Azerbaijan Journal of Mathematics V. 13, No 1, 2023, January ISSN 2218-6816

The Symmetric H_q -Laguerre-Hahn Orthogonal Polynomials of Class Zero

M. Sghaier*, M. Zaatra, M. Mechri

Abstract. We consider the system of Laguerre-Freud equations associated with the H_q -Laguerre-Hahn orthogonal polynomials of class zero. This system is solved in the symmetric case. There are essentially three canonical cases.

Key Words and Phrases: orthogonal polynomials, q-difference operator, H_q -Laguerre-Hahn forms.

2010 Mathematics Subject Classifications: 33C45, 42C05

1. Introduction and preliminary results

The D-Laguerre-Hahn polynomial sequences, where D is the derivative operator, have attracted the interest of researchers from many points of view (see [1, 2, 4, 5, 10] among others). They constitute a very remarkable family of orthogonal polynomials taking into consideration most of the monic orthogonal polynomial sequences (MOPS) found in literature. In particular, semiclassical orthogonal polynomials are Laguerre-Hahn MOPS [11]. The concept of D-Laguerre-Hahn polynomial sequences has been extended to discrete Laguerre-Hahn polynomials which are related to a divided difference operator. Indeed, the H_q -Laguerre-Hahn polynomial sequences, where H_q is the Hahn's operator, have been considered by several authors. Essentially, an algebraic theory was presented in [6, 9]. These families are extensions of discrete semiclassical polynomials [8, 7].

The *D*-Laguerre-Hahn polynomial sequences of class zero are completely described in [2]. For the difference operator D_w , the D_w -Laguerre-Hahn polynomial sequences of class zero has been analyzed in [12]. So, the aim of this paper is to determine the symmetric H_q -Laguerre-Hahn forms of class s = 0, through the study of the differential functional equation fulfilled by these forms and the

http://www.azjm.org

© 2010 AZJM All rights reserved.

^{*}Corresponding author.

³⁴

resolution of a nonlinear system satisfied by the coefficients of the three-term recurrence relation of their sequences of monic orthogonal polynomials.

The structure of the manuscript is as follows. The first section contains material of preliminary and some results regarding the H_q -Laguerre-Hahn forms. In the second section, the system of Laguerre-Freud equations is built. In the third section, using this system, we obtain the symmetric sequences which we look for.

Let \mathcal{P} be the vector space of polynomials with coefficients in \mathbb{C} and let \mathcal{P}' be its dual. We denote by $\langle u, f \rangle$ the action of $u \in \mathcal{P}'$ on $f \in \mathcal{P}$. In particular, we denote by $(u)_n := \langle u, x^n \rangle$, $n \ge 0$, the moments of u. For instance, for any form u, any polynomial g and any $a \in \mathbb{C} \setminus \{0\}$, we let Du = u', gu, $h_a u$ and $x^{-1}u$ be the forms defined by duality

$$\begin{split} \left\langle u',f\right\rangle &:= -\left\langle u,f'\right\rangle, \ \left\langle gu,f\right\rangle &:= \left\langle u,gf\right\rangle, \ \left\langle h_au,f\right\rangle &:= \left\langle u,h_af\right\rangle, \\ \left\langle x^{-1}u,f\right\rangle &:= \left\langle u,\theta_0f\right\rangle, \ f\in\mathcal{P}, \end{split}$$

where $(h_a f)(x) = f(ax)$ and $(\theta_0 f)(x) = \frac{f(x) - f(0)}{x}$. We also define the right-multiplication of a form u by a polynomial h as

$$(uh)(x) := \left\langle u, \frac{xh(x) - \xi h(\xi)}{x - \xi} \right\rangle = \sum_{i=0}^{n} \left(\sum_{j=i}^{n} a_j(v)_{j-i} \right) x^i, \ h(x) = \sum_{i=0}^{n} a_i x^i.$$
(1)

Next, it is possible to define the product of two forms through

$$\langle uv, f \rangle := \langle u, vf \rangle, \ u, v \in \mathcal{P}', \ f \in \mathcal{P}.$$

A form u is called regular if there exists a sequence of polynomials $\{S_n\}_{n\geq 0}$ $(\deg S_n \leq n)$ such that

$$\langle u, S_n S_m \rangle = r_n \delta_{n,m} \quad , \quad r_n \neq 0, \quad n \ge 0 \; .$$

Then, deg $S_n = n, n \ge 0$ and we can always suppose each S_n is monic. In such a case, the sequence $\{S_n\}_{n>0}$ is unique. The sequence $\{S_n\}_{n>0}$ is said to be the sequence of monic orthogonal polynomials with respect to u. In the sequel, it will be denoted as MOPS. It is a very well known fact that the sequence $\{S_n\}_{n>0}$ satisfies the recurrence relation [3]

$$S_{n+2}(x) = (x - \beta_{n+1})S_{n+1}(x) - \gamma_{n+1}S_n(x) , \quad n \ge 0 ,$$

$$S_1(x) = x - \beta_0 , \qquad S_0(x) = 1 ,$$
(2)

with $(\beta_n, \gamma_{n+1}) \in \mathbb{C} \times \mathbb{C} \setminus \{0\}$, $n \ge 0$. By convention we set $\gamma_0 = (u)_0$. The form u is called normalized if $(u)_0 = 1$.

We recall that a form u is called symmetric if $(u)_{2n+1} = 0, n \ge 0$. The conditions $(u)_{2n+1} = 0, n \ge 0$ are equivalent to the fact that the corresponding MOPS $\{S_n\}_{n\geq 0}$ satisfies the three-term recurrence relation (2) with $\beta_n = 0, n \geq 0$ [3].

Let us introduce the Hahn's operator [9]

$$(H_q f)(x) = \frac{f(qx) - f(x)}{(q-1)x}, f \in \mathcal{P}, \ q \in \tilde{\mathbb{C}},$$

where $\tilde{\mathbb{C}} := \mathbb{C} - \left(\{0\} \bigcup \left(\bigcup_{n \ge 0} \{z \in \mathbb{C} \ , \ z^n = 1\} \right) \right)$. When $q \longrightarrow 1$, we meet again the derivative D.

By duality, we can define H_q from \mathcal{P}' to \mathcal{P}' such that

$$\langle H_q u, f \rangle = - \langle u, H_q f \rangle , f \in \mathcal{P} , u \in \mathcal{P}' .$$

In particular, this yields $(H_q u)_n = -[n]_q(u)_{n-1}$, $n \ge 0$ with $(u)_{-1} = 0$ and $[n]_q := \frac{q^n - 1}{q - 1}$, $n \ge 0$.

