. Considering the function
F (x; y) = α (y)u (x; y), we obtain F (x; y) = 0, ∀y ≥ 1. Therefore, without loss
of generality, we will assume u (x; y) = 0, ∀y ≥ 1 in the calculations below. So,
we have

u (x; y) = −
∫ 1

y

∂u (x; t)

∂t
dt, a.e. x ∈ J

⇒ f (x) = u (x; 0) = −
∫ 1

0

∂u (x; t)

∂t
, a.e. x ∈ J.

Consequently,

|u (x; y)− f (x)| ≤
∫ y

0

∣∣∣∣∂u (x; t)

∂t

∣∣∣∣ , a.e. x ∈ J,

and, as a result, we obtain∫
J
|u (x; y)− f (x)| dx ≤

∫
J

∫ y

0

∣∣∣∣∂u (x; t)

∂t

∣∣∣∣ dtdx.
Since |{(x; t) : (x; t) ∈ J × (0, y)}| → 0, y → +0, it is clear that uy (·)→ f (·) , y →
+0 , in L1 (J) . It is easy to see that ϑn (·) ∈W 2

1 (R+), and therefore, ∃ lim
y→+0

ϑn (y) =

ϑn (0) , ∀n ∈ N . From these relations we directly obtain

ϑn (0) =
1

π

∫ 2π

0
f (x) sinnxdx, ∀n ∈ N. (12)
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On the other hand, we have

ϑn (y)− ϑn (0) = 1
π

∫ 2π
0 (u (x; y)− u (x; 0)) sinnxdx =

= 1
π

∫ 2π
0

∫ y
0
∂u(x;t)
∂t sinnxdtdx⇒ |ϑn (y)− ϑn (0)| ≤

≤ 1
π

∫∫
Π

∣∣∣∂u∂y ∣∣∣ dxdy < +∞.

From here we directly obtain

sup
y>0
|ϑn (y)| < +∞. (13)

The only solution to problem (11)–(13) is

ϑn (y) =
1

π

∫ 2π

0
f (x) sinnxdx e−ny, ∀n ∈ N. (14)

From similar considerations for un, we obtain

u0 (y) = 1
2π

∫ 2π
0 (2π − x) f (x) dx,

un (y) = 1
π2

∫ 2π
0 (2π − x) f (x) cosnxdx e−ny + 1

π

∫ 2π
0 f (x) sinnxdx ye−ny, ∀n ∈ N.

(15)
Thus, if the function u ∈ N2

p),ν (Π) is a solution to problem (8), (9), then the

biorthogonal coefficients of the function u (·; y) in system (3) satisfy expressions
(14), (15). This immediately implies the uniqueness of the solution of problem
(8), (9). In fact, if f = 0, then formulas (14), (15) imply that u0 (y) = un (y) =
ϑn (y) = 0, ∀n ∈ N, ∀y ∈ R+. Since uy ∈ Np),ν (J) , ∀y ∈ R+, and system (3)
forms a basis for Np),ν (J), it follows that uy (x) = u (x; y) = 0, a.e. x ∈ J, ∀y ∈
R+ ⇒ u (x; y) = 0, a.e. (x; y) ∈ Π. Therefore, the homogeneous problem has
only a trivial solution.

Theorem is proved. J

Now let us move on to the existence of a solution. The following is true.

Theorem 4. Let ν ∈ Ap (J) , 1 < p < +∞, and the boundary function f satisfy
the conditions

f ∈ N2
p),ν (J) &f (0) = f (2π) = f ′ (0) = 0.

Then problem (8), (9) has a (unique) solution in the space N2
p),ν (Π).
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Proof. Let f satisfy all conditions of the theorem and consider the function

u (x; y) = u0 (y) +

∞∑
n=1

(un (y) cosnx+ ϑn (y) sinnx) , (x; y) ∈ Π,

where the coefficients u0 (·) , un (·) , ϑn (·) , n ∈ N , are defined by the expressions
(14), (15). Let us show that u ∈ N2

p),ν (Π). Firstly, let us consider the series

u1 (x; y) =
∞∑
n=1

ϑn (y)x sinnx.

Formally differentiating term by term, we have

∂2u1
∂y2

=
∑∞

n=1 ϑ
′′
n (y)x sinnx,

∂u1
∂x =

∑∞
n=1 ϑn (y) sinnx+

∑∞
n=1 nϑn (y)x cosnx,

∂2u1
∂x2

= 2
∑∞

n=1 nϑn (y) cosnx−
∑∞

n=1 n
2ϑn (y)x sinnx.

