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On the Solvability of an Inverse Problem for a
Hyperbolic Heat Equation

A.Ya. Akhundov*, A.Sh. Habibova

Abstract. The paper considers the inverse problem of determining the unknown coeffi-
cient on the right-hand side of the hyperbolic heat equation. An additional condition for
finding the unknown coefficient, which depends on the time variable, is given in integral
form. Theorems on the uniqueness, stability and existence of the solution are proved.
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1. Introduction

We consider the following inverse problem of determining a pair of functions
{f(t), u(x, t)}:

ut + νutt − uxx = f(t)g(x), (x, t) ∈ D = (0, 1)× (0, T ], (1)

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ [0, 1], (2)

u(0, t) = u(1, t) = 0, t ∈ [0, T ], (3)

1∫
0

u(x, t)dx = h(t), t ∈ [0, T ], (4)

where g(x), φ(x), ψ(x), h(t) are the given functions, ν > 0 is a relaxation coeffi-

cient, and ut =
∂u
∂t , utt =

∂2u
∂t2

, ux = ∂u
∂x , uxx = ∂2u

∂x2 .
Direct problems for hyperbolic equations have been studied in [1, 2, 3] etc. .
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The coefficient inverse problem for a hyperbolic equation has been studied in
[4, 5, 6]. Inverse problems for the hyperbolic heat equation have been considered
in [7,8]

Problem (1)-(4) belongs to the class of Hadamard ill-posed problems. There-
fore, this problem should be treated proceeding from the general concepts of the
theory of ill-posed problems. We make the following assumptions on the data of
problem (1)-(4):

10. g(x) ∈ C[0, 1],
1∫
0

g(x)dx = g0 ̸= 0;

20. φ(x) ∈ C2[0, 1], ψ(x) ∈ C1[0, 1],
1∫
0

φ(x)dx = h(0),
1∫
0

ψ(x)dx = h′(0);

30. h(t) ∈ C2[0, T ];

Definition 1. The pair of functions {f(t), u(x, t)} is called the solution of prob-
lem (1)-(4) if :

1) f(t) ∈ C[0, T ];

2) u(x, t) ∈ C2,2(D);

3) the conditions (1)-(4) hold for these functions.

First we reduce the problem (1)-(4) to an equivalent one.

Lemma 1. Let the conditions 10-30 be satisfied. Then the problems (1)-(4) and
(1), (2), (3)

f(t) =
[
h

′
(t) + νh

′′
(t)− ux(1, t) + ux(0, t)

]
/g0, t ∈ [0, T ], (5)

which require finding the pair {f(t), u(x, t)}, are equivalent, where h′
(t) = dh(t)

dt , h
′′
(t) =

d2h(t)
dt2

.

Proof. Let the pair of functions {f(t), u(x, t)} be the solution of problem (1)-
(4) in the sense of Definition 1. If we integrate equation (1) in the interval (0, 1)
with respect to the variable x, we get:

1∫
0

utdx+ ν

1∫
0

uttdx−
1∫

0

uxxdx = f(t)

1∫
0

g(x)dx. (6)

Taking into account the conditions of Lemma 1, we obtain

h
′
(t) + νh

′′
(t)− ux(1, t) + ux(0, t) = f(t)g0.
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Hence the validity of the formula (5) is obvious.

Now suppose that the pair of functions {f(t), u(x, t)} is the classical solution
of problem (1),(2),(3), (5). If we take into account formula (5) in (6), then for

y(t) =
1∫
0

u(x, t)dx− h(t) we can write

νy′′ + y′ = 0,

y(0) = 0, y′(0) = 0.

It is clear that the only solution to this problem is y(t) ≡ 0. From here we get
1∫
0

u(x, t)dx = h(t), t ∈ [0, T ].

The Lemma 1 is proved. ◀

The uniqueness theorem and estimation of stability for the solutions of inverse
problems occupy a central place in investigation of their well-posedness. Define
the following set:

K =
{
(f, u)|f(t) ∈ C[0, T ], u(x, t) ∈ C2,2(D), |f(t)| ≤ c1, |ux(x, t)| ≤ c2,

(x, t) ∈ D,u1x(0, t) = u2x(0, t), u1x(1, t) = u2x(1, t), t ∈ [0, T ],
∀(f1, u1), (f2, u2) ∈ K, c1, c2 = const > 0}

Let us assume that the two input sets, {g1(x), φ1(x), ψ1(x), h1(t)} and {g2(x),
φ2(x), ψ2(x), h2(t)} are given for problem (1),(2),(3),(5). For brevity, we will call
the problem with the first input set problem I1, while the one with the second
input set will be called problem I2. Let {f1(t), u1(x, t)} and {f2(t), u2(x, t)} be
solutions of problems I1 and I2, respectively.