Definition 1. [6] The regular form u is called a H_q -Laguerre-Hahn form when it is regular and there exist three polynomials Φ (monic), Ψ and B, deg(Φ) = $t \ge 0$, $\deg(\Psi) = p \ge 1$, $\deg(B) = r \ge 0$, such that

$$H_q(\Phi u) + \Psi u + B(x^{-1}u(h_q u)) = 0.$$
(3)

The corresponding MOPS $\{S_n\}_{n\geq 0}$ is said to be H_q -Laguerre-Hahn.

Remark 1. When B = 0, the form u is H_q -semiclassical.

Proposition 1. [6] We define $d = \max(t, r)$. The H_q -Laguerre-Hahn form u satisfying (3) is of class $s = \max(d-2, p-1)$ if and only if

$$\prod_{c \in \mathcal{Z}_{(\Phi)}} \{ |(H_q \Phi)(c) + q(h_q \Psi)(c)| + |q(h_q B)(c)| + |\langle u, (\theta_{cq} \circ \theta_c \Phi) + q(\theta_{cq} \Psi) + q(h_q u)(\theta_0 \circ \theta_{cq} B) \rangle | \} \neq 0 ,$$

where $Z_{(\Phi)} := \{ z \in C, \Phi(z) = 0 \}.$

The H_q -Laguerre-Hahn character is invariant by shifting. Indeed, the shifted form $\tilde{u} = h_{a^{-1}}u, a \in C - \{0\}$ satisfies

$$H_q(\Phi \tilde{u}) + \Psi \tilde{u} + B(x^{-1}\tilde{u}(h_q \tilde{u})) = 0 ,$$

with

$$\tilde{\Phi}(x) = a^{-t}\Phi(ax)$$
, $\tilde{B}(x) = a^{-t}B(ax)$, $\tilde{\Psi}(x) = a^{1-t}\Psi(ax)$.

The sequence $\{\tilde{S}_n(x) = a^{-n}S_n(ax)\}_{n\geq 0}$ is orthogonal with respect to \tilde{u} and fulfils (2) with

$$\tilde{\beta}_n = \frac{\beta_n}{a} , \quad \tilde{\gamma}_{n+1} = \frac{\gamma_{n+1}}{a^2} , \ n \ge 0 .$$

The next result [6] characterizes the elements of the functional equation satisfied by any symmetric H_q -Laguerre-Hahn form.

Proposition 2. Let u be a symmetric H_q -Laguerre-Hahn form of class s satisfying (3). The following statements hold.

- 1. When s is odd, then Φ and B are odd and Ψ is even.
- 2. When s is even, then Φ and B are even and Ψ is odd.

2. The Laguerre-Freud equations

In this section, we will establish the non-linear system satisfied by β_n and γ_n , simply by using the functional equation.

In the sequel, we assume that $\{S_n\}_{n\geq 0}$ is a H_q -Laguerre-Hahn sequence of class zero satisfying (2) and its corresponding form u satisfying (3) with

$$\Phi(x) = c_2 x^2 + c_1 x + c_0 , \quad \Psi(x) = a_1 x + a_0 ,$$

$$B(x) = b_2 x^2 + b_1 x + b_0 , \quad a_1 \neq 0 , \quad |c_2| + |c_1| + |c_0| \neq 0 .$$
(4)

Then, from (3) and (4), we obtain for $n \ge 0$

$$-\langle \Phi u, H_q (S_n(\xi) S_n(q^{-1}\xi))(x) \rangle + \langle \Psi u, S_n(x) S_n(q^{-1}x) \rangle + \langle u, B(x^{-1}u(h_q u)), S_n(x) S_n(q^{-1}x) \rangle = 0, - \langle \Phi u, H_q (S_{n+1}(q^{-1}\xi) S_n(\xi))(x) \rangle + \langle \Psi u, S_n(x) S_{n+1}(q^{-1}x) \rangle + \langle u, B(x^{-1}u(h_q u)), S_n(x) S_{n+1}(q^{-1}x) \rangle = 0.$$
(5)

Now, let us define for $n\geq 0$ and $0\leq k\leq 2$

$$I_{n,k}(q) = \langle u, x^k S_n(x) S_n(q^{-1}x) \rangle, \ 0 \le k \le 1,$$

$$J_{n,k}(q) = \langle u, x^k S_n(x) S_{n+1}(q^{-1}x) \rangle, \ 0 \le k \le 1,$$

$$K_{n,k}(q) = \langle u, x^k H_q(S_n(\xi) S_n(q^{-1}\xi))(x) \rangle, \ 0 \le k \le 2,$$

$$L_{n,k}(q) = \langle u, x^k H_q(S_{n+1}(q^{-1}\xi) S_n(\xi))(x) \rangle, \ 0 \le k \le 2,$$

$$M_{n,k}(q) = \langle x^{-1}u(h_q u), x^k S_n(x) S_n(q^{-1}x) \rangle, \ 0 \le k \le 2,$$

$$N_{n,k}(q) = \langle x^{-1}u(h_q u), x^k S_n(x) S_{n+1}(q^{-1}x) \rangle, \ 0 \le k \le 2.$$

(6)

M. Sghaier, M. Zaatra, M. Mechri

If we expand Φ , Ψ and B according to (4), we get from (5) and (6)

$$a_{1}I_{n,1}(q) + a_{0}I_{n,0}(q) + b_{2}M_{n,2}(q) + b_{1}M_{n,1}(q) + b_{0}M_{n,0}(q) -c_{2}K_{n,2}(q) - c_{1}K_{n,1}(q) - c_{0}K_{n,0}(q) = 0,$$
(7)

$$a_1 J_{n,1}(q) + a_0 J_{n,0}(q) + b_2 N_{n,2}(q) + b_1 N_{n,1}(q) + b_0 N_{n,0}(q) -c_2 L_{n,2}(q) - c_1 L_{n,1}(q) - c_0 L_{n,0}(q) = 0.$$
(8)

