The Symmetric H_q-Laguerre-Hahn Orthogonal Polynomials of Class Zero

M. Sghaier*, M. Zaatra, M. Mechri

Abstract. We consider the system of Laguerre-Freud equations associated with the H_q-Laguerre-Hahn orthogonal polynomials of class zero. This system is solved in the symmetric case. There are essentially three canonical cases.

Key Words and Phrases: orthogonal polynomials, q-difference operator, H_q-Laguerre-Hahn forms.

2010 Mathematics Subject Classifications: 33C45, 42C05

1. Introduction and preliminary results

The D-Laguerre-Hahn polynomial sequences, where D is the derivative operator, have attracted the interest of researchers from many points of view (see [1, 2, 4, 5, 10] among others). They constitute a very remarkable family of orthogonal polynomials taking into consideration most of the monic orthogonal polynomial sequences (MOPS) found in literature. In particular, semiclassical orthogonal polynomials are Laguerre-Hahn MOPS [11]. The concept of D-Laguerre-Hahn polynomial sequences has been extended to discrete Laguerre-Hahn polynomials which are related to a divided difference operator. Indeed, the H_q-Laguerre-Hahn polynomial sequences, where H_q is the Hahn’s operator, have been considered by several authors. Essentially, an algebraic theory was presented in [6, 9]. These families are extensions of discrete semiclassical polynomials [8, 7].

The D-Laguerre-Hahn polynomial sequences of class zero are completely described in [2]. For the difference operator D_w, the D_w-Laguerre-Hahn polynomial sequences of class zero has been analyzed in [12]. So, the aim of this paper is to determine the symmetric H_q-Laguerre-Hahn forms of class $s = 0$, through the study of the differential functional equation fulfilled by these forms and the

*Corresponding author.

http://www.azjm.org 34 © 2010 AZIM All rights reserved.
resolution of a nonlinear system satisfied by the coefficients of the three-term recurrence relation of their sequences of monic orthogonal polynomials.

The structure of the manuscript is as follows. The first section contains material of preliminary and some results regarding the H_q-Laguerre-Hahn forms. In the second section, the system of Laguerre-Freud equations is built. In the third section, using this system, we obtain the symmetric sequences which we look for.

Let P be the vector space of polynomials with coefficients in \mathbb{C} and let P' be its dual. We denote by $\langle u, f \rangle$ the action of $u \in P'$ on $f \in P$. In particular, we denote by $(u)_n := \langle u, x^n \rangle, n \geq 0$, the moments of u. For instance, for any form u, any polynomial g and any $a \in \mathbb{C}\{0\}$, we let $Du = u', gu, h_a u$ and $x^{-1}u$ be the forms defined by duality
\[
\langle u', f \rangle := -\langle u, f' \rangle, \quad \langle gu, f \rangle := \langle u, gf \rangle, \quad \langle h_a u, f \rangle := \langle u, h_a f \rangle, \quad \langle x^{-1}u, f \rangle := \langle u, \theta_0 f \rangle, \quad f \in P,
\]
where $(h_a f)(x) = f(ax)$ and $(\theta_0 f)(x) = \frac{f(x) - f(0)}{x}$.

We also define the right-multiplication of a form u by a polynomial h as
\[
(uh)(x) := \langle u, \frac{xh(x) - \xi h(\xi)}{x - \xi} \rangle = \sum_{i=0}^{n} \left(\sum_{j=1}^{n} a_j(v)_{j-i} \right) x^i, \quad h(x) = \sum_{i=0}^{n} a_i x^i. \quad (1)
\]
Next, it is possible to define the product of two forms through
\[
\langle uv, f \rangle := \langle u, vf \rangle, \quad u, v \in P', \quad f \in P.
\]