Theorem 1. Let the following conditions hold:

1) the functions gi(x), φi(x), ψi(x), hi(t), i = 1, 2, satisfy conditions 10-30,
respectively;

2) Solutions of problems I1 and I2 exist in the sense of Definition 1 and they
belong to the set K.

Then there exists a T ∗(0 < T ∗ ≤ T ) such that for (x, t) ∈ D∗ = [0, 1]× [0, T ∗]
the solution of problem (1),(2),(3),(5) is unique, and the stability estimate
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1∫
0

[
ν(u1t(x, t)− u2t(x, t))

2+ (u1x(x, t)− u2x(x, t))
2
]
dx+

+c3 ∥f1(t)− f2(t)∥20 ≤ c4

{
1∫
0

[
(g1(x)− g2(x))

2 + (φ1x(x)− φ2x(x))
2+

+(ψ1(x)− ψ2(x))
2
]
dx+

∥∥∥h′
1t(t)− h

′
2t(t)

∥∥∥2
0
+
∥∥∥h′′

1tt(t)− h
′′
2tt(t)

∥∥∥2
0

}
(7)

is valid, where c3, c4 > 0 depend on the data of problems I1 and I2 in the set K,
∥q(t)∥0 = max

[0,T ]
|q(t)|.

Proof. First, we prove inequality (7) under the condition g1 = g2, φ1 =
φ2, ψ1 = ψ2, h1 = h2.

Denote

z(x, t) = u1(x, t)− u2(x, t), λ(t) = f1(t)− f2(t), δ1(x) = g1(x)− g2(x),

δ2(x) = φ1(x)− φ2(x), δ3(x) = ψ1(x)− ψ2(x), δ4(t) = h1(t)− h2(t).

Subtracting from the relations of problem I1 the corresponding relations of prob-
lem I2, we obtain the problem of determining a pair of functions {λ(t), z(x, t)}:

zt + νztt − zxx = λ(t)g1(x) + f2(t)δ1(x), (x, t) ∈ D, (8)

z(x, 0) = δ2(x), zt(x, 0) = δ3(x), x ∈ [0, 1], (9)

z(0, t) = z(1, t), t ∈ [0, T ], (10)

λ(t) =
[
δ
′
4(t) + νδ

′′
4 (t)− zx(1, t) + zx(0, t)

]
\ g01 +H(t), t ∈ [0, T ], (11)

where g0i =
1∫
0

gi(x)dx, i = 1, 2, H(t) =
[
h′2(t) + νh

′′
2(t)− u2x(1, t) + u2x(0, t)

]
×

× (g02 − g01) \ (g01 · g02)
Multiply equations (8) by 2zt(x, t) and integrate over the domain D:

2

t∫
0

1∫
0

[zt + νztt − zxx] ztdxdt =2

t∫
0

1∫
0

[λ(t)g1(x) + f2(t)δ1(x)] ztdxdt. (12)
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If we consider

2

t∫
0

1∫
0

ztztdxdt = 2

t∫
0

1∫
0

z2t dxdt,

2ν

t∫
0

1∫
0

zttztdxdt = ν

1∫
0

[
z2t (x, t)− δ23(x)

]
dx,

2

t∫
0

1∫
0

zxxztdxdt = −
1∫

0

[
z2x(x, t)− δ22x(x)

]
dx,

2

t∫
0

1∫
0

[λ(t)g1(x) + f2(t)δ2(x)] ztdxdt ≤
t∫

0

1∫
0

λ2(t)g21dxdt+

+

t∫
0

1∫
0

f21 (t)δ
2
1(x)dxdt+ 2

t∫
0

1∫
0

z21(t)dxdt,

then from (12) we get:

1∫
0

[
νz2t (x, t) + z2x(x, t)

]
dxdt ≤

≤
1∫

0

[
νδ23(x) + δ22x(x)

