The Symmetric H_{q}-Laguerre-Hahn Orthogonal Polynomials of Class Zero

M. Sghaier*, M. Zaatra, M. Mechri

Abstract

We consider the system of Laguerre-Freud equations associated with the H_{q}-Laguerre-Hahn orthogonal polynomials of class zero. This system is solved in the symmetric case. There are essentially three canonical cases.

Key Words and Phrases: orthogonal polynomials, q-difference operator, H_{q}-LaguerreHahn forms.

2010 Mathematics Subject Classifications: 33C45, 42C05

1. Introduction and preliminary results

The D-Laguerre-Hahn polynomial sequences, where D is the derivative operator, have attracted the interest of researchers from many points of view (see $[1,2,4,5,10]$ among others). They constitute a very remarkable family of orthogonal polynomials taking into consideration most of the monic orthogonal polynomial sequences (MOPS) found in literature. In particular, semiclassical orthogonal polynomials are Laguerre-Hahn MOPS [11]. The concept of D-Laguerre-Hahn polynomial sequences has been extended to discrete Laguerre-Hahn polynomials which are related to a divided difference operator. Indeed, the H_{q}-Laguerre-Hahn polynomial sequences, where H_{q} is the Hahn's operator, have been considered by several authors. Essentially, an algebraic theory was presented in [6, 9]. These families are extensions of discrete semiclassical polynomials $[8,7]$.

The D-Laguerre-Hahn polynomial sequences of class zero are completely described in [2]. For the difference operator D_{w}, the D_{w}-Laguerre-Hahn polynomial sequences of class zero has been analyzed in [12]. So, the aim of this paper is to determine the symmetric H_{q}-Laguerre-Hahn forms of class $s=0$, through the study of the differential functional equation fulfilled by these forms and the

[^0]resolution of a nonlinear system satisfied by the coefficients of the three-term recurrence relation of their sequences of monic orthogonal polynomials.

The structure of the manuscript is as follows. The first section contains material of preliminary and some results regarding the H_{q}-Laguerre-Hahn forms. In the second section, the system of Laguerre-Freud equations is built. In the third section, using this system, we obtain the symmetric sequences which we look for.

Let \mathcal{P} be the vector space of polynomials with coefficients in \mathbb{C} and let \mathcal{P}^{\prime} be its dual. We denote by $\langle u, f\rangle$ the action of $u \in \mathcal{P}^{\prime}$ on $f \in \mathcal{P}$. In particular, we denote by $(u)_{n}:=\left\langle u, x^{n}\right\rangle, n \geq 0$, the moments of u. For instance, for any form u, any polynomial g and any $a \in \mathbb{C} \backslash\{0\}$, we let $D u=u^{\prime}, g u, h_{a} u$ and $x^{-1} u$ be the forms defined by duality

$$
\begin{gathered}
\left\langle u^{\prime}, f\right\rangle:=-\left\langle u, f^{\prime}\right\rangle,\langle g u, f\rangle:=\langle u, g f\rangle,\left\langle h_{a} u, f\right\rangle:=\left\langle u, h_{a} f\right\rangle, \\
\left\langle x^{-1} u, f\right\rangle:=\left\langle u, \theta_{0} f\right\rangle, f \in \mathcal{P},
\end{gathered}
$$

where $\left(h_{a} f\right)(x)=f(a x)$ and $\left(\theta_{0} f\right)(x)=\frac{f(x)-f(0)}{x}$.
We also define the right-multiplication of a form u by a polynomial h as

$$
\begin{equation*}
(u h)(x):=\left\langle u, \frac{x h(x)-\xi h(\xi)}{x-\xi}\right\rangle=\sum_{i=0}^{n}\left(\sum_{j=i}^{n} a_{j}(v)_{j-i}\right) x^{i}, h(x)=\sum_{i=0}^{n} a_{i} x^{i} . \tag{1}
\end{equation*}
$$

Next, it is possible to define the product of two forms through

$$
\langle u v, f\rangle:=\langle u, v f\rangle, u, v \in \mathcal{P}^{\prime}, f \in \mathcal{P} .
$$

A form u is called regular if there exists a sequence of polynomials $\left\{S_{n}\right\}_{n \geq 0}$ (deg $\left.S_{n} \leq n\right)$ such that

$$
\left\langle u, S_{n} S_{m}\right\rangle=r_{n} \delta_{n, m} \quad, \quad r_{n} \neq 0, \quad n \geq 0 .
$$

Then, $\operatorname{deg} S_{n}=n, n \geq 0$ and we can always suppose each S_{n} is monic. In such a case, the sequence $\left\{S_{n}\right\}_{n \geq 0}$ is unique. The sequence $\left\{S_{n}\right\}_{n \geq 0}$ is said to be the sequence of monic orthogonal polynomials with respect to u. In the sequel, it will be denoted as MOPS. It is a very well known fact that the sequence $\left\{S_{n}\right\}_{n \geq 0}$ satisfies the recurrence relation [3]

$$
\begin{align*}
& S_{n+2}(x)=\left(x-\beta_{n+1}\right) S_{n+1}(x)-\gamma_{n+1} S_{n}(x), \quad n \geq 0 \tag{2}\\
& S_{1}(x)=x-\beta_{0}, \quad S_{0}(x)=1
\end{align*}
$$

with $\left(\beta_{n}, \gamma_{n+1}\right) \in \mathbb{C} \times \mathbb{C} \backslash\{0\}, \quad n \geq 0$. By convention we set $\gamma_{0}=(u)_{0}$. The form u is called normalized if $(u)_{0}=1$.

We recall that a form u is called symmetric if $(u)_{2 n+1}=0, n \geq 0$. The conditions $(u)_{2 n+1}=0, n \geq 0$ are equivalent to the fact that the corresponding MOPS $\left\{S_{n}\right\}_{n \geq 0}$ satisfies the three-term recurrence relation (2) with $\beta_{n}=0, n \geq 0$ [3].

Let us introduce the Hahn's operator [9]

$$
\left(H_{q} f\right)(x)=\frac{f(q x)-f(x)}{(q-1) x}, f \in \mathcal{P}, q \in \tilde{\mathbb{C}}
$$

where $\tilde{\mathbb{C}}:=\mathbb{C}-\left(\{0\} \cup\left(\bigcup_{n \geq 0}\left\{z \in \mathbb{C}, \quad z^{n}=1\right\}\right)\right)$. When $q \longrightarrow 1$, we meet again the derivative D.
By duality, we can define H_{q} from \mathcal{P}^{\prime} to \mathcal{P}^{\prime} such that

$$
\left\langle H_{q} u, f\right\rangle=-\left\langle u, H_{q} f\right\rangle, f \in \mathcal{P}, u \in \mathcal{P}^{\prime} .
$$

In particular, this yields $\left(H_{q} u\right)_{n}=-[n]_{q}(u)_{n-1}, n \geq 0$ with $(u)_{-1}=0$ and $[n]_{q}:=\frac{q^{n}-1}{q-1}, \quad n \geq 0$.