A form u is called regular if there exists a sequence of polynomials $\{S_n\}_{n \geq 0}$ ($\deg S_n \leq n$) such that
\[
\langle u, S_n S_m \rangle = r_{n \delta_{n,m}}, \quad r_n \neq 0, \quad n \geq 0.
\]
Then, $\deg S_n = n, n \geq 0$ and we can always suppose each S_n is monic. In such a case, the sequence $\{S_n\}_{n \geq 0}$ is unique. The sequence $\{S_n\}_{n \geq 0}$ is said to be the sequence of monic orthogonal polynomials with respect to u. In the sequel, it will be denoted as MOPS. It is a very well known fact that the sequence $\{S_n\}_{n \geq 0}$ satisfies the recurrence relation [3]
\[
S_{n+2}(x) = (x - \beta_{n+1})S_{n+1}(x) - \gamma_{n+1} S_n(x), \quad n \geq 0,
\]
\[
S_1(x) = x - \beta_0, \quad S_0(x) = 1,
\]
with $(\beta_n, \gamma_{n+1}) \in \mathbb{C} \times \mathbb{C}\{0\}, \quad n \geq 0$. By convention we set $\gamma_0 = (u)_0$. The form u is called normalized if $(u)_0 = 1$.

We recall that a form \(u \) is called symmetric if \((u)_{2n+1} = 0, n \geq 0 \). The conditions \((u)_{2n+1} = 0, n \geq 0\) are equivalent to the fact that the corresponding MOPS \(\{S_n\}_{n \geq 0} \) satisfies the three-term recurrence relation (2) with \(\beta_n = 0, n \geq 0 \) [3].

Let us introduce the Hahn’s operator [9]

\[
(H_q f)(x) = \frac{f(qx) - f(x)}{(q - 1)x}, \quad f \in \mathcal{P}, \quad q \in \tilde{\mathbb{C}},
\]

where \(\tilde{\mathbb{C}} := \mathbb{C} - \left(\{0\} \cup \left(\bigcup_{n \geq 0} \{z \in \mathbb{C}, \quad z^n = 1\} \right) \right) \). When \(q \to 1 \), we meet again the derivative \(D \).

By duality, we can define \(H_q \) from \(\mathcal{P}' \) to \(\mathcal{P}' \) such that

\[
\langle H_q u, f \rangle = -\langle u, H_q f \rangle, \quad f \in \mathcal{P}, \quad u \in \mathcal{P}'.
\]

In particular, this yields \((H_q u)_n = -[n]_q (u)_{n-1} , n \geq 0 \) with \((u)_{-1} = 0 \) and \([n]_q := \frac{q^n - 1}{q - 1} , \quad n \geq 0 \).

Definition 1. [6] The regular form \(u \) is called a \(H_q \)-Laguerre-Hahn form when it is regular and there exist three polynomials \(\Phi \) (monic) , \(\Psi \) and \(B \), \(\deg(\Phi) = t \geq 0 \), \(\deg(\Psi) = p \geq 1 \), \(\deg(B) = r \geq 0 \), such that

\[
H_q(\Phi u) + \Psi u + B(x^{-1}u(h_q u)) = 0 \quad (3)
\]

The corresponding MOPS \(\{S_n\}_{n \geq 0} \) is said to be \(H_q \)-Laguerre-Hahn.

Remark 1. When \(B = 0 \), the form \(u \) is \(H_q \)-semiclassical.

Proposition 1. [6] We define \(d = \max(t, r) \). The \(H_q \)-Laguerre-Hahn form \(u \) satisfying (3) is of class \(s = \max(d - 2, p - 1) \) if and only if

\[
\prod_{c \in Z(\Phi)} \{[(H_q \Phi)(c) + q(h_q \Phi)(c)] + [q(h_q B)(c)]

+ |\langle u, (\theta_{cq} \circ \theta_{c} \Phi) + q(\theta_{cq} \Psi) + q(h_q u)(\theta_0 \circ \theta_{cq} B) \rangle|\} \neq 0,
\]

where \(Z(\Phi) := \{z \in C, \Phi(z) = 0\} \).