]
dx+ c5

1∫
0

δ21(x)dx+ c6t ∥λ∥20 , (13)

where c5, c6 > 0 depend on the data of problems I1 and I2 in the set K. Let us
estimate the function λ(t) . From (11) we have

|λ(t)| ≤
[∣∣∣δ′4(t)∣∣∣+ ν

∣∣∣δ′′4 (t)∣∣∣]/ |g01|+ |H(t)| |g02 − g01|/ |g01 · g02| ,

λ(t)2 ≤ c7

[∥∥∥δ′4∥∥∥2
0
+
∥∥∥δ′′4∥∥∥2

0

]
+ c8

1∫
0

δ21(x)dx.

The last inequality is satisfied for each t ∈ [0, T ], so it must be satisfied for the
maximum value of the left-hand side:

∥λ∥20 ≤ c7

[∥∥∥δ′4∥∥∥2
0
+
∥∥∥δ′′4∥∥∥2

0

]
+ c8

1∫
0

δ21(x)dx. (14)
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From (13) and (14) we get:

1∫
0

[
νz2t (x, t) + z2x(x, t)

]
dx+ ∥λ∥20 ≤

1∫
0

[
νδ23(x) + δ22x(x)

]
dx+

+c9
1∫
0

δ21(x)dx+ c6t ∥λ∥20+c7
[∥∥∥δ′4∥∥∥2

0
+
∥∥∥δ′′4∥∥∥2

0

]
.

(15)

Let T∗ ∈ (0, T ] be a number such that c6T
∗ < 1. Then the stability estimate (7)

is true in the domain D∗ = [0, 1]× [0, T ∗].

The uniqueness of the solution of problem (1), (2), (3), (5) is obtained from
inequality (7) for g1(x) = g2(x), φ1(x) = φ2(x), ψ1(x) = ψ2(x), h1(t) = h2(t).

Theorem 1 is proved. ◀

For A.N. Tikhonov correct problems, the existence of a solution is a priori as-
sumed and justified by the physical meaning of the problem under consideration.

Despite the fact that the proof of the existence of a solution to ill-posed
problems requires some additional conditions on the input data, from the point of
view of constructing algorithims for exact or appoximate solution of the problem,
it is certainly of practical interest.

Theorem 2. Let

1) g(x) ∈ C1[0, 1], g(0) = g(1) = 0,
1∫
0

g(x)dx = g0 ̸= 0;

2) φ(x) ∈ C2[0, 1], φ(0) = φ(1) = 0, φ′′(0) = φ′′(1) = 0,
1∫
0

φ(x)dx = h(0);

3) ψ(x) ∈ C1[0, 1], ψ(0) = ψ(1) = 0,
1∫
0

ψ(x)dx = h
′
t(0);

4) h(t) ∈ C2[0, T ]

The problem (1), (2), (3), (5) in D = [0, 1]× [0, T ] has a solution in the sense
of Definition 1.

Proof. For a given f(t) ∈ C[0, T ], the solution of problem (1),(2),(3) will be
sought in the form

u(x, t) = ϑ(x, t) + w(x, t)

Here ϑ(x, t) is the solution of the following problem:

νϑtt + ϑt − ϑxx = 0, (x, t) ∈ D, (16)

ϑ(x, 0) = φ(x), ϑt(x, 0) = ψ(x), x ∈ [0, 1], (17)

ϑ(0, t) = ϑ(1, t) = 0, t ∈ [0, T ], (18)
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and w(x, t) is the solution of the following problem:

νwtt + wt − wxx = f(t)g(x), (x, t) ∈ D, (19)

w(x, 0) = wt(x, 0) = 0, x ∈ [0, 1], (20)

w(0, t) = w(1, t) = 0, t ∈ [0, T ]. (21)

Let us first consider a homogeneous equation (16). We will look for all solutions
of this equation that can be represented in the form ϑ(x, t) = y(t)q(x) and satisfy
the boundary condition (18).

We can say that each of the functions

ϑn(x, t) = e−
t
2ν (An cosσnt+Bn sinσnt) sinλnx, n = 1, 2, ...

(for any constants An and Bn ) is a solution to the equation (16) that satisfies
the boundary condition (18).