Definition 1. [6] The regular form u is called a H_{q}-Laguerre-Hahn form when it is regular and there exist three polynomials Φ (monic) , Ψ and $B, \operatorname{deg}(\Phi)=t \geq 0$, $\operatorname{deg}(\Psi)=p \geq 1, \operatorname{deg}(B)=r \geq 0$, such that

$$
\begin{equation*}
H_{q}(\Phi u)+\Psi u+B\left(x^{-1} u\left(h_{q} u\right)\right)=0 . \tag{3}
\end{equation*}
$$

The corresponding MOPS $\left\{S_{n}\right\}_{n \geq 0}$ is said to be H_{q}-Laguerre-Hahn.
Remark 1. When $B=0$, the form u is H_{q}-semiclassical.
Proposition 1. [6] We define $d=\max (t, r)$. The H_{q}-Laguerre-Hahn form u satisfying (3) is of class $s=\max (d-2, p-1)$ if and only if

$$
\begin{aligned}
& \prod_{c \in \mathcal{Z}_{(\Phi)}}\left\{\left|\left(H_{q} \Phi\right)(c)+q\left(h_{q} \Psi\right)(c)\right|+\left|q\left(h_{q} B\right)(c)\right|\right. \\
& \left.\quad+\left|\left\langle u,\left(\theta_{c q} \circ \theta_{c} \Phi\right)+q\left(\theta_{c q} \Psi\right)+q\left(h_{q} u\right)\left(\theta_{0} \circ \theta_{c q} B\right)\right\rangle\right|\right\} \neq 0,
\end{aligned}
$$

where $Z_{(\Phi)}:=\{z \in C, \Phi(z)=0\}$.
The H_{q}-Laguerre-Hahn character is invariant by shifting. Indeed, the shifted form $\tilde{u}=h_{a^{-1}} u, a \in C-\{0\}$ satisfies

$$
H_{q}(\tilde{\Phi} \tilde{u})+\tilde{\Psi} \tilde{u}+\tilde{B}\left(x^{-1} \tilde{u}\left(h_{q} \tilde{u}\right)\right)=0,
$$

with

$$
\tilde{\Phi}(x)=a^{-t} \Phi(a x), \quad \tilde{B}(x)=a^{-t} B(a x), \quad \tilde{\Psi}(x)=a^{1-t} \Psi(a x)
$$

The sequence $\left\{\tilde{S}_{n}(x)=a^{-n} S_{n}(a x)\right\}_{n \geq 0}$ is orthogonal with respect to \tilde{u} and fulfils (2) with

$$
\tilde{\beta}_{n}=\frac{\beta_{n}}{a}, \quad \tilde{\gamma}_{n+1}=\frac{\gamma_{n+1}}{a^{2}}, n \geq 0
$$

The next result [6] characterizes the elements of the functional equation satisfied by any symmetric H_{q}-Laguerre-Hahn form.

Proposition 2. Let u be a symmetric H_{q}-Laguerre-Hahn form of class satisfying (3). The following statements hold.

1. When s is odd, then Φ and B are odd and Ψ is even.
2. When s is even, then Φ and B are even and Ψ is odd.

2. The Laguerre-Freud equations

In this section, we will establish the non-linear system satisfied by β_{n} and γ_{n}, simply by using the functional equation.

In the sequel, we assume that $\left\{S_{n}\right\}_{n \geq 0}$ is a H_{q}-Laguerre-Hahn sequence of class zero satisfying (2) and its corresponding form u satisfying (3) with

$$
\begin{array}{ll}
\Phi(x)=c_{2} x^{2}+c_{1} x+c_{0}, & \Psi(x)=a_{1} x+a_{0} \\
B(x)=b_{2} x^{2}+b_{1} x+b_{0}, & a_{1} \neq 0, \quad\left|c_{2}\right|+\left|c_{1}\right|+\left|c_{0}\right| \neq 0 \tag{4}
\end{array}
$$

Then, from (3) and (4), we obtain for $n \geq 0$

$$
\begin{align*}
& -\left\langle\Phi u, H_{q}\left(S_{n}(\xi) S_{n}\left(q^{-1} \xi\right)\right)(x)\right\rangle+\left\langle\Psi u, S_{n}(x) S_{n}\left(q^{-1} x\right)\right\rangle \\
& \quad+\left\langle u, B\left(x^{-1} u\left(h_{q} u\right)\right), S_{n}(x) S_{n}\left(q^{-1} x\right)\right\rangle=0 \\
& -\left\langle\Phi u, H_{q}\left(S_{n+1}\left(q^{-1} \xi\right) S_{n}(\xi)\right)(x)\right\rangle+\left\langle\Psi u, S_{n}(x) S_{n+1}\left(q^{-1} x\right)\right\rangle \tag{5}\\
& \quad+\left\langle u, B\left(x^{-1} u\left(h_{q} u\right)\right), S_{n}(x) S_{n+1}\left(q^{-1} x\right)\right\rangle=0
\end{align*}
$$

Now, let us define for $n \geq 0$ and $0 \leq k \leq 2$

$$
\begin{align*}
& I_{n, k}(q)=\left\langle u, x^{k} S_{n}(x) S_{n}\left(q^{-1} x\right)\right\rangle, 0 \leq k \leq 1 \\
& J_{n, k}(q)=\left\langle u, x^{k} S_{n}(x) S_{n+1}\left(q^{-1} x\right)\right\rangle, 0 \leq k \leq 1 \\
& K_{n, k}(q)=\left\langle u, x^{k} H_{q}\left(S_{n}(\xi) S_{n}\left(q^{-1} \xi\right)\right)(x)\right\rangle, 0 \leq k \leq 2 \\
& L_{n, k}(q)=\left\langle u, x^{k} H_{q}\left(S_{n+1}\left(q^{-1} \xi\right) S_{n}(\xi)\right)(x)\right\rangle, 0 \leq k \leq 2 \tag{6}\\
& M_{n, k}(q)=\left\langle x^{-1} u\left(h_{q} u\right), x^{k} S_{n}(x) S_{n}\left(q^{-1} x\right)\right\rangle, 0 \leq k \leq 2 \\
& N_{n, k}(q)=\left\langle x^{-1} u\left(h_{q} u\right), x^{k} S_{n}(x) S_{n+1}\left(q^{-1} x\right)\right\rangle, 0 \leq k \leq 2
\end{align*}
$$

If we expand Φ, Ψ and B according to (4), we get from (5) and (6)

$$
\begin{align*}
& a_{1} I_{n, 1}(q)+a_{0} I_{n, 0}(q)+b_{2} M_{n, 2}(q)+b_{1} M_{n, 1}(q)+b_{0} M_{n, 0}(q) \\
& \quad-c_{2} K_{n, 2}(q)-c_{1} K_{n, 1}(q)-c_{0} K_{n, 0}(q)=0, \tag{7}\\
& a_{1} J_{n, 1}(q)+a_{0} J_{n, 0}(q)+b_{2} N_{n, 2}(q)+b_{1} N_{n, 1}(q)+b_{0} N_{n, 0}(q) \tag{8}\\
& \quad-c_{2} L_{n, 2}(q)-c_{1} L_{n, 1}(q)-c_{0} L_{n, 0}(q)=0 .
\end{align*}
$$

Lemma 1. [13] We have

$$
\begin{gather*}
I_{n, 0}(q)=q^{-n}\left\langle u, S_{n}^{2}\right\rangle, n \geq 0, \tag{9}\\
I_{n, 1}(q)=q^{-n}\left\{\beta_{n}+(1-q) \sum_{\nu=0}^{n-1} \beta_{\nu}\right\}\left\langle u, S_{n}^{2}\right\rangle, n \geq 0, \tag{10}\\
J_{n, 0}(q)=q^{-n-1}(1-q)\left(\sum_{\nu=0}^{n} \beta_{\nu}\right)\left\langle u, S_{n}^{2}\right\rangle, n \geq 0, \tag{11}\\
J_{n, 1}(q)=q^{-n-1}\left\{\gamma_{n+1}+(1-q)\left[(1+q) \sum_{\nu=0}^{n-1} \gamma_{\nu+1}+\sum_{\nu=0}^{n} \beta_{\nu}^{2}\right.\right. \tag{12}\\
\left.\left.+(1-q) \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_{k}\right]\right\}\left\langle u, S_{n}^{2}\right\rangle, n \geq 0, \\
K_{n, 0}(q)=0, n \geq 0, \tag{13}\\
K_{n, 1}(q)=q^{-n}[2 n]_{q}\left\langle u, S_{n}^{2}\right\rangle, n \geq 0, \tag{14}\\
K_{n, 2}(q)=q^{-n}\left\{[2 n]_{q} \beta_{n}+\left(1+q^{2 n-1}\right) \sum_{k=0}^{n-1} \beta_{k}\right\}\left\langle u, S_{n}^{2}\right\rangle, n \geq 0, \tag{15}\\
L_{n, 0}(q)=q^{-n-1}[n+1]_{q}\left\langle u, S_{n}^{2}\right\rangle, n \geq 0, \tag{16}\\
L_{n, 1}(q)=q^{-n-1}\left(\sum_{\nu=0}^{n} \beta_{\nu}\right)\left\langle u, S_{n}^{2}\right\rangle, n \geq 0, \tag{17}\\
L_{0,2}(q)=q^{-1}\left(\beta_{0}^{2}+\gamma_{1}\right), \tag{18}\\
L_{n, 2}(q)=q^{-n-1}\left\{[2 n+1]_{q} \gamma_{n+1}+(1+q) \sum_{\nu=0}^{n-1} \gamma_{\nu+1}+\sum_{\nu=0}^{n} \beta_{\nu}^{2}\right. \\
\left.+(1-q) \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_{k}\right\}\left\langle u, S_{n}^{2}\right\rangle, n \geq 1, \sum_{\nu=0}^{-1}=0 . \tag{19}
\end{gather*}
$$