Let

w (x; y) =

∞∑
n=1

n2ϑn (y)x sinnx.

Let us show that the function w (·; ·) belongs to the space Np),ν (Π). Suppose

fn =
1

π

∫ 2π

0
f (x) sinnxdx.

Consequently,

ϑn (y) = fne
−ny, n ∈ N.

Taking into account the conditions on the function f , we have

fn = − 1

πn

∫ 2π

0
f (x) d cosnx =

1

πn

∫ 2π

0
f ′ (x) cosnxdx =

=
1

πn2

∫ 2π

0
f ′′ (x) sinnxdx =

1

n2
f
′′
n ,

where

f
′′
n =

(
f ′′
)
n

=
1

π

∫ 2π

0
f ′′ (x) sinnxdx.
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Thus,

w (x; y) =
∞∑
n=1

f
′′
nx sinnx e−ny.

It is known that if ν ∈ Ap (J) , 1 < p < +∞, then ∃δ > 0 : ν ∈ L1+δ (J) (see,
e.g., [33, p.395]). Let α = 1+δ and 1

α + 1
α′ = 1. Let ε ∈ (0, p− 1) be an arbitrary

number. We have the following continuous embeddings: Lp (J) ⊂ Lp−ε (J) ⊂
L1 (J). Let us suppose that β = p

p−ε ⇒
1
β′ = 1 − p−ε

p = ε
p ⇒ β′ = p

ε . Applying
Hölder inequality, we have∫ 2π

0 |f |
p−ε νdx =

∫ 2π
0 |f |

p−ε ν
1
β ν

1
β′ dx ≤

(∫ 2π
0 |f |

p νdx
) 1
β
(∫ 2π

0 νdx
) 1
β′ ⇒

(
ε
∫ 2π

0 |f |
p−ε νdx

) 1
p−ε ≤

≤
(∫ 2π

0 |f |
p νdx

) 1
p
(∫ 2π

0 νdx
) ε
p−ε ·

1
p
ε

1
p−ε ≤ c

(∫ 2π
0 |f |

p νdx
) 1
p
,

where c > 0 is a constant independent of f and ε. This immediately gives

‖f‖Lp),ν(J) ≤ c ‖f‖Lp,ν(J) , ∀f ∈ Lp),ν (J) . (16)

Applying the Hölder inequality again, we obtain∫ 2π

0
|f |p ν (x) dx ≤ c

(∫ 2π

0
|f |pα

′
dx

) 1
α′

, (17)

where c is a constant independent of f . Let us consider the following special
cases.

I. p ≥ 2. We have p1 = pα′ > 2. Applying the classical Hausdorff–Young
theorem (see, e.g., [36, p.154]) to the function w (·; y), from inequalities (16), (17)
we have

‖w (·; y)‖Lp),ν(J) ≤ c ‖w (·; y)‖Lp,ν(J) ≤

≤ c
(∫ 2π

0 |w (x; y)|p1 dx
) 1
p1 ≤ c

(∑∞
n=1

∣∣∣f ′′ne−ny∣∣∣p′1
) 1

p
′
1 ≤

≤ c
∑∞

n=1

∣∣∣f ′′ne−ny∣∣∣ , ∀y ∈ R+.

Integrating this inequality with respect to y over R+, we obtain

‖w‖Lp),ν(Π) =

∫ +∞

0

(∫
J
|w (x, y)|P ν (x) dx

) 1
p

dy ≤



200 T.J. Mammadov

≤ c
∞∑
n=1

∣∣∣f ′′n ∣∣∣ ∫ +∞

0
e−nydy = c

∞∑
n=1

∣∣∣f ′′n ∣∣∣
n
.

This implies

‖w‖Lp),ν(Π) ≤ c

( ∞∑
n=1

1

nβ′

) 1
β′
( ∞∑
n=1

∣∣∣f ′′n ∣∣∣β
) 1

β

≤

≤ /Hausdorff-Young inequality/ ≤ c
∥∥∥f ′′∥∥∥

Lβ′ (J)
, (18)

where β ∈ [2,+∞] is some number with 1
β + 1

β′ = 1.
Further, it is known that if ν ∈ Ap (J) , 1 < p < +∞, then ∃q : 1 < q <

p− ε < p⇒ ν ∈ Aq (J). Let us suppose that r = pε
q ⇒ 1 < r < pε. Then

∫
J
|g|r dx =

∫
J
|g|

pε
q ν

1
q ν
− 1
q dx ≤

(∫
J
ν
− q
′

q dx

) 1
q′ (∫

J
|g|pε νdx

) 1
q

.