Lemma 1. [13] We have

$$I_{n,0}(q) = q^{-n} \langle u, S_n^2 \rangle , \ n \ge 0 ,$$
 (9)

$$I_{n,1}(q) = q^{-n} \Big\{ \beta_n + (1-q) \sum_{\nu=0}^{n-1} \beta_\nu \Big\} \langle u, S_n^2 \rangle , \ n \ge 0 ,$$
 (10)

$$J_{n,0}(q) = q^{-n-1}(1-q) \Big(\sum_{\nu=0}^{n} \beta_{\nu}\Big) \langle u, S_n^2 \rangle , \ n \ge 0 ,$$
(11)

$$J_{n,1}(q) = q^{-n-1} \Big\{ \gamma_{n+1} + (1-q) \Big[(1+q) \sum_{\nu=0}^{n-1} \gamma_{\nu+1} + \sum_{\nu=0}^{n} \beta_{\nu}^{2} + (1-q) \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_{k} \Big] \Big\} \langle u, S_{n}^{2} \rangle , \ n \ge 0 ,$$

$$(12)$$

$$K_{n,0}(q) = 0 , \ n \ge 0 ,$$
 (13)

$$K_{n,1}(q) = q^{-n} [2n]_q \langle u, S_n^2 \rangle , \ n \ge 0 ,$$
(14)

$$K_{n,2}(q) = q^{-n} \Big\{ [2n]_q \beta_n + (1+q^{2n-1}) \sum_{k=0}^{n-1} \beta_k \Big\} \langle u, S_n^2 \rangle , \ n \ge 0 , \qquad (15)$$

$$L_{n,0}(q) = q^{-n-1} [n+1]_q \langle u, S_n^2 \rangle , \ n \ge 0 ,$$
(16)

$$L_{n,1}(q) = q^{-n-1} \left(\sum_{\nu=0}^{n} \beta_{\nu} \right) \langle u, S_n^2 \rangle , \ n \ge 0 ,$$
 (17)

$$L_{0,2}(q) = q^{-1}(\beta_0^2 + \gamma_1) , \qquad (18)$$

$$L_{n,2}(q) = q^{-n-1} \Big\{ [2n+1]_q \gamma_{n+1} + (1+q) \sum_{\nu=0}^{n-1} \gamma_{\nu+1} + \sum_{\nu=0}^n \beta_{\nu}^2 + (1-q) \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_k \Big\} \langle u, S_n^2 \rangle , \ n \ge 1 , \sum_{\nu=0}^{-1} = 0 .$$
(19)

In order to determine $\{M_{n,k}(q)\}_{n\geq 0}$ and $\{N_{n,k}(q)\}_{n\geq 0}$, $0\leq k\leq 2$, we need the following results:

Lemma 2. [13] For $n \ge 0$ we have

$$\langle u, x^{n+1}S_n \rangle = \left(\sum_{\nu=0}^n \beta_\nu\right) \langle u, S_n^2 \rangle ,$$
 (20)

$$\langle u, x^{n+2}S_n \rangle = \left(\sum_{\nu=0}^n \gamma_{\nu+1} + \sum_{\nu=0}^n \beta_\nu \sum_{k=0}^\nu \beta_k\right) \langle u, S_n^2 \rangle .$$
 (21)

Lemma 3. [3] We have

$$S_{n+2}(x) = x^{n+2} + d_{n+1}x^{n+1} + e_n x^n + \dots, \quad n \ge 0,$$

$$S_1(x) = x + d_0,$$
(22)

with

$$d_n = -\sum_{\nu=0}^n \beta_\nu , \qquad (23)$$

$$e_n = -\sum_{\nu=0}^n \gamma_{\nu+1} - \sum_{\nu=0}^n \beta_\nu \sum_{k=0}^\nu \beta_k + \sum_{\nu=0}^{n+1} \beta_\nu \sum_{\nu=0}^n \beta_\nu$$
(24)

for $n \ge 0$.

Lemma 4. [12] For $u, v \in \mathcal{P}'$ and $f, g \in \mathcal{P}$, we have

$$f(uv) = (fu)v + x(u\theta_0 f)v, \qquad (25)$$

$$\langle uv, \theta_0(fg) \rangle = \langle u, f(v\theta_0 g) \rangle + \langle v, g(u\theta_0 f) \rangle.$$
 (26)

Lemma 5. We have

$$M_{n,0}(q) = 0, \ n \ge 0,$$
 (27)

$$M_{0,1}(q) = 1 {,} {(28)}$$

$$M_{n,1}(q) = q^{-n}(1+q^{2n})\langle u, S_n^2 \rangle , \ n \ge 1 ,$$
(29)

$$M_{0,2}(q) = (q+1)\beta_0 , \qquad (30)$$

$$M_{n,2}(q) = q^{-n} \{ (q^{2n} + q)(\beta_0 + \beta_n) + (q - 1)(q^{2n} - 1) \sum_{\nu=0}^n \beta_\nu \} \langle u, S_n^2 \rangle , \ n \ge 1 , \ (31)$$

$$N_{n,0}(q) = q^{-n-1} \langle u, S_n^2 \rangle , \ n \ge 0 ,$$
 (32)

M. Sghaier, M. Zaatra, M. Mechri

$$N_{n,1}(q) = q^{-n-1} \{ q\beta_0 + (1-q) \sum_{\nu=0}^n \beta_\nu \} \langle u, S_n^2 \rangle , \ n \ge 0 ,$$
(33)

$$N_{0,2}(q) = q^{-1} [\beta_0^2 + (q^2 + 1)\gamma_1], \qquad (34)$$

$$N_{n,2}(q) = q^{-n-1} \{ (1+q^{2n+2})\gamma_{n+1} + q(q-1) \sum_{\nu=0}^{n} \beta_{\nu} \sum_{\nu=1}^{n} \beta_{\nu} + (1-q^2) (\sum_{\nu=0}^{n-1} \gamma_{\nu+1} + \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_k + \sum_{\nu=0}^{n} \beta_{\nu}^2) + q^2 (\beta_0^2 + \gamma_1) \} \langle u, S_n^2 \rangle, \ n \ge 1.$$

$$(35)$$

Proof. From (26), we have

$$M_{n,0}(q) = \langle u, S_n(x) \big(h_q u \theta_0(h_{q^{-1}} S_n)(x) \rangle + \langle u, S_n(x) (u \theta_0 S_n)(qx) \rangle , \ n \ge 0 .$$

By the orthogonality of $\{S_n\}_{n\geq 0}$, we obtain (27).

Taking $f(x) = S_n(x)$ and $g(x) = x(h_{q^{-1}}S_n)(x)$ in (26), we can deduce that for $n \ge 0$

$$M_{n,1}(q) = \langle u, S_n(x) \big(h_q u(h_{q^{-1}} S_n) \big)(x) \rangle + \langle u, qx S_n(x) (u\theta_0 S_n)(qx) \rangle .$$
(36)

Making n = 0 in (36), we get $M_{0,1}(q) = (u)_0 = 1$.

When $n \ge 1$, by (1) and the orthogonality of $\{S_n\}_{n\ge 0}$, we obtain (29).

By virtue of (26), when $f(x) = xS_n(x)$ and $g(x) = x(h_{q^{-1}}S_n)(x)$, we can deduce that for $n \ge 0$

$$M_{n,2}(q) = \langle u, xS_n(x) \big(h_q u(h_{q^{-1}}S_n)(x) \rangle + \langle u, qx) S_n(x)(uS_n)(qx) \rangle .$$
(37)

Making n = 0 in (37) and taking into account that $(u)_1 = \beta_0$, we obtain (30).