In order to determine $\left\{M_{n, k}(q)\right\}_{n \geq 0}$ and $\left\{N_{n, k}(q)\right\}_{n \geq 0}, 0 \leq k \leq 2$, we need the following results:

Lemma 2. [13] For $n \geq 0$ we have

$$
\begin{gather*}
\left\langle u, x^{n+1} S_{n}\right\rangle=\left(\sum_{\nu=0}^{n} \beta_{\nu}\right)\left\langle u, S_{n}^{2}\right\rangle, \tag{20}\\
\left\langle u, x^{n+2} S_{n}\right\rangle=\left(\sum_{\nu=0}^{n} \gamma_{\nu+1}+\sum_{\nu=0}^{n} \beta_{\nu} \sum_{k=0}^{\nu} \beta_{k}\right)\left\langle u, S_{n}^{2}\right\rangle . \tag{21}
\end{gather*}
$$

Lemma 3. [3] We have

$$
\begin{align*}
& S_{n+2}(x)=x^{n+2}+d_{n+1} x^{n+1}+e_{n} x^{n}+\ldots, \quad n \geq 0, \\
& S_{1}(x)=x+d_{0} \tag{22}
\end{align*}
$$

with

$$
\begin{gather*}
d_{n}=-\sum_{\nu=0}^{n} \beta_{\nu}, \tag{23}\\
e_{n}=-\sum_{\nu=0}^{n} \gamma_{\nu+1}-\sum_{\nu=0}^{n} \beta_{\nu} \sum_{k=0}^{\nu} \beta_{k}+\sum_{\nu=0}^{n+1} \beta_{\nu} \sum_{\nu=0}^{n} \beta_{\nu} \tag{24}
\end{gather*}
$$

for $n \geq 0$.
Lemma 4. [12] For $u, v \in \mathcal{P}^{\prime}$ and $f, g \in \mathcal{P}$, we have

$$
\begin{gather*}
f(u v)=(f u) v+x\left(u \theta_{0} f\right) v, \tag{25}\\
\left\langle u v, \theta_{0}(f g)\right\rangle=\left\langle u, f\left(v \theta_{0} g\right)\right\rangle+\left\langle v, g\left(u \theta_{0} f\right)\right\rangle . \tag{26}
\end{gather*}
$$

Lemma 5. We have

$$
\begin{gather*}
M_{n, 0}(q)=0, n \geq 0, \tag{27}\\
M_{0,1}(q)=1, \tag{28}\\
M_{n, 1}(q)=q^{-n}\left(1+q^{2 n}\right)\left\langle u, S_{n}^{2}\right\rangle, n \geq 1, \tag{29}\\
M_{0,2}(q)=(q+1) \beta_{0}, \tag{30}\\
M_{n, 2}(q)=q^{-n}\left\{\left(q^{2 n}+q\right)\left(\beta_{0}+\beta_{n}\right)+(q-1)\left(q^{2 n}-1\right) \sum_{\nu=0}^{n} \beta_{\nu}\right\}\left\langle u, S_{n}^{2}\right\rangle, n \geq 1, \tag{31}\\
N_{n, 0}(q)=q^{-n-1}\left\langle u, S_{n}^{2}\right\rangle, n \geq 0, \tag{32}
\end{gather*}
$$

$$
\begin{align*}
& N_{n, 1}(q)= q^{-n-1}\left\{q \beta_{0}+(1-q) \sum_{\nu=0}^{n} \beta_{\nu}\right\}\left\langle u, S_{n}^{2}\right\rangle, n \geq 0, \tag{33}\\
& N_{0,2}(q)=q^{-1}\left[\beta_{0}^{2}+\left(q^{2}+1\right) \gamma_{1}\right], \tag{34}\\
& N_{n, 2}(q)= q^{-n-1}\left\{\left(1+q^{2 n+2}\right) \gamma_{n+1}+q(q-1) \sum_{\nu=0}^{n} \beta_{\nu} \sum_{\nu=1}^{n} \beta_{\nu}\right. \\
&+\left(1-q^{2}\right)\left(\sum_{\nu=0}^{n-1} \gamma_{\nu+1}+\sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_{k}+\sum_{\nu=0}^{n} \beta_{\nu}^{2}\right) \tag{35}\\
&+\left.q^{2}\left(\beta_{0}^{2}+\gamma_{1}\right)\right\}\left\langle u, S_{n}^{2}\right\rangle, n \geq 1 .
\end{align*}
$$

Proof. From (26), we have

$$
M_{n, 0}(q)=\left\langle u, S_{n}(x)\left(h_{q} u \theta_{0}\left(h_{q^{-1}} S_{n}\right)(x)\right\rangle+\left\langle u, S_{n}(x)\left(u \theta_{0} S_{n}\right)(q x)\right\rangle, n \geq 0\right.
$$

By the orthogonality of $\left\{S_{n}\right\}_{n \geq 0}$, we obtain (27).
Taking $f(x)=S_{n}(x)$ and $g(x)=x\left(h_{q^{-1}} S_{n}\right)(x)$ in (26), we can deduce that for $n \geq 0$

$$
\begin{equation*}
M_{n, 1}(q)=\left\langle u, S_{n}(x)\left(h_{q} u\left(h_{q^{-1}} S_{n}\right)\right)(x)\right\rangle+\left\langle u, q x S_{n}(x)\left(u \theta_{0} S_{n}\right)(q x)\right\rangle . \tag{36}
\end{equation*}
$$

Making $n=0$ in (36), we get $M_{0,1}(q)=(u)_{0}=1$.
When $n \geq 1$, by (1) and the orthogonality of $\left\{S_{n}\right\}_{n \geq 0}$, we obtain (29).
By virtue of (26), when $f(x)=x S_{n}(x)$ and $g(x)=x\left(h_{q^{-1}} S_{n}\right)(x)$, we can deduce that for $n \geq 0$

$$
\begin{equation*}
M_{n, 2}(q)=\left\langle u, x S_{n}(x)\left(h_{q} u\left(h_{q^{-1}} S_{n}\right)(x)\right\rangle+\langle u, q x) S_{n}(x)\left(u S_{n}\right)(q x)\right\rangle . \tag{37}
\end{equation*}
$$

Making $n=0$ in (37) and taking into account that $(u)_{1}=\beta_{0}$, we obtain (30).
When $n \geq 1$, by (1), (22) and according to the orthogonality of $\left\{S_{n}\right\}_{n \geq 0}$, we get

$$
M_{n, 2}(q)=\left(q^{-n}+q^{n+1}\right)\left\langle u, x^{n+1} S_{n}(x)\right\rangle+\left(q^{1-n}+q^{n}\right)\left(\beta_{0}+d_{n-1}\right)\left\langle u, S_{n}^{2}\right\rangle .
$$