Here λn = nπ, n = 1, 2, ..., σn =

√
4νλ2

n−1

2ν . Note that if 4νλ2n − 1 > 0, then
this inequality will hold for a finite number λn.

In this case, the corresponding eigen functions of the form yn(t) =

= e−
t
2ν

(
Ane

σnt +Bne
−σnt

)
, n = 1, ..., n0, yn0+1(t) = An0+1+Bn0+1t(σn = 0) do

not affect both the scheme of the proof and the assertions of Theorem 2.
Taking into account the initial conditions leads us to the following expression

for the coefficients An and Bn:

An = φn, Bn =
1

2νσn
φn +

1

σn
ψn. (22)

Here φn and ψn denote the Fourier coefficients of the functions φ(x) and ψ(x),
respectively, with regard to the system {sinλnx}.

Thus, formally we came to the following representation of the solution of the
mixed problem (16)-(18):

ϑ(x, t) =
∞∑
n=1

yn(t)qn(x) =

=
∞∑
n=1

e−
t
2ν

[
φn cosσnt+

(
1

2νσn
φn + 1

σn
ψn

)
sinσnt

]
sinλnx.

(23)

Formally expanding the desired solution w(x, t) of the problem (19)-(21) and
the right-hand side of the equation (19) f(t)g(x) in a series of eigen functions

{sinλnx} : w(x, t) =
∞∑
n=1

θn(t) sinλnx, and f(t)g(x) =
∞∑
n=1

f(t)gn sinλnx and

taking into account these functions in (19)-(21), we obtain:

νθ
′′
n(t) + θ

′
n(t) + λ2nθn(t) = fn(t),

θn(0) = θ
′
n(0) = 0,

(24)
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where fn(t) = f(t)gn, n = 1, 2, ....
The solution of the problem (24) has the following form:

θn(t) =
e−

t
2ν

2σn

t∫
0

e
τ
2ν fn(τ) sinσn(t− τ)dτ.

Given that wn(x, t) = θn(t) sinλnx, we get:

u(x, t) = e−
t
2ν

∞∑
n=1

{(
φn cosσnt+

φn + 2νψn

2νσn
sinσnt

)
sinλnx +

+
1

2σn

t∫
0

e
τ
2ν fn(τ) sinσn(t− τ) sinλnxdτ

 . (25)

In order for the function (25) to be a solution of the problem (1)-(3), for each
f(t) ∈ C[0, T ] the series (25) and the following formally composed series must
converge uniformly:

ut(x, t) = − 1

2ν
u(x, t) + e−

t
2ν

∞∑
n=1

{(
−σnφn cosσnt+

φn + 2νψn

2ν
cosσnt

)

× sinλnx+
1

2

t∫
0

e
τ
2ν fn(τ) cosσn(t− τ) sinλnxdτ

 , (26)

utt(x, t) = − 1

2ν
ut(x, t)−

1

2ν

∞∑
n=1

{(
−σnφn sinσnt+

φn + 2νψn

2ν
cosσnt

)
×

× sinλnx+
1

2

t∫
0

e
τ
2ν fn(τ) cosσn(t− τ) sinλnxdτ

+

+e−
t
2ν

∞∑
n=1

{(
−σ2nφn cosσnt − φn + 2νψn

2ν
sinσnt

)
sinλnx+

+
1

2

[
e

t
2ν fn(t)(−1)n + σn

t∫
0

e
τ
2ν fn(τ) sinσn(t− τ) sinλnxdτ

 , (27)

uxx(x, t) = e−
t
2ν

∞∑
n=1

{
λ2n

(
−φn cosσnt−

φn + 2νψn

2νσn
cosσnt

)
sinλnx−
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− λ2n
2σn

t∫
0

e
τ
2 fn(τ) sinσn(t− τ) sinλnxdτ

 , (28)

The following series are the majorants of the series (25)-(28), respectively:

∞∑
n=1

|un(x, t)| ≤ c10

∞∑
n=1

[
|φn|+

|φn + 2νψn|
2νσn

]
,

∞∑
n=1

|unt(x, t)| ≤ c11

∞∑
n=1

[
|un(x, t)|+ |σnφn|+

|φn + 2νψn|
2ν

+ |gn|
]
,

∞∑
n=1

|untt(x, t)| ≤ c12

∞∑
n=1

[
|σnφn|+ |φn|+ |ψn|+ |gn|+

∣∣σ2nφn

∣∣+ |σnνφn|
]
,

∞∑
n=1

|unxx(x, t)| ≤ c13

∞∑
n=1

[∣∣λ2nφn

∣∣+ ∣∣∣∣ λ2n
2νσn

φn

∣∣∣∣+ ∣∣∣∣λ2nψn

σn

∣∣∣∣+ ∣∣∣∣ λ2n
2νσn

gn

∣∣∣∣] .
Under the conditions of Theorem 2, the majorant series converge [1].