When $n \ge 1$, by (1), (22) and according to the orthogonality of $\{S_n\}_{n\ge 0}$, we get

$$M_{n,2}(q) = (q^{-n} + q^{n+1})\langle u, x^{n+1}S_n(x)\rangle + (q^{1-n} + q^n)(\beta_0 + d_{n-1})\langle u, S_n^2\rangle.$$

Thus, from (20) and (23), we can deduce (31).

From (26), we have

$$N_{n,0}(q) = \langle u, S_{n+1}(x) \big(u\theta_0 S_n \big) (qx) \rangle + \langle u, S_n(x) (h_q u\theta_0 h_{q^{-1}} S_{n+1}) (x) \rangle , \ n \ge 0 .$$

Hence, by the orthogonality of $\{S_n\}_{n\geq 0}$, we obtain (32).

Taking $f(x) = S_{n+1}(q^{-1}x)$ and $g(x) = xS_n(x)$ in (26), we get for $n \ge 0$

$$N_{n,1}(q) = \langle u, S_{n+1}(x) (uS_n)(qx) \rangle + \langle u, xS_n(x) (h_q u\theta_0 h_{q^{-1}} S_{n+1})(x) \rangle$$

The Symmetric H_q -Laguerre-Hahn Orthogonal Polynomials of Class Zero

By (1), (22) and the orthogonality of $\{S_n\}_{n\geq 0}$, we obtain

$$N_{n,1}(q) = q^{-n-1} \langle u, x^{n+1} S_n(x) \rangle + q^{-n} (\beta_0 + d_n) \langle u, S_n^2 \rangle$$

Then, from (20) and (23), we can deduce (33).

For $n \ge 0$, by (26), we have

$$N_{n,2}(q) = \langle u, qx S_{n+1}(x) (uS_n)(qx) \rangle + \langle u, xS_n(x) (h_q u h_{q^{-1}} S_{n+1})(x) \rangle .$$
(38)

When n = 0, from (38) and taking into account that $(u)_2 = \beta_0^2 + \gamma_1$, we obtain (34).

Now, for $n \ge 1$, by (1), (22), (38) and taking into account the regularity of the form u, we get

$$N_{n,2}(q) = q^{-n-1} \langle u, x^{n+2} S_n(x) \rangle + q^{-n} (\beta_0 + d_n) \langle u, x^{n+1} S_n(x) \rangle + \{q^{n+1} \gamma_{n+1} + q^{1-n} (\beta_0^2 + \gamma_1) + q^{1-n} (e_{n-1} + \beta_0 d_n) \} \langle u, S_n^2 \rangle .$$

Hence, from Lemma 2, (23) and (24), we can deduce (35). \blacktriangleleft

The following is the main result of this section.

Proposition 3. We have the following system:

$$\Psi(\beta_0) + (H_q B)(\beta_0) = 0 , \qquad (39)$$

$$(1+q^{2n-1})\sum_{\nu=0}^{n-1} (\theta_{\beta_n} \Phi)(\beta_{\nu}) - \Psi(\beta_n) - (q+q^{2n})(\theta_{\beta_n} B)(\beta_0) = + ((1+q^{2n-1})n - [2n]_q)(c_2\beta_n + c_1) + (q-1)\{(q^{2n}-1)\beta_n b_2 + [(q^{2n}-1)b_2 - a_1]\sum_{\nu=0}^{n-1} \beta_{\nu} - b_1\} = 0, \ n \ge 1,$$

$$(40)$$

$$[a_1 + (1+q^2)b_2 - c_2]\gamma_1 = \Phi(\beta_0) - B(\beta_0) - (1-q)\beta_0\Psi(\beta_0) , \qquad (41)$$
$$\{a_1 + (q^{2n+2}+1)b_2 - [2n+1]_qc_2\}\gamma_{n+1} + (1+q)\{(1-q)(a_1+b_2)\}$$

$$-c_{2} \sum_{\nu=0}^{n-1} \gamma_{\nu+1} = \sum_{\nu=0}^{n} \Phi(\beta_{\nu}) + ([n+1]_{q} - n - 1)c_{0} - B(q\beta_{0})$$

$$-q^{2}b_{2}\gamma_{1} + (1-q)\{[c_{2} + (q-1)a_{1} - (q+1)b_{2}]\sum_{\nu=0}^{n-1}\beta_{\nu+1}\sum_{k=0}^{\nu}\beta_{k}$$

$$-(a_{0} + b_{1})\sum_{\nu=0}^{n}\beta_{\nu} - [a_{1} + (q+1)b_{2}]\sum_{\nu=0}^{n}\beta_{\nu}^{2}$$

$$+qb_{2}\sum_{\nu=0}^{n}\beta_{\nu}\sum_{\nu=1}^{n}\beta_{\nu}\}, \ n \ge 1.$$
 (42)

Proof. Making n = 0 in (7) and taking the relations (9) - (10), (13) - (15), (27) - (28) and (30) into account, we can deduce (39). Let $n \ge 1$. Then, by virtue of the relations (9) - (10), (13) - (15), (27), (29) and (31), the equation (7) becomes

$$\{[2n]_q\beta_n + (1+q^{2n-1})\sum_{\nu=0}^{n-1}\beta_\nu\}c_2 + [2n]_qc_1 - \{\beta_n + (1-q)\sum_{\nu=0}^{n-1}\beta_\nu\}a_1 -a_0 - \{(q^{2n}+q)(\beta_0+\beta_n) + (q-1)(q^{2n}-1)\sum_{\nu=0}^n\beta_\nu\}b_2 - (1+q^{2n})b_1 = 0$$

But, $(\theta_{\beta_n} \Phi)(\beta_{\nu}) = c_2(\beta_n + \beta_{\nu}) + c_1$ and $(\theta_{\beta_n} B)(\beta_0) = b_2(\beta_n + \beta_0) + b_1$. Then, we can deduce (40).

Let n = 0 in (8). Then, by virtue of (11) - (12), (16) - (18) and (32) - (34) we get (41).

When $n \ge 1$, in view of (11) - (12), (16) - (17), (19), (32) - (33) and (35), (8) becomes

$$\{ [2n+1]_q \gamma_{n+1} + (1+q) \sum_{\nu=0}^{n-1} \gamma_{\nu+1} + \sum_{\nu=0}^n \beta_{\nu}^2 + (1-q) \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_k \} c_2$$

$$c_1 \sum_{\nu=0}^n \beta_{\nu} + [n+1]_q c_0 - \{\gamma_{n+1} + (1-q) \Big[(1+q) \sum_{\nu=0}^{n-1} \gamma_{\nu+1} + \sum_{\nu=0}^n \beta_{\nu}^2 + (1-q) \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_k \Big] a_1 - (1-q) a_0 \sum_{\nu=0}^n \beta_{\nu} - \{ (q^{2n+2}+1)\gamma_{n+1} + q(q-1) \sum_{\nu=0}^n \beta_{\nu} \sum_{\nu=1}^n \beta_{\nu} + (1-q^2) \Big(\sum_{\nu=0}^{n-1} \gamma_{\nu+1} + \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_k + \sum_{\nu=0}^n \beta_{\nu}^2 \Big)$$

$$+ q^2 (\beta_0^2 + \gamma_1) \} b_2 - \{ q\beta_0 + (1-q) \sum_{\nu=0}^n \beta_{\nu} \} b_1 - b_0 = 0 .$$

Hence, we can deduce (42). \triangleleft

3. The symmetric case when s = 0

In the sequel, we assume that $\{S_n\}_{n\geq 0}$ is a symmetric H_q -Laguerre-Hahn orthogonal sequence of class zero.