Thus, from (20) and (23), we can deduce (31).
From (26), we have

$$
N_{n, 0}(q)=\left\langle u, S_{n+1}(x)\left(u \theta_{0} S_{n}\right)(q x)\right\rangle+\left\langle u, S_{n}(x)\left(h_{q} u \theta_{0} h_{q^{-1}} S_{n+1}\right)(x)\right\rangle, n \geq 0 .
$$

Hence, by the orthogonality of $\left\{S_{n}\right\}_{n \geq 0}$, we obtain (32).
Taking $f(x)=S_{n+1}\left(q^{-1} x\right)$ and $g(x)=x S_{n}(x)$ in (26), we get for $n \geq 0$

$$
N_{n, 1}(q)=\left\langle u, S_{n+1}(x)\left(u S_{n}\right)(q x)\right\rangle+\left\langle u, x S_{n}(x)\left(h_{q} u \theta_{0} h_{q^{-1}} S_{n+1}\right)(x)\right\rangle .
$$

By (1), (22) and the orthogonality of $\left\{S_{n}\right\}_{n \geq 0}$, we obtain

$$
N_{n, 1}(q)=q^{-n-1}\left\langle u, x^{n+1} S_{n}(x)\right\rangle+q^{-n}\left(\beta_{0}+d_{n}\right)\left\langle u, S_{n}^{2}\right\rangle .
$$

Then, from (20) and (23), we can deduce (33).
For $n \geq 0$, by (26), we have

$$
\begin{equation*}
N_{n, 2}(q)=\left\langle u, q x S_{n+1}(x)\left(u S_{n}\right)(q x)\right\rangle+\left\langle u, x S_{n}(x)\left(h_{q} u h_{q^{-1}} S_{n+1}\right)(x)\right\rangle . \tag{38}
\end{equation*}
$$

When $n=0$, from (38) and taking into account that $(u)_{2}=\beta_{0}^{2}+\gamma_{1}$, we obtain (34).

Now, for $n \geq 1$, by (1), (22), (38) and taking into account the regularity of the form u, we get

$$
\begin{aligned}
& N_{n, 2}(q)=q^{-n-1}\left\langle u, x^{n+2} S_{n}(x)\right\rangle+q^{-n}\left(\beta_{0}+d_{n}\right)\left\langle u, x^{n+1} S_{n}(x)\right\rangle \\
& +\left\{q^{n+1} \gamma_{n+1}+q^{1-n}\left(\beta_{0}^{2}+\gamma_{1}\right)+q^{1-n}\left(e_{n-1}+\beta_{0} d_{n}\right)\right\}\left\langle u, S_{n}^{2}\right\rangle .
\end{aligned}
$$

Hence, from Lemma 2, (23) and (24), we can deduce (35).
The following is the main result of this section.
Proposition 3. We have the following system:

$$
\begin{gather*}
\Psi\left(\beta_{0}\right)+\left(H_{q} B\right)\left(\beta_{0}\right)=0, \tag{39}\\
\left(1+q^{2 n-1}\right) \sum_{\nu=0}^{n-1}\left(\theta_{\beta_{n}} \Phi\right)\left(\beta_{\nu}\right)-\Psi\left(\beta_{n}\right)-\left(q+q^{2 n}\right)\left(\theta_{\beta_{n}} B\right)\left(\beta_{0}\right)= \\
+\left(\left(1+q^{2 n-1}\right) n-[2 n]_{q}\right)\left(c_{2} \beta_{n}+c_{1}\right)+(q-1)\left\{\left(q^{2 n}-1\right) \beta_{n} b_{2}\right. \tag{40}\\
\left.+\left[\left(q^{2 n}-1\right) b_{2}-a_{1}\right] \sum_{\nu=0}^{n-1} \beta_{\nu}-b_{1}\right\}=0, n \geq 1, \\
{\left[a_{1}+\left(1+q^{2}\right) b_{2}-c_{2}\right] \gamma_{1}=\Phi\left(\beta_{0}\right)-B\left(\beta_{0}\right)-(1-q) \beta_{0} \Psi\left(\beta_{0}\right),} \tag{41}\\
\left\{a_{1}+\left(q^{2 n+2}+1\right) b_{2}-[2 n+1]_{q} c_{2}\right\} \gamma_{n+1}+(1+q)\left\{(1-q)\left(a_{1}+b_{2}\right)\right. \\
\left.-c_{2}\right\} \sum_{\nu=0}^{n-1} \gamma_{\nu+1}=\sum_{\nu=0}^{n} \Phi\left(\beta_{\nu}\right)+\left([n+1]_{q}-n-1\right) c_{0}-B\left(q \beta_{0}\right) \\
-q^{2} b_{2} \gamma_{1}+(1-q)\left\{\left[c_{2}+(q-1) a_{1}-(q+1) b_{2}\right] \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_{k}\right. \tag{42}\\
-\left(a_{0}+b_{1}\right) \sum_{\nu=0}^{n} \beta_{\nu}-\left[a_{1}+(q+1) b_{2}\right] \sum_{\nu=0}^{n} \beta_{\nu}^{2} \\
\left.\quad+q b_{2} \sum_{\nu=0}^{n} \beta_{\nu} \sum_{\nu=1}^{n} \beta_{\nu}\right\}, n \geq 1 .
\end{gather*}
$$

Proof. Making $n=0$ in (7) and taking the relations (9) - (10), (13) - (15), (27) - (28) and (30) into account, we can deduce (39). Let $n \geq 1$. Then, by virtue of the relations $(9)-(10),(13)-(15),(27),(29)$ and (31), the equation (7) becomes

$$
\begin{aligned}
& \left\{[2 n]_{q} \beta_{n}+\left(1+q^{2 n-1}\right) \sum_{\nu=0}^{n-1} \beta_{\nu}\right\} c_{2}+[2 n]_{q} c_{1}-\left\{\beta_{n}+(1-q) \sum_{\nu=0}^{n-1} \beta_{\nu}\right\} a_{1} \\
& \quad-a_{0}-\left\{\left(q^{2 n}+q\right)\left(\beta_{0}+\beta_{n}\right)+(q-1)\left(q^{2 n}-1\right) \sum_{\nu=0}^{n} \beta_{\nu}\right\} b_{2}-\left(1+q^{2 n}\right) b_{1}=0
\end{aligned}
$$

But, $\left(\theta_{\beta_{n}} \Phi\right)\left(\beta_{\nu}\right)=c_{2}\left(\beta_{n}+\beta_{\nu}\right)+c_{1}$ and $\left(\theta_{\beta_{n}} B\right)\left(\beta_{0}\right)=b_{2}\left(\beta_{n}+\beta_{0}\right)+b_{1}$. Then, we can deduce (40).

Let $n=0$ in (8). Then, by virtue of $(11)-(12),(16)-(18)$ and $(32)-(34)$ we get (41).

When $n \geq 1$, in view of $(11)-(12),(16)-(17),(19),(32)-(33)$ and (35), (8) becomes

$$
\begin{aligned}
& \left\{[2 n+1]_{q} \gamma_{n+1}+(1+q) \sum_{\nu=0}^{n-1} \gamma_{\nu+1}+\sum_{\nu=0}^{n} \beta_{\nu}^{2}+(1-q) \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_{k}\right\} c_{2} \\
& \quad c_{1} \sum_{\nu=0}^{n} \beta_{\nu}+[n+1]_{q} c_{0}-\left\{\gamma_{n+1}+(1-q)\left[(1+q) \sum_{\nu=0}^{n-1} \gamma_{\nu+1}+\sum_{\nu=0}^{n} \beta_{\nu}^{2}\right.\right. \\
& \left.\left.\quad+(1-q) \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_{k}\right]\right\} a_{1}-(1-q) a_{0} \sum_{\nu=0}^{n} \beta_{\nu}-\left\{\left(q^{2 n+2}+1\right) \gamma_{n+1}\right. \\
& \quad+q(q-1) \sum_{\nu=0}^{n} \beta_{\nu} \sum_{\nu=1}^{n} \beta_{\nu}+\left(1-q^{2}\right)\left(\sum_{\nu=0}^{n-1} \gamma_{\nu+1}+\sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_{k}+\sum_{\nu=0}^{n} \beta_{\nu}^{2}\right) \\
& \left.\quad+q^{2}\left(\beta_{0}^{2}+\gamma_{1}\right)\right\} b_{2}-\left\{q \beta_{0}+(1-q) \sum_{\nu=0}^{n} \beta_{\nu}\right\} b_{1}-b_{0}=0 .
\end{aligned}
$$

Hence, we can deduce (42).