Thus, for each f(t) ∈ C[0, T ], the function (25) is a solution to problem (1)-(3)
in the sense of Definition 1.

Now we will show the existence of the function f(t) ∈ C[0, T ] .
Denote Q = C[0, T ] . Write equation (5) in operator form:

M [f(t)] = f(t),M : Q→ Q,

M [f(t)] =
[
h′(t) + h′′(t)

]
/g0 + e−

t
2ν

{ ∞∑
m=1

2λ2m−1 (φ2m−1 cosσ2m−1t+

+
φ2m−1 + 2νψ2m−1

2νσ2m−1
sinσ2m−1t

)
+

∞∑
m=1

λ2m−1

σ2m−1

t∫
0

e
τ
2ν f2m−1(τ) sinσ2m−1(t− τ)dτ

 /g0.

Denote

Q′ = {f |f(t) ∈ C[0, T ], |f(t) ≤ f0, t ∈ [0, T ]} ,

where f0 > 0 is some constant.
It is clear that M [Q′] ⊂ Q. Show that the set M [Q′] is uniformly bounded

and equicontinuous:

|M [f(t)]| =
[∣∣h′(t)∣∣+ ∣∣h′′(t)∣∣]/ |g0|+ e−

t
2ν

{ ∞∑
m=1

2λ2m−1 |φ2m−1|+



214 A.Ya. Akhundov, A.Sh. Habibova

+
|φ2m−1 + 2νψ2m−1|

2νσ2m−1
+
λ2m−1

σ2m−1
|gn| |f(t)|T

}
/ |g0| .

Under the conditions of Theorem 2 and by the relation f(t) ∈ Q′, from the
last inequality we obtain the uniform boundedness of the set M [Q′].

Now let’s show the equicontinuity of the set M [Q′]. Estimate the difference
M [f(t1)]−M [f(t2)] for any t1, t2 ∈ [0, T ]:

|M [f(t1)]−M [f(t2)]| ≤
[∣∣h′(t1)− h′(t2)

∣∣+ ∣∣h′′(t1)− h′′(t2)
∣∣] / |g0|+

+e−
t
2ν

∞∑
m=1

{2λ2m−1 [|φ2m−1| | cosσ2m−1t1− cosσ2m−1t2|+
|φ2m−1 + 2νψ2m−1|

2νσ2m−1
×

× |sinσ2m−1t1 − sinσ2m−1t2|] +
λ2m−1

σ2m−1

 t1∫
t2

e
τ
2ν |f2m−1(τ) sinσ2m−1(t1 − τ)| dτ+

+

t∫
0

e
τ
2ν |f2m−1(τ) sinσ2m−1(t1 − τ)− sinσ2m−1(t2 − τ)| dτ

 /|g0|+

++ e
t1+t2
2ν

∣∣∣e t2
2ν − e

t1
2ν

∣∣∣ ∞∑
m=1

{2λ2m−1 (|φ2m−1| |cosσ2m−1t2|+

+
|φ2m−1 + 2νψ2m−1|

2νσ2m−1
|sinσ2m−1t2|

)
+

λ2m−1

σ2m−1

t∫
0

e
τ
2ν |f2m−1(τ) sinσ2m−1(t1 − τ)| dτ

 / |g0| .

Taking into account the conditions of Theorem 2, for the last inequality we
have

|M [f(t1)]−M [f(t2)]| ≤ c14 |t1 − t2| .

Thus, by the Arzela theorem, the set M [Q′] is compact in Q [9]. In this
case, according to the Schauder theorem, the operator M [f(t)] has at least one
fixed point, in other words, the operator equation M [f(t)] = f(t) has a solution
f(t) ∈ Q = C[0, T ].

Theorem 2 is proved. ◀
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