Then, we have

$$S_{n+2}(x) = x S_{n+1}(x) - \gamma_{n+1} S_n(x) , \quad n \ge 0 ,$$

$$S_1(x) = x , \qquad S_0(x) = 1 .$$
(43)

By virtue of the Proposition 2, it follows that

$$H_q(\Phi u) + \Psi u + B(x^{-1}u^2) = 0, \qquad (44)$$

43

with

$$\Phi(x) = c_2 x^2 + c_0 , \ \Psi(x) = a_1 x , \ B(x) = b_2 x^2 + b_0 .$$
(45)

In this case the system (39) - (42) becomes

$$(r_2 - c_2)\gamma_1 = c_0 - b_0 , \qquad (46)$$

$$\{r_{2n+2} - [2n+1]_q c_2\}\gamma_{n+1} + (1+q)\{(1-q)(a_1+b_2) - c_2\}\sum_{\nu=0}^{n-1}\gamma_{\nu+1} \qquad (47)$$
$$= [n+1]_q c_0 - b_0 - q^2 b_2 \gamma_1, \ n \ge 1,$$

$$r_n = a_1 + (1+q^n)b_2, \ n \ge 0.$$
(48)

Let

$$T_n = \sum_{\nu=0}^n \gamma_{\nu+1} , \ n \ge 0 .$$
 (49)

Then,

$$T_n - T_{n-1} = \gamma_{n+1} , \ n \ge 0 , \ T_{-1} = 0 .$$
 (50)

Taking the relations (49) and (50) into account, the system (46) - (47) becomes

$$(r_2 - c_2)T_0 = c_0 - b_0 , (51)$$

$$\{r_{2n+2} - [2n+1]_q c_2\}(T_n - T_{n-1}) + (1+q)\{(1-q)(a_1+b_2) - c_2\}T_{n-1} = [n+1]_q c_0 - b_0 - q^2 b_2 T_0, \ n \ge 1.$$

$$(52)$$

Proposition 4. We have for $n \ge 1$

$$T_n = \frac{q[n]_q[n+1]_q c_0 + [(a_1 - c_2)[2n+2]_q + [2n+4]_q b_2]\gamma_1}{(q+1)\{r_{2n+2} - [2n+1]_q c_2\}} .$$
 (53)

Proof. The equation (52) can be written as

$$\{ r_{2n+2} - [2n+1]_q c_2 \} T_n - q^2 \{ r_{2n} - [2n-1]_q c_2 \} T_{n-1}$$

= $[n+1]_q c_0 - b_0 - q^2 b_2 T_0 , n \ge 1 .$

So, we obtain

$$\{r_{2n+2} - [2n+1]_q c_2\}T_n - q^{2n}\{r_2 - c_2\}T_0$$

= $q^{2n} \sum_{k=1}^n \left\{ q^{-2k} \left([k+1]_q c_0 - b_0 - q^2 b_2 T_0 \right) \right\}, \ n \ge 1.$

Taking the relation (51) into account, we obtain (53). \blacktriangleleft

Corollary 1. The sequence $\{\gamma_{n+2}\}_{n\geq 0}$ is defined by

$$\gamma_{n+2} = \frac{q^{n+1}}{\{r_{2n+4}-[2n+3]_q c_2\}\{r_{2n+2}-[2n+1]_q c_2\}} \{[n+1]_q (r_{n+2}-[n+1]_q c_2) c_0 + [(a_1+b_2)q^{n+1}r_2 - (q(a_1+b_2)+c_2-r_2)q^n c_2]\gamma_1\}.$$
(54)

Proof. From (50) and Proposition 4, we get for $n \ge 1$

$$\begin{split} &(q+1)\{r_{2n+4}-[2n+3]_qc_2\}\{r_{2n+2}-[2n+1]_qc_2\}\gamma_{n+2} \\ &=\{r_{2n+2}-[2n+1]_qc_2\}\{q[n+1]_q[n+2]_qc_0+[(a_1-c_2)[2n+4]_q+[2n+6]_qb_2]\gamma_1\} \\ &-\{r_{2n+4}-[2n+3]_qc_2\}\{q[n]_q[n+1]_qc_0+[(a_1-c_2)[2n+2]_q+[2n+4]_qb_2]\gamma_1\} \,. \end{split}$$

Then, we can deduce (54) after some straightforward calculations. \blacktriangleleft

4. The canonical cases

Before considering different canonical situations, let us proceed to the general transformation

$$\tilde{S}_n(x) = a^{-n} S_n(ax) , \quad n \ge 0 ,$$
$$\tilde{\gamma}_{n+1} = \frac{\gamma_{n+1}}{a^2} , \ n \ge 0 .$$

The form $\tilde{u} = h_{a^{-1}}u$ fulfils

$$H_q(a^{-t}\Phi(ax)\tilde{u}) + a^{1-t}\Psi(ax)\tilde{u} + a^{-t}B(ax)(x^{-1}(\tilde{u}(h_q\tilde{u}))) = 0.$$

Any so-called canonical case will be denoted by $\tilde{\gamma}_{n+1}$, \tilde{u} . By (54) and Corollary 1, we get the general situation

$$\begin{cases} \gamma_{n+2} = \frac{q^{n+1}}{\{r_{2n+4}-[2n+3]_q c_2\}\{r_{2n+2}-[2n+1]_q c_2\}} \{[n+1]_q (r_{n+2}-[n+1]_q c_2) c_0 \\ +[(a_1+b_2)q^{n+1}r_2 - (q(a_1+b_2)+c_2-r_2)q^n c_2]\gamma_1\}, n \ge 0, \\ H_q ((c_2x^2+c_0)u) + a_1xu + (b_2x^2+b_0)(x^{-1}u^2) = 0. \end{cases}$$
(55)

Theorem 1. The following canonical cases arise:

1. When $\Phi(x) = 1$, we have the following subcases: (i) $a_1 + b_2 \neq 0$ The Symmetric ${\cal H}_q\mbox{-}{\rm Laguerre-Hahn}$ Orthogonal Polynomials of Class Zero

$$\begin{cases} \tilde{\gamma}_{1} = \rho \frac{q^{\tau}[\tau+1]_{q}}{2}, \\ \tilde{\gamma}_{n+2} = \frac{q^{n+\tau+1}}{2\{\frac{1}{\rho} + (1-\frac{1}{\rho})q^{2n+2}\}}\{[n+\tau+2]_{q} + (\frac{1}{\rho}-1)([n+3]_{q} - q^{n+2}[n+1]_{q} - (q+1)q^{n+\tau+2})\}, n \ge 0, \\ H_{q}(\tilde{u}) + \frac{2}{\rho}(2-\rho)q^{-\tau}x\tilde{u} + \{\frac{2}{\rho}(\rho-1)q^{-\tau}x^{2} + 1 - (1+q^{2}(\rho-1))[\tau+1]_{q}\}(x^{-1}\tilde{u}^{2}) = 0. \end{cases}$$

$$(56)$$

(*ii*) $a_1 = -b_2$

$$\begin{cases} \tilde{\gamma}_1 = \frac{\rho}{2q} , \ \tilde{\gamma}_{n+2} = \frac{[n+1]_q}{2q^{2n+3}} , \ n \ge 0 , \\ H_q(\tilde{u}) - 2x\tilde{u} + (2x^2 + 1 - q\rho)(x^{-1}\tilde{u}^2) = 0 . \end{cases}$$
(57)

2. The case where $\Phi(x) = x^2$, we obtain the canonical case below:

$$\begin{cases} \tilde{\gamma}_{1} = -\rho \frac{q^{2\tau+1}}{[2\tau+1][2\tau+3]} ,\\ \tilde{\gamma}_{n+2} = -\frac{q^{2n+2\tau+3}}{\Omega_{2n+2}\Omega_{2n}} , n \ge 0 ,\\ H_{q}(x^{2}\tilde{u}) + q^{-2\tau-4} \{(1+q^{2})(1-\frac{1}{\rho})[2\tau+1]_{q} - q^{2}[2\tau+2]_{q}\} x \tilde{u} \\ + \{q^{-2\tau-4}(\frac{1}{\rho}-1)[2\tau+1]_{q}x^{2} - \rho \frac{q^{-1}}{[2\tau+1]_{q}}\}(x^{-1}\tilde{u}^{2}) = 0 , \end{cases}$$

$$(58)$$

with (for $n \ge 0$)

$$\Omega_n = [n+2\tau+3]_q + (q^n-1)(1-\frac{1}{\rho})[2\tau+1]_q \,.$$

3. When $\Phi(x) = x^2 + c_0$, $c_0 \neq 0$, we have the following subcases: (i) $q(a_1 + b_2) + 1 = 0$

$$\begin{cases} \tilde{\gamma}_{1} = q\rho , \ \tilde{\gamma}_{n+2} = q^{n+2} \frac{(q^{n+1}-1)(q^{n+\alpha+1}-1)}{(q^{2n+\alpha+3}-1)(q^{2n+\alpha+1}-1)} , \ n \ge 0 , \\ H_{q} \left((x^{2}-1)\tilde{u} \right) + (q-1)^{-1}(q^{\alpha-2}-1)x\tilde{u} + \{-q^{-1}(q-1)^{-1}(q^{\alpha-1}-1)x^{2} + \rho(q-1+q(q-1)^{-1}(q^{\alpha-1}-1)) - 1\}(x^{-1}\tilde{u}^{2}) = 0 . \end{cases}$$

$$(59)$$

$$\begin{aligned} (ii) \ q(a_{1}+b_{2})+1 \neq 0 \\ \begin{cases} \tilde{\gamma}_{1} &= \rho q^{\tau+2\alpha+2} \frac{(q^{\tau+1}-1)(q^{\tau+2\alpha+1}-1)}{(q^{2\tau+2\alpha+3}-1)(q^{2\tau+2\alpha+1}-1)} , \\ \tilde{\gamma}_{n+2} &= q^{n+\tau+2\alpha+3} \frac{(q^{n+\tau+2}-1)(q^{n+\tau+2\alpha+2}-1)+\Lambda_{n}}{\Delta_{2n}\Delta_{2n+2}} , \ n \geq 0 , \\ H_{q} \left((x^{2}-q^{-\tau})\tilde{u} \right) - q^{-2\tau-2\alpha-4}(q-1)^{-1} \{ q^{2}(q^{2\tau+2\alpha+2}-1) \\ +(1+q^{2})(\frac{1}{\rho}-1)(q^{2\tau+2\alpha+1}-1) \} x \tilde{u} \\ +\{q^{-2\tau-2\alpha-4}(q-1)^{-1}(\frac{1}{\rho}-1)(q^{2\tau+2\alpha+1}-1)x^{2} \\ +\rho q^{-\tau}[\tau+1]_{q} \frac{q^{\tau+2\alpha+1}-1}{q^{2\tau+2\alpha+1}-1} - q^{-\tau} \} (x^{-1}\tilde{u}^{2}) = 0 , \end{aligned}$$

with (for $n \ge 0$)

$$\begin{cases} \Delta_n = q^{n+2\tau+2\alpha+3} - 1 - (q^n - 1)(q^{2\tau+2\alpha+1} - 1)(\frac{1}{\rho} - 1), \\ \Lambda_n = (q^{n+1} - 1)(q^n - 1)(q^{2\tau+2\alpha+1} - 1)(1 - \frac{1}{\rho}). \end{cases}$$

Proof.

1. In this case, (55) becomes

$$\begin{cases} \gamma_{n+2} = \frac{q^{n+1}}{r_{2n+4}r_{2n+2}} \{ [n+1]_q r_{n+2} + q^{n+1}(a_1+b_2)r_2\gamma_1 \} , n \ge 0 , \\ H_q(u) + a_1 x u + (b_2 x^2 + b_0)(x^{-1}u^2) = 0 . \end{cases}$$
(61)

We need to discuss the following situations:

(i) $a_1 + b_2 \neq 0$. Choosing $a^2(a_1 + b_2) = \frac{2}{\rho}q^{-\tau}$ and putting $a^{-2}\gamma_1 = \rho \frac{q^{\tau}[\tau+1]}{2}$, $a^2b_2 = \frac{2}{\rho}(\rho - 1)q^{-\tau}$, we get (56) from (51). (ii) If $a_1 + b_2 = 0$, then (61) becomes

$$\begin{cases} \gamma_{n+2} = \frac{[n+1]_q}{q^{2n+3}b_2} , n \ge 0 , \\ H_q(u) + a_1 x u + (b_2 x^2 + b_0)(x^{-1}u^2) = 0 \end{cases}$$

With the choice $a^2b_2 = 2$ and putting $\tilde{\gamma}_1 = \frac{\rho}{2q}$, we get (57) from (51).