3. The symmetric case when $s=0$

In the sequel, we assume that $\left\{S_{n}\right\}_{n \geq 0}$ is a symmetric H_{q}-Laguerre-Hahn orthogonal sequence of class zero.

Then, we have

$$
\begin{align*}
& S_{n+2}(x)=x S_{n+1}(x)-\gamma_{n+1} S_{n}(x), \quad n \geq 0 \\
& S_{1}(x)=x, \quad S_{0}(x)=1 \tag{43}
\end{align*}
$$

By virtue of the Proposition 2, it follows that

$$
\begin{equation*}
H_{q}(\Phi u)+\Psi u+B\left(x^{-1} u^{2}\right)=0 \tag{44}
\end{equation*}
$$

with

$$
\begin{equation*}
\Phi(x)=c_{2} x^{2}+c_{0}, \Psi(x)=a_{1} x, B(x)=b_{2} x^{2}+b_{0} \tag{45}
\end{equation*}
$$

In this case the system (39) - (42) becomes

$$
\begin{equation*}
\left(r_{2}-c_{2}\right) \gamma_{1}=c_{0}-b_{0} \tag{46}
\end{equation*}
$$

$$
\begin{align*}
& \left\{r_{2 n+2}-[2 n+1]_{q} c_{2}\right\} \gamma_{n+1}+(1+q)\left\{(1-q)\left(a_{1}+b_{2}\right)-c_{2}\right\} \sum_{\nu=0}^{n-1} \gamma_{\nu+1} \tag{47}\\
& \quad=[n+1]_{q} c_{0}-b_{0}-q^{2} b_{2} \gamma_{1}, n \geq 1
\end{align*}
$$

with

$$
\begin{equation*}
r_{n}=a_{1}+\left(1+q^{n}\right) b_{2}, n \geq 0 \tag{48}
\end{equation*}
$$

Let

$$
\begin{equation*}
T_{n}=\sum_{\nu=0}^{n} \gamma_{\nu+1}, n \geq 0 \tag{49}
\end{equation*}
$$

Then,

$$
\begin{equation*}
T_{n}-T_{n-1}=\gamma_{n+1}, n \geq 0, T_{-1}=0 \tag{50}
\end{equation*}
$$

Taking the relations (49) and (50) into account, the system (46) - (47) becomes

$$
\begin{gather*}
\left(r_{2}-c_{2}\right) T_{0}=c_{0}-b_{0} \tag{51}\\
\left\{r_{2 n+2}-[2 n+1]_{q} c_{2}\right\}\left(T_{n}-T_{n-1}\right)+(1+q)\left\{(1-q)\left(a_{1}+b_{2}\right)\right. \\
\left.-c_{2}\right\} T_{n-1}=[n+1]_{q} c_{0}-b_{0}-q^{2} b_{2} T_{0}, n \geq 1 \tag{52}
\end{gather*}
$$

Proposition 4. We have for $n \geq 1$

$$
\begin{equation*}
T_{n}=\frac{q[n]_{q}[n+1]_{q} c_{0}+\left[\left(a_{1}-c_{2}\right)[2 n+2]_{q}+[2 n+4]_{q} b_{2}\right] \gamma_{1}}{(q+1)\left\{r_{2 n+2}-[2 n+1]_{q} c_{2}\right\}} \tag{53}
\end{equation*}
$$

Proof. The equation (52) can be written as

$$
\begin{gathered}
\left\{r_{2 n+2}-[2 n+1]_{q} c_{2}\right\} T_{n}-q^{2}\left\{r_{2 n}-[2 n-1]_{q} c_{2}\right\} T_{n-1} \\
=[n+1]_{q} c_{0}-b_{0}-q^{2} b_{2} T_{0}, n \geq 1
\end{gathered}
$$

So, we obtain

$$
\begin{aligned}
\left\{r_{2 n+2}-\right. & {\left.[2 n+1]_{q} c_{2}\right\} T_{n}-q^{2 n}\left\{r_{2}-c_{2}\right\} T_{0} } \\
& =q^{2 n} \sum_{k=1}^{n}\left\{q^{-2 k}\left([k+1]_{q} c_{0}-b_{0}-q^{2} b_{2} T_{0}\right)\right\}, n \geq 1
\end{aligned}
$$

Taking the relation (51) into account, we obtain (53).

Corollary 1. The sequence $\left\{\gamma_{n+2}\right\}_{n \geq 0}$ is defined by

$$
\begin{align*}
\gamma_{n+2}= & \frac{q^{n+1}}{\left\{r_{2 n+4-}-[2 n+3] q c_{2}\right\}\left\{r_{2 n+2}-[2 n+1]_{q} c_{2}\right\}}\left\{[n+1]_{q}\left(r_{n+2}-[n+1]_{q} c_{2}\right) c_{0}\right. \tag{54}\\
& \left.+\left[\left(a_{1}+b_{2}\right) q^{n+1} r_{2}-\left(q\left(a_{1}+b_{2}\right)+c_{2}-r_{2}\right) q^{n} c_{2}\right] \gamma_{1}\right\} .
\end{align*}
$$

Proof. From (50) and Proposition 4, we get for $n \geq 1$

$$
\begin{aligned}
& (q+1)\left\{r_{2 n+4}-[2 n+3]_{q} c_{2}\right\}\left\{r_{2 n+2}-[2 n+1]_{q} c_{2}\right\} \gamma_{n+2} \\
& =\left\{r_{2 n+2}-[2 n+1]_{q} c_{2}\right\}\left\{q[n+1]_{q}[n+2]_{q} c_{0}+\left[\left(a_{1}-c_{2}\right)[2 n+4]_{q}+[2 n+6]_{q} b_{2}\right] \gamma_{1}\right\} \\
& -\left\{r_{2 n+4}-[2 n+3]_{q} c_{2}\right\}\left\{q[n]_{q}[n+1]_{q} c_{0}+\left[\left(a_{1}-c_{2}\right)[2 n+2]_{q}+[2 n+4]_{q} b_{2}\right] \gamma_{1}\right\} .
\end{aligned}
$$

Then, we can deduce (54) after some straightforward calculations.