Taking into account that − q
′

q = − 1
q−1 , the relation ν

− 1
q−1 ∈ L1 (J) follows from

ν ∈ Aq (J). Then from the previous inequality we directly obtain

‖g‖Lr(J) ≤ c ‖g‖Lpε,ν(J) , (19)

where c > 0 is a constant independent of g. Let us take β so large that 1 < β′ <
r ⇒ ‖g‖Lβ′ (J) ≤ c ‖g‖Lr(J). Then from inequalities (18), (19), we have

‖w‖Lp),ν(Π) ≤ c
∥∥f ′′∥∥

Lβ′ (J)
≤ c

∥∥f ′′∥∥
Lr(J)

≤ c
∥∥f ′′∥∥

Lpε,ν(J)
≤ c

∥∥f ′′∥∥
Lp),ν(J)

,

where c > 0 is a constant independent of f .
II. p ∈ (1, 2). Following the definition of the number α, we choose δ > 0 so

small that p1 = pα′ > 2 (since α→ 1+0⇒ α′ → +∞, this is possible). Based on
this inequality, the further reasoning is carried out in a completely similar way
to case I.

Other series in the expression u (·; ·) can be estimated in a similar way, and,
as a result, we obtain the following estimate:

‖u‖W 2
p),ν

(Π) ≤ c
∥∥f ′′∥∥

Lp),ν(J)
≤ c ‖f‖W 2

p),ν
(J) ,

where c > 0 is a constant independent of f . u (·; ·) satisfying the equation (8)
is verified directly. Let us show that it also satisfies the boundary conditions.
Denote the trace operators on the boundaries J0; J2π and J by θ0; θ2π and θJ ,
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respectively. Let us show that θJu = f . In fact, let ν ∈ Ap (J) , 1 < p < +∞⇒
∃ε > 0 (sufficiently small): ν ∈ Apε , pε = p − ε > 1. From f ∈ Lp),ν (J) ⇒
f ∈ Lpε,ν (J). It is clear that θJu; f ∈ L1 (J). Therefore, it suffices to prove that
θJu = f , a.e. on J .

Let us introduce the following function:

um (x; y) = u0 (y) +

m∑
n=1

(un (y) cosnx+ ϑn (y)x sinnx) , ∀ (x; y) ∈ Π, m ∈ N.

We have

(θJum) (x) = um (x; 0) = u0 (0) +

+
∑m

n=1 (un (0) cosnx+ ϑn (0)x sinnx) =

= 1
2π

∫ 2π
0 f (x) (2π − x) dx+

+
∑m

n=1

(
1
π2

∫ 2π
0 f (x) (2π − x) cosnxdx cosnx+ 1

π

∫ 2π
0 f (x) sinnxdxx sinnx

)
.

(20)
Also, θJ ∈

[
W 2
pε,ν (Π) ;Lpε,ν (J)

]
. On the other hand, it follows from ν ∈ Apε) (J)

that the system (3) forms a basis for Lpε,ν(J). Then it directly follows from (20)
that θJum → f, m → ∞, in Lpε,ν(J) and, as a result, it is clear that θJu = f ,
a.e. on J .

Let us consider the boundary conditions (9). Assume

Πδ = {(x; y) : x ∈ J&y ∈ (0, δ)} , ∀δ > 0.

It is easy to see that um ∈ C∞
(
Πδ

)
and moreover um (0; y) = um (2π; y) , ∀y > 0;

∀m ∈ N , and also ∂xm
∂x (0; y) = 0, ∀y > 0. From these relations and from

θJ ∈
[
W 2
pε, ν (Πδ) ; Lpε,ν (J)

]
, where ε ∈ (0, p− 1) is a sufficiently small fixed

number, it follows u (0; y) = u (2π; y) = 0, u
′
x (0, y) = 0, ∀y > 0 (since δ > 0 is

an arbitrary number). Thus, the boundary conditions (9) are satisfied.
Theorem is proved. J
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