2. In this case, (55) can be written as

$$\left\{ \begin{array}{l} \gamma_{n+2} = \frac{q^{2n+1}(r_2-1)\{q(a_1+b_2)+1\}\gamma_1}{\{r_{2n+4}-[2n+3]_q\}\{r_{2n+2}-[2n+1]_q\}} \;,\; n \ge 0 \;, \\ H_q(x^2u) + a_1xu + (b_2x^2 + b_0)(x^{-1}u^2) = 0 \;. \end{array} \right.$$

We choose a such that $a^{-2}(r_2-1)\{q(a_1+b_2)+1\}\gamma_1 = q^{-2\tau-2}$, and putting $q^{-2\tau-2}[2\tau+3] = 1-r_2$, $\tilde{\gamma}_1 = -\rho \frac{q^{2\tau+1}}{[2\tau+3]_q[2\tau+1]_q}$, we obtain (58) from (51).

The Symmetric H_q -Laguerre-Hahn Orthogonal Polynomials of Class Zero

3. In this case, (55) becomes

$$\gamma_{n+2} = \frac{q^{n+1}}{\{r_{2n+4}-[2n+3]_q\}\{r_{2n+2}-[2n+1]_q\}} \{ [n+1]_q (r_{n+2} - [n+1]_q) c_0 + q^n (1 + q(a_1 + b_2)) (r_2 - 1) \gamma_1 \}, n \ge 0,$$

$$H_q (x^2 + c_0) u) + a_1 x u + (b_2 x^2 + b_0) (x^{-1} u^2) = 0.$$
(62)

47

We can consider two subcases:

(i) If $1 + q(a_1 + b_2) = 0$, then (62) becomes

$$\begin{cases} \gamma_{n+2} = \frac{q^{n+1}}{\{r_{2n+4} - [2n+3]_q\}\{r_{2n+2} - [2n+1]_q\}} \{[n+1]_q (r_{n+2} - [n+1]_q)c_0\}, n \ge 0, \\ H_q (x^2 + c_0)u + a_1 xu + (b_2 x^2 + b_0)(x^{-1}u^2) = 0. \end{cases}$$

With the choice $a^{-2}c_0 = -1$ and putting $\tilde{\gamma}_1 = \rho$, $a_1 = (q-1)^{-1}(q^{\alpha-1}-1)$, we obtain the desired result (59) from (51).

(ii) When $1 + q(a_1 + b_2) \neq 0$, we choose a such that $a^{-2}c_0 = -q^{-\tau}$ and putting

$$\begin{cases} a^{-2} \left(1 + q(a_1 + b_2) \right) (r_2 - 1) \gamma_1 = q^{-3\tau - 2\alpha - 1} (q - 1)^{-1} (q^{\tau + 2\alpha + 1} - 1) [\tau + 1]_q \\ 1 + q(a_1 + b_2) = -\frac{q^{-2\tau - 2\alpha - 1}}{\rho} (q - 1)^{-1} (q^{2\tau + 2\alpha + 1} - 1) \\ 1 - r_2 = q^{-2\tau - 2\alpha - 2} (q - 1)^{-1} (q^{2\tau + 2\alpha + 3} - 1) \\ \end{cases}$$

we get (60) from (51). \blacktriangleleft

Remark 2. 1. If $q \rightarrow 1$ in (56), we obtain

$$\begin{cases} \tilde{\gamma}_1 = \rho \frac{\tau+1}{2} , \quad \tilde{\gamma}_{n+2} = \frac{n+\tau+2}{2} , n \ge 0 , \\ (\tilde{u})' + \frac{2}{\rho} (2-\rho) x \tilde{u} + \left(\frac{2}{\rho} (\rho-1) x^2 + 1 - \rho(\tau+1)\right) (x^{-1} \tilde{u}^2) = 0. \end{cases}$$

In this case \tilde{u} is the co-dilated of the associated form of order τ of Hermite [2].

2. When $q \neq 1$, from (56) we obtain

$$\begin{cases} \hat{\gamma_{1}} = \rho q^{\tau} (1 - q^{\tau+1}) ,\\ \hat{\gamma}_{n+2} = \frac{q^{n+\tau+1}}{\{\frac{1}{\rho} + (1 - \frac{1}{\rho})q^{2n+2}\}}\{(1 - q^{n+\tau+2}) \\ + (\frac{1}{\rho} - 1) \left((1 - q^{n+3}) - q^{n+2}(1 - q^{n+1}) + (q^{2} - 1)q^{n+\tau+2}\right)\} , n \ge 0 ,\\ H_{q}(\hat{u}) + \frac{1}{\rho}(2 - \rho)(1 - q)^{-1}q^{-\tau}x\hat{u} + \{\frac{1}{\rho}(\rho - 1)(1 - q)^{-1}q^{-\tau}x^{2} \\ + 1 - (1 + q^{2}(\rho - 1))[\tau + 1]_{q}\}(x^{-1}\hat{u}^{2}) = 0 , \end{cases}$$

$$(63)$$

with $\hat{u} = h_{\sqrt{2(1-q)}}\tilde{u}$. When $\rho = 1$ and $\tau = 0$, \hat{u} is a particular case of *q*-polynomials of Al-Salam Carlitz [9].

3. If $q \rightarrow 1$ in (57), we get

$$\begin{cases} \tilde{\gamma}_1 = \frac{\rho}{2} , \quad \tilde{\gamma}_{n+2} = \frac{n+1}{2} , n \ge 0 , \\ (\tilde{u})' - 2x\tilde{u} + (2x^2 + 1 - \rho))(x^{-1}\tilde{u}^2) = 0 . \end{cases}$$

In this case \tilde{u} is the Laguerre-Hahn form of class zero, analogous to the classical Hermite's one [2].

4. When $q \rightarrow 1$ in (58), we obtain

$$\begin{cases} \tilde{\gamma}_1 = -\frac{\rho}{(2\tau+1)(2\tau+3)} , \quad \tilde{\gamma}_{n+2} = -\frac{1}{(2n+2\tau+5)(2n+2\tau+3)} , n \ge 0 , \\ (x^2 \tilde{u})' + 2[(1-\frac{1}{\rho})(2\tau+1) - \tau - 1]x \tilde{u} \\ +[(\frac{1}{\rho}-1)(2\tau+1)x^2 - \frac{\rho}{2\tau+1}](x^{-1}\tilde{u}^2) = 0 . \end{cases}$$

In this case \tilde{u} is the co-dilates of the associated form of order τ of Bessel of parameter 1 [2].