4. The canonical cases

Before considering different canonical situations, let us proceed to the general transformation

$$
\begin{gathered}
\tilde{S}_{n}(x)=a^{-n} S_{n}(a x), \quad n \geq 0, \\
\tilde{\gamma}_{n+1}=\frac{\gamma_{n+1}}{a^{2}}, n \geq 0 .
\end{gathered}
$$

The form $\tilde{u}=h_{a^{-1}} u$ fulfils

$$
H_{q}\left(a^{-t} \Phi(a x) \tilde{u}\right)+a^{1-t} \Psi(a x) \tilde{u}+a^{-t} B(a x)\left(x^{-1}\left(\tilde{u}\left(h_{q} \tilde{u}\right)\right)\right)=0 .
$$

Any so-called canonical case will be denoted by $\tilde{\gamma}_{n+1}, \tilde{u}$.
By (54) and Corollary 1, we get the general situation

$$
\left\{\begin{align*}
\gamma_{n+2} & \left.=\frac{q^{n+1}}{\left\{r_{2 n+4}-\left[2 n+3 q^{2}\right\}\right.}\right\}\left\{r_{2 n+2}-[2 n+1]_{q} c_{2}\right\} \tag{55}
\end{align*}\{n+1]_{q}\left(r_{n+2}-[n+1]_{q} c_{2}\right) c_{0}\right)
$$

Theorem 1. The following canonical cases arise:

1. When $\Phi(x)=1$, we have the following subcases:
(i) $a_{1}+b_{2} \neq 0$

$$
\left\{\begin{align*}
\tilde{\gamma}_{1}= & \rho \frac{q^{\tau}[\tau+1]_{q}}{2}, \tag{56}\\
\tilde{\gamma}_{n+2} & =\frac{q^{n+\tau+1}}{2\left\{\frac{1}{\rho}+\left(1-\frac{1}{\rho}\right) q^{2 n+4}\right\}\left\{\frac{1}{\rho}+\left(1-\frac{1}{\rho}\right) q^{2 n+2}\right\}}\left\{[n+\tau+2]_{q}\right. \\
& \left.+\left(\frac{1}{\rho}-1\right)\left([n+3]_{q}-q^{n+2}[n+1]_{q}-(q+1) q^{n+\tau+2}\right)\right\}, n \geq 0 \\
H_{q}(\tilde{u}) & +\frac{2}{\rho}(2-\rho) q^{-\tau} x \tilde{u}+\left\{\frac{2}{\rho}(\rho-1) q^{-\tau} x^{2}\right. \\
& \left.+1-\left(1+q^{2}(\rho-1)\right)[\tau+1]_{q}\right\}\left(x^{-1} \tilde{u}^{2}\right)=0
\end{align*}\right.
$$

(ii) $a_{1}=-b_{2}$

$$
\left\{\begin{array}{l}
\tilde{\gamma}_{1}=\frac{\rho}{2 q}, \tilde{\gamma}_{n+2}=\frac{[n+1]_{q}}{2 q^{2 n+3}}, n \geq 0 \tag{57}\\
H_{q}(\tilde{u})-2 x \tilde{u}+\left(2 x^{2}+1-q \rho\right)\left(x^{-1} \tilde{u}^{2}\right)=0
\end{array}\right.
$$

2. The case where $\Phi(x)=x^{2}$, we obtain the canonical case below:

$$
\left\{\begin{array}{l}
\tilde{\gamma}_{1}=-\rho_{[2 \tau+1][2 \tau+3]}, \tag{58}\\
\tilde{\gamma}_{n+2}=-\frac{q^{2 n+2 \tau+3}}{\Omega_{2 n+2} \Omega_{2 n}}, n \geq 0, \\
H_{q}\left(x^{2} \tilde{u}\right)+q^{-2 \tau-4}\left\{\left(1+q^{2}\right)\left(1-\frac{1}{\rho}\right)[2 \tau+1]_{q}-q^{2}[2 \tau+2]_{q}\right\} x \tilde{u} \\
\quad+\left\{q^{-2 \tau-4}\left(\frac{1}{\rho}-1\right)[2 \tau+1]_{q} x^{2}-\rho \frac{q^{-1}}{[2 \tau+1]_{q}}\right\}\left(x^{-1} \tilde{u}^{2}\right)=0
\end{array}\right.
$$

with (for $n \geq 0$)

$$
\Omega_{n}=[n+2 \tau+3]_{q}+\left(q^{n}-1\right)\left(1-\frac{1}{\rho}\right)[2 \tau+1]_{q} .
$$

3. When $\Phi(x)=x^{2}+c_{0}, c_{0} \neq 0$, we have the following subcases:
(i) $q\left(a_{1}+b_{2}\right)+1=0$

$$
\left\{\begin{array}{l}
\tilde{\gamma}_{1}=q \rho, \tilde{\gamma}_{n+2}=q^{n+2} \frac{\left(q^{n+1}-1\right)\left(q^{n+\alpha+1}-1\right)}{\left(q^{2 n+\alpha+3}-1\right)\left(q^{2 n+\alpha+1}-1\right)}, n \geq 0, \tag{59}\\
H_{q}\left(\left(x^{2}-1\right) \tilde{u}\right)+(q-1)^{-1}\left(q^{\alpha-2}-1\right) x \tilde{u}+\left\{-q^{-1}(q-1)^{-1}\left(q^{\alpha-1}-1\right) x^{2}\right. \\
\left.\quad+\rho\left(q-1+q(q-1)^{-1}\left(q^{\alpha-1}-1\right)\right)-1\right\}\left(x^{-1} \tilde{u}^{2}\right)=0
\end{array}\right.
$$

(ii) $q\left(a_{1}+b_{2}\right)+1 \neq 0$

$$
\left\{\begin{array}{rl}
\tilde{\gamma}_{1}= & \rho q^{\tau+2 \alpha+2} \frac{\left(q^{\tau+1}-1\right)\left(q^{\tau+2 \alpha+1}-1\right)}{\left(q^{2 \tau+2 \alpha+3}-1\right)\left(q^{2 \tau+2 \alpha+1}-1\right)}
\end{array},\left\{\begin{aligned}
& \tilde{\gamma}_{n+2}=q^{n+\tau+2 \alpha+3} \frac{\left(q^{n+\tau+2}-1\right)\left(q^{n+\tau+2 \alpha+2}-1\right)+\Lambda_{n}}{\Delta_{2 n} \Delta_{2 n+2}}, n \geq 0 \tag{60}\\
& H_{q}\left(\left(x^{2}-q^{-\tau}\right) \tilde{u}\right)-q^{-2 \tau-2 \alpha-4}(q-1)^{-1}\left\{q^{2}\left(q^{2 \tau+2 \alpha+2}-1\right)\right. \\
&\left.+\left(1+q^{2}\right)\left(\frac{1}{\rho}-1\right)\left(q^{2 \tau+2 \alpha+1}-1\right)\right\} x \tilde{u} \\
&+\left\{q^{-2 \tau-2 \alpha-4}(q-1)^{-1}\left(\frac{1}{\rho}-1\right)\left(q^{2 \tau+2 \alpha+1}-1\right) x^{2}\right. \\
&\left.+\rho q^{-\tau}[\tau+1]_{q} \frac{q^{\tau+2 \alpha+1}-1}{q^{2 \tau+2 \alpha+1}-1}-q^{-\tau}\right\}\left(x^{-1} \tilde{u}^{2}\right)=0
\end{aligned}\right.\right.
$$

with (for $n \geq 0$)

$$
\left\{\begin{array}{l}
\Delta_{n}=q^{n+2 \tau+2 \alpha+3}-1-\left(q^{n}-1\right)\left(q^{2 \tau+2 \alpha+1}-1\right)\left(\frac{1}{\rho}-1\right) \\
\Lambda_{n}=\left(q^{n+1}-1\right)\left(q^{n}-1\right)\left(q^{2 \tau+2 \alpha+1}-1\right)\left(1-\frac{1}{\rho}\right)
\end{array}\right.
$$

Proof.