5. If $q \rightarrow 1$ in (59), we get

$$\begin{cases} \tilde{\gamma}_1 = \rho , \quad \tilde{\gamma}_{n+2} = \frac{(n+1)(n+\alpha+1)}{(2n+\alpha+3)(2n+\alpha+1)} , n \ge 0 , \\ \left((x^2 - 1)\tilde{u} \right)' + (\alpha - 2)x\tilde{u} + \left((\alpha - 1)x^2 + \rho(\alpha - 1) - 1 \right) (x^{-1}\tilde{u}^2) = 0 . \end{cases}$$

In this case \tilde{u} is the Laguerre-Hahn form of class zero, analogous to the classical Jacobi's one [2].

6. When $q \rightarrow 1$ in (60), we have

$$\begin{cases} \tilde{\gamma}_1 = \rho \frac{(\tau+1)(\tau+2\alpha+1)}{(2\tau+2\alpha+3)(2\tau+2\alpha+1)} , \quad \tilde{\gamma}_{n+2} = \frac{(n+\tau+2)(n+\tau+2\alpha+2)}{(2n+2\tau+2\alpha+5)(2n+2\tau+2\alpha+3)} , n \ge 0 , \\ \left((x^2-1)\tilde{u} \right)' - 2[\tau+\alpha+1+(\frac{1}{\rho}-1)(2\tau+2\alpha+1)]x\tilde{u} \\ + [(\frac{1}{\rho}-1)(2\tau+2\alpha+1)x^2 + \rho \frac{(\tau+1)(\tau+2\alpha+1)}{(2\tau+2\alpha+3)(2\tau+2\alpha+1)} - 1](x^{-1}\tilde{u}^2) = 0 . \end{cases}$$

In this case \tilde{u} is the co-dilates of the associated form of order τ of Gegenbauer [2].

The Symmetric H_q -Laguerre-Hahn Orthogonal Polynomials of Class Zero

7. If we put $b = q^{\alpha}$, (60) reduces to

$$\begin{cases} \tilde{\gamma}_{1} = \rho b^{2} q^{\tau+1} \frac{(q^{\tau+1}-1)(b^{2}q^{\tau+1}-1)}{(b^{2}q^{2\tau+1}-1)(b^{2}q^{2\tau+1}-1)}, \\ \tilde{\gamma}_{n+2} = b^{2} q^{n+\tau+2} \frac{(q^{n+\tau+2}-1)(b^{2}q^{n+\tau+2}-1)+\Lambda_{n}}{\Delta_{2n}\Delta_{2n+2}}, n \geq 0, \\ H_{q} \left((x^{2}-q^{-\tau})\tilde{u} \right) - q^{-2\tau-4} (b^{2}(q-1))^{-1} \{ b^{2}q^{2}(q^{2\tau+2}-1) + (1+q^{2})(\frac{1}{\rho}-1)(b^{2}q^{2\tau+1}-1) \} x \tilde{u} \\ + \{q^{-2\tau-4}(b^{2}(q-1))^{-1}(\frac{1}{\rho}-1)(b^{2}q^{2\tau+1}-1)x^{2} + \rho q^{-\tau} [\tau+1]_{q} \frac{b^{2}q^{\tau+1}-1}{b^{2}q^{2\tau+1}-1} - q^{-\tau} \} (x^{-1}\tilde{u}^{2}) = 0, \end{cases}$$

$$(64)$$

with (for $n \ge 0$)

$$\begin{cases} \Delta_n = b^2 q^{n+2\tau+3} - 1 - (q^n - 1)(b^2 q^{2\tau+1} - 1)(\frac{1}{\rho} - 1) ,\\ \Lambda_n = (q^{n+1} - 1)(q^n - 1)(q^{2\tau+1}b^2 - 1)(1 - \frac{1}{\rho}) . \end{cases}$$

When $\rho = 1$ and $\tau = 0$, \tilde{u} is a particular case of Big q-Jacobi polynomials [9].

References

- J. Alaya, P. Maroni, Symmetric Laguerre-Hahn forms of class s = 1, Integral Transforms Spec. Funct. 4, 1996, 301-320.
- [2] H. Bouakkaz, P. Maroni, Description des polynômes orthogonaux de Laguerre-Hahn de classe zéro, in Orthoggonals Polynomials and Their Applications, C. Brezinski, L. Gori, and A. Ronveaux, eds, Annals of Computation and Applied Mathematics, 9, J.C.Baltzer AGasel, 1991, 189-194.
- [3] T.S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.
- [4] J. Dini, Sur les formes linires et polynes orthogonaux de Laguerre-Hahn, These de Doctorat, Universit Pierre et Marie Curie, Paris VI, 1988.
- [5] J. Dzoumba, Sur les polynes de Laguerre-Hahn, These de troisiéme cycle, Universit Pierre et Marie Curie, Paris VI, 1985.
- [6] A. Ghressi, L. Kheriji, I. Tounsi, An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials, Sym. Int. Geo. Meth. App., 7, 2011, 1-20.

- [7] A. Ghressi, L. Khériji, The Symmetrical H_q-Semiclassical Orthogonal Polynomials of Class one, SIGMA, 5, 2009, 076, 22 pages, arXiv:0907.3851.
- [8] M. Guerfi, Les polynomes de Laguerre-Hahn affines discrets, These de troisime cycle, Univ. P. et M. Curie, Paris, 1988
- [9] L. Kheriji, P. Maroni, The H_q-classical orthogonal polynomials, Acta. Appl. Math., 71 2002, 49-115.
- [10] A. Magnus, Riccati acceleration of Jacobi continued fractions and Laguerre-Hahn orthogonal polynomials, in Pade Approximation and its Applications (Bad Honnef, 1983), Lecture Notes in Math., Vol. 1071, Springer, Berlin, 1984, 213-230.
- [11] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, in: Orthogonal Polynomials and their applications. (C. Brezinski et al Editors.) IMACS, Ann. Comput. Appl. Math., 9, (Baltzer, Basel), 1991, 95-130.
- [12] M. Sghaier, M. Zaatra, The D_w-Laguerre-Hahn Forms of Class Zero, Mediterr. J. Math., 17(185), 2020, 1-28.
- [13] M. Zaatra, Laguerre-Freud equations associated with the H_q -semi-classical forms of class one, Filomat, **32(19)**, 2018, 6769-6787.

Mabrouk Sghaier Institut Superieur d'Informatique de Medenine. Medenine4119, Tunisia E-mail: sghaier.mabrookbelhedi580@gmail.com or mabrouk.sghaier@isim.rnu.tn

Mohamed Zaatra Institut Superieur des Sciences et Techniques des Eaux de Gabes. Gabes 6072, Tunisia E-mail: medzaatra@yahoo.fr

Mehdi Mechri Faculte des Sciences de Gabes, 6029 route de Medenine Gabes, Tunisia E-mail: mehdi_ mechri@yahoo.fr

Received 14 June 2021 Accepted 25 February 2022