1. In this case, (55) becomes

$$
\left\{\begin{array}{l}
\gamma_{n+2}=\frac{q^{n+1}}{r_{2 n+4} r_{2 n+2}}\left\{[n+1]_{q} r_{n+2}+q^{n+1}\left(a_{1}+b_{2}\right) r_{2} \gamma_{1}\right\}, n \geq 0 \tag{61}\\
H_{q}(u)+a_{1} x u+\left(b_{2} x^{2}+b_{0}\right)\left(x^{-1} u^{2}\right)=0
\end{array}\right.
$$

We need to discuss the following situations:
(i) $a_{1}+b_{2} \neq 0$. Choosing $a^{2}\left(a_{1}+b_{2}\right)=\frac{2}{\rho} q^{-\tau}$ and putting $a^{-2} \gamma_{1}=\rho \frac{q^{\tau}[\tau+1]}{2}$, $a^{2} b_{2}=\frac{2}{\rho}(\rho-1) q^{-\tau}$, we get (56) from (51).
(ii) If $a_{1}+b_{2}=0$, then (61) becomes

$$
\left\{\begin{array}{l}
\gamma_{n+2}=\frac{[n+1]_{q}}{q^{2 n+3} b_{2}}, n \geq 0 \\
H_{q}(u)+a_{1} x u+\left(b_{2} x^{2}+b_{0}\right)\left(x^{-1} u^{2}\right)=0
\end{array}\right.
$$

With the choice $a^{2} b_{2}=2$ and putting $\tilde{\gamma}_{1}=\frac{\rho}{2 q}$, we get (57) from (51).
2. In this case, (55) can be written as

$$
\left\{\begin{array}{l}
\gamma_{n+2}=\frac{q^{2 n+1}\left(r_{2}-1\right)\left\{q\left(a_{1}+b_{2}\right)+1\right\} \gamma_{1}}{\left\{r_{2 n+4}-[2 n+3]_{q}\right\}\left\{r_{2 n+2}-[2 n+1]_{q}\right\}}, n \geq 0 \\
H_{q}\left(x^{2} u\right)+a_{1} x u+\left(b_{2} x^{2}+b_{0}\right)\left(x^{-1} u^{2}\right)=0
\end{array}\right.
$$

We choose a such that $a^{-2}\left(r_{2}-1\right)\left\{q\left(a_{1}+b_{2}\right)+1\right\} \gamma_{1}=q^{-2 \tau-2}$, and putting $q^{-2 \tau-2}[2 \tau+3]=1-r_{2}, \tilde{\gamma}_{1}=-\rho \frac{q^{2 \tau+1}}{[2 \tau+3]_{q}[2 \tau+1]_{q}}$, we obtain (58) from (51).
3. In this case, (55) becomes

$$
\left\{\begin{array}{l}
\gamma_{n+2}=\frac{q^{n+1}}{\left\{r_{2 n+4}-[2 n+3]_{q}\right\}\left\{r_{2 n+2}-[2 n+1]_{q}\right\}}\left\{[n+1]_{q}\left(r_{n+2}-[n+1]_{q}\right) c_{0}\right. \tag{62}\\
\left.\quad+q^{n}\left(1+q\left(a_{1}+b_{2}\right)\right)\left(r_{2}-1\right) \gamma_{1}\right\}, n \geq 0 \\
\left.H_{q}\left(x^{2}+c_{0}\right) u\right)+a_{1} x u+\left(b_{2} x^{2}+b_{0}\right)\left(x^{-1} u^{2}\right)=0
\end{array}\right.
$$

We can consider two subcases:
(i) If $1+q\left(a_{1}+b_{2}\right)=0$, then (62) becomes

$$
\left\{\begin{array}{l}
\gamma_{n+2}=\frac{q^{n+1}}{\left\{r_{2 n+4}-[2 n+3]_{q}\right\}\left\{r_{2 n+2}-[2 n+1]_{q}\right\}}\left\{[n+1]_{q}\left(r_{n+2}-[n+1]_{q}\right) c_{0}\right\}, n \geq 0 \\
\left.H_{q}\left(x^{2}+c_{0}\right) u\right)+a_{1} x u+\left(b_{2} x^{2}+b_{0}\right)\left(x^{-1} u^{2}\right)=0
\end{array}\right.
$$

With the choice $a^{-2} c_{0}=-1$ and putting $\tilde{\gamma}_{1}=\rho, a_{1}=(q-1)^{-1}\left(q^{\alpha-1}-1\right)$, we obtain the desired result (59) from (51).
(ii) When $1+q\left(a_{1}+b_{2}\right) \neq 0$, we choose a such that $a^{-2} c_{0}=-q^{-\tau}$ and putting

$$
\left\{\begin{array}{l}
a^{-2}\left(1+q\left(a_{1}+b_{2}\right)\right)\left(r_{2}-1\right) \gamma_{1}=q^{-3 \tau-2 \alpha-1}(q-1)^{-1}\left(q^{\tau+2 \alpha+1}-1\right)[\tau+1]_{q}, \\
1+q\left(a_{1}+b_{2}\right)=-\frac{q^{-2 \tau-2 \alpha-1}}{\rho}(q-1)^{-1}\left(q^{2 \tau+2 \alpha+1}-1\right), \\
1-r_{2}=q^{-2 \tau-2 \alpha-2}(q-1)^{-1}\left(q^{2 \tau+2 \alpha+3}-1\right),
\end{array}\right.
$$

we get (60) from (51).

Remark 2. 1. If $q \rightarrow 1$ in (56), we obtain

$$
\left\{\begin{array}{l}
\tilde{\gamma}_{1}=\rho \frac{\tau+1}{2}, \quad \tilde{\gamma}_{n+2}=\frac{n+\tau+2}{2}, n \geq 0 \\
(\tilde{u})^{\prime}+\frac{2}{\rho}(2-\rho) x \tilde{u}+\left(\frac{2}{\rho}(\rho-1) x^{2}+1-\rho(\tau+1)\right)\left(x^{-1} \tilde{u}^{2}\right)=0
\end{array}\right.
$$

In this case \tilde{u} is the co-dilated of the associated form of order τ of Hermite [2].
2. When $q \neq 1$, from (56) we obtain

$$
\left\{\begin{array}{l}
\widehat{\gamma_{1}}=\rho q^{\tau}\left(1-q^{\tau+1}\right) \tag{63}\\
\widehat{\gamma}_{n+2}=\frac{q^{n+\tau+1}}{\left\{\frac{1}{\rho}+\left(1-\frac{1}{\rho}\right) q^{2 n+4}\right\}\left\{\frac{1}{\rho}+\left(1-\frac{1}{\rho}\right) q^{2 n+2}\right\}}\left\{\left(1-q^{n+\tau+2}\right)\right. \\
\left.+\left(\frac{1}{\rho}-1\right)\left(\left(1-q^{n+3}\right)-q^{n+2}\left(1-q^{n+1}\right)+\left(q^{2}-1\right) q^{n+\tau+2}\right)\right\}, n \geq 0 \\
H_{q}(\widehat{u})+\frac{1}{\rho}(2-\rho)(1-q)^{-1} q^{-\tau} x \widehat{u}+\left\{\frac{1}{\rho}(\rho-1)(1-q)^{-1} q^{-\tau} x^{2}\right. \\
\left.\quad+1-\left(1+q^{2}(\rho-1)\right)[\tau+1]_{q}\right\}\left(x^{-1} \widehat{u}^{2}\right)=0
\end{array}\right.
$$

with $\widehat{u}=h_{\sqrt{2(1-q)}} \tilde{u}$. When $\rho=1$ and $\tau=0$, \widehat{u} is a particular case of q-polynomials of Al-Salam Carlitz [9].
3. If $q \rightarrow 1$ in (57), we get

$$
\left\{\begin{array}{l}
\tilde{\gamma}_{1}=\frac{\rho}{2}, \quad \tilde{\gamma}_{n+2}=\frac{n+1}{2}, n \geq 0 \\
\left.(\tilde{u})^{\prime}-2 x \tilde{u}+\left(2 x^{2}+1-\rho\right)\right)\left(x^{-1} \tilde{u}^{2}\right)=0
\end{array}\right.
$$

In this case \tilde{u} is the Laguerre-Hahn form of class zero, analogous to the classical Hermite's one [2].
4. When $q \rightarrow 1$ in (58), we obtain

$$
\left\{\begin{array}{l}
\tilde{\gamma}_{1}=-\frac{\rho}{(2 \tau+1)(2 \tau+3)}, \quad \tilde{\gamma}_{n+2}=-\frac{1}{(2 n+2 \tau+5)(2 n+2 \tau+3)}, n \geq 0 \\
\left(x^{2} \tilde{u}\right)^{\prime}+2\left[\left(1-\frac{1}{\rho}\right)(2 \tau+1)-\tau-1\right] x \tilde{u} \\
\quad+\left[\left(\frac{1}{\rho}-1\right)(2 \tau+1) x^{2}-\frac{\rho}{2 \tau+1}\right]\left(x^{-1} \tilde{u}^{2}\right)=0
\end{array}\right.
$$

In this case \tilde{u} is the co-dilates of the associated form of order τ of Bessel of parameter 1 [2].
5. If $q \rightarrow 1$ in (59), we get

$$
\left\{\begin{array}{l}
\tilde{\gamma}_{1}=\rho, \quad \tilde{\gamma}_{n+2}=\frac{(n+1)(n+\alpha+1)}{(2 n+\alpha+3)(2 n+\alpha+1)}, n \geq 0 \\
\left(\left(x^{2}-1\right) \tilde{u}\right)^{\prime}+(\alpha-2) x \tilde{u}+\left((\alpha-1) x^{2}+\rho(\alpha-1)-1\right)\left(x^{-1} \tilde{u}^{2}\right)=0
\end{array}\right.
$$

In this case \tilde{u} is the Laguerre-Hahn form of class zero, analogous to the classical Jacobi's one [2].
6. When $q \rightarrow 1$ in (60), we have

$$
\left\{\begin{array}{l}
\tilde{\gamma}_{1}=\rho \frac{(\tau+1)(\tau+2 \alpha+1)}{(2 \tau+2 \alpha+3)(2 \tau+2 \alpha+1)}, \quad \tilde{\gamma}_{n+2}=\frac{(n+\tau+2)(n+\tau+2 \alpha+2)}{(2 n+2 \tau+2 \alpha+5)(2 n+2 \tau+2 \alpha+3)}, n \geq 0 \\
\left(\left(x^{2}-1\right) \tilde{u}\right)^{\prime}-2\left[\tau+\alpha+1+\left(\frac{1}{\rho}-1\right)(2 \tau+2 \alpha+1)\right] x \tilde{u} \\
\quad+\left[\left(\frac{1}{\rho}-1\right)(2 \tau+2 \alpha+1) x^{2}+\rho \frac{(\tau+1)(\tau+2 \alpha+1)}{(2 \tau+2 \alpha+3)(2 \tau+2 \alpha+1)}-1\right]\left(x^{-1} \tilde{u}^{2}\right)=0
\end{array}\right.
$$

In this case \tilde{u} is the co-dilates of the associated form of order τ of Gegenbauer [2].
7. If we put $b=q^{\alpha}$, (60) reduces to

$$
\left\{\begin{align*}
& \tilde{\gamma}_{1}= \rho b^{2} q^{\tau+1} \frac{\left(q^{\tau+1}-1\right)\left(b^{2} q^{\tau+1}-1\right)}{\left(b^{2} q^{2 \tau+3}-1\right)\left(b^{2} q^{2 \tau+1}-1\right)} \tag{64}\\
& \tilde{\gamma}_{n+2}=b^{2} q^{n+\tau+2} \frac{\left(q^{n+\tau+2}-1\right)\left(b^{2} q^{n+\tau+2}-1\right)+\Lambda_{n}}{\Delta_{2 n} \Delta_{2 n+2}}, n \geq 0 \\
& H_{q}\left(\left(x^{2}-q^{-\tau}\right) \tilde{u}\right)-q^{-2 \tau-4}\left(b^{2}(q-1)\right)^{-1}\left\{b^{2} q^{2}\left(q^{2 \tau+2}-1\right)\right. \\
&\left.+\left(1+q^{2}\right)\left(\frac{1}{\rho}-1\right)\left(b^{2} q^{2 \tau+1}-1\right)\right\} x \tilde{u} \\
&+\left\{q^{-2 \tau-4}\left(b^{2}(q-1)\right)^{-1}\left(\frac{1}{\rho}-1\right)\left(b^{2} q^{2 \tau+1}-1\right) x^{2}\right. \\
&\left.+\rho q^{-\tau}[\tau+1]_{q} \frac{b^{2} q^{\tau+1}-1}{b^{2} q^{2 \tau+1}-1}-q^{-\tau}\right\}\left(x^{-1} \tilde{u}^{2}\right)=0
\end{align*}\right.
$$

with (for $n \geq 0$)

$$
\left\{\begin{array}{l}
\Delta_{n}=b^{2} q^{n+2 \tau+3}-1-\left(q^{n}-1\right)\left(b^{2} q^{2 \tau+1}-1\right)\left(\frac{1}{\rho}-1\right) \\
\Lambda_{n}=\left(q^{n+1}-1\right)\left(q^{n}-1\right)\left(q^{2 \tau+1} b^{2}-1\right)\left(1-\frac{1}{\rho}\right)
\end{array}\right.
$$

When $\rho=1$ and $\tau=0, \tilde{u}$ is a particular case of Big q-Jacobi polynomials [9].

References

[1] J. Alaya, P. Maroni, Symmetric Laguerre-Hahn forms of class $s=1$, Integral Transforms Spec. Funct. 4, 1996, 301-320.
[2] H. Bouakkaz, P. Maroni, Description des polynômes orthogonaux de Laguerre-Hahn de classe zéro, in Orthoggonals Polynomials and Their Applications, C. Brezinski, L. Gori, and A. Ronveaux, eds, Annals of Computation and Applied Mathematics, 9, J.C.Baltzer AGasel, 1991, 189-194.
[3] T.S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.
[4] J. Dini, Sur les formes linires et polynes orthogonaux de Laguerre-Hahn, These de Doctorat, Universit Pierre et Marie Curie, Paris VI, 1988.
[5] J. Dzoumba, Sur les polynes de Laguerre-Hahn, These de troisiéme cycle, Universit Pierre et Marie Curie, Paris VI, 1985.
[6] A. Ghressi, L. Kheriji, I. Tounsi, An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials, Sym. Int. Geo. Meth. App., 7, 2011, 1-20.
[7] A. Ghressi, L. Khériji, The Symmetrical H_{q}-Semiclassical Orthogonal Polynomials of Class one, SIGMA, 5, 2009, 076, 22 pages, arXiv:0907.3851.
[8] M. Guerfi, Les polynomes de Laguerre-Hahn affines discrets, These de troisime cycle, Univ. P. et M. Curie, Paris, 1988
[9] L. Kheriji, P. Maroni, The H_{q}-classical orthogonal polynomials, Acta. Appl. Math., 71 2002, 49-115.
[10] A. Magnus, Riccati acceleration of Jacobi continued fractions and LaguerreHahn orthogonal polynomials, in Pade Approximation and its Applications (Bad Honnef, 1983), Lecture Notes in Math., Vol. 1071, Springer, Berlin, 1984, 213-230.
[11] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, in: Orthogonal Polynomials and their applications. (C. Brezinski et al Editors.) IMACS, Ann. Comput. Appl. Math., 9, (Baltzer, Basel), 1991, 95-130.
[12] M. Sghaier, M. Zaatra, The D_{w}-Laguerre-Hahn Forms of Class Zero, Mediterr. J. Math., 17(185), 2020, 1-28.
[13] M. Zaatra, Laguerre-Freud equations associated with the H_{q}-semi-classical forms of class one, Filomat, 32(19), 2018, 6769-6787.

Mabrouk Sghaier
Institut Superieur d'Informatique de Medenine. Medenine4119, Tunisia
E-mail: sghaier.mabrookbelhedi580@gmail.com or mabrouk.sghaier@isim.rnu.tn
Mohamed Zaatra
Institut Superieur des Sciences et Techniques des Eaux de Gabes. Gabes 6072, Tunisia
E-mail: medzaatra@yahoo.fr
Mehdi Mechri
Faculte des Sciences de Gabes, 6029 route de Medenine Gabes, Tunisia
E-mail: mehdi_ mechri@yahoo.fr
Received 14 June 2021
Accepted 25 February 2022

[^0]: * Corresponding author.