The \(H_q \)-Laguerre-Hahn character is invariant by shifting. Indeed, the shifted form \(\tilde{u} = h_{a-1}u, \quad a \in C - \{0\} \) satisfies

\[
H_q(\Phi \tilde{u}) + \Psi \tilde{u} + \tilde{B}(x^{-1}\tilde{u}(h_q \tilde{u})) = 0,
\]
with \(\tilde{\Phi}(x) = a^{-1}\Phi(ax), \quad \tilde{B}(x) = a^{-1}B(ax), \quad \tilde{\Psi}(x) = a^{-1}\Psi(ax) \).

The sequence \(\{\tilde{S}_n(x) = a^{-n}S_n(ax)\}_{n \geq 0} \) is orthogonal with respect to \(\tilde{u} \) and fulfills (2) with

\[
\tilde{\beta}_n = \frac{\beta_n}{a}, \quad \tilde{\gamma}_{n+1} = \frac{\gamma_{n+1}}{a^2}, \ n \geq 0.
\]

The next result [6] characterizes the elements of the functional equation satisfied by any symmetric \(H_q \)-Laguerre-Hahn form.

Proposition 2. Let \(u \) be a symmetric \(H_q \)-Laguerre-Hahn form of class \(s \) satisfying (3). The following statements hold.

1. When \(s \) is odd, then \(\Phi \) and \(B \) are odd and \(\Psi \) is even.
2. When \(s \) is even, then \(\Phi \) and \(B \) are even and \(\Psi \) is odd.

2. The Laguerre-Freud equations

In this section, we will establish the non-linear system satisfied by \(\beta_n \) and \(\gamma_n \), simply by using the functional equation.

In the sequel, we assume that \(\{S_n\}_{n \geq 0} \) is a \(H_q \)-Laguerre-Hahn sequence of class zero satisfying (2) and its corresponding form \(u \) satisfying (3) with

\[
\Phi(x) = c_2x^2 + c_1x + c_0, \quad \Psi(x) = a_1x + a_0, \\
B(x) = b_2x^2 + b_1x + b_0, \quad a_1 \neq 0, \quad |c_2| + |c_1| + |c_0| \neq 0.
\] \hspace{1cm} (4)

Then, from (3) and (4), we obtain for \(n \geq 0 \)

\[
-\langle \Phi u, H_q(S_n(\xi)S_n(q^{-1}\xi))(x) \rangle + \langle \Psi u, S_n(x)S_n(q^{-1}x) \rangle \\
+ \langle u, B(x^{-1}u(h_qu)) \rangle, S_n(x)S_n(q^{-1}x) \rangle = 0, \\
-\langle \Phi u, H_q(S_{n+1}(q^{-1}\xi)S_n(\xi))(x) \rangle + \langle \Psi u, S_n(x)S_{n+1}(q^{-1}x) \rangle \\
+ \langle u, B(x^{-1}u(h_qu)) \rangle, S_n(x)S_{n+1}(q^{-1}x) \rangle = 0.
\] \hspace{1cm} (5)

Now, let us define for \(n \geq 0 \) and \(0 \leq k \leq 2 \)

\[
I_{n,k}(q) = \langle u, x^kS_n(x)S_{n+1}(q^{-1}x) \rangle, \ 0 \leq k \leq 1, \\
J_{n,k}(q) = \langle u, x^kS_n(x)S_{n+1}(q^{-1}x) \rangle, \ 0 \leq k \leq 1, \\
K_{n,k}(q) = \langle u, x^kH_q(S_n(\xi)S_n(q^{-1}\xi))(x) \rangle, \ 0 \leq k \leq 2, \\
L_{n,k}(q) = \langle u, x^kH_q(S_{n+1}(q^{-1}\xi)S_n(\xi))(x) \rangle, \ 0 \leq k \leq 2, \\
M_{n,k}(q) = \langle x^{-1}u(h_qu), x^kS_n(x)S_n(q^{-1}x) \rangle, \ 0 \leq k \leq 2, \\
N_{n,k}(q) = \langle x^{-1}u(h_qu), x^kS_n(x)S_{n+1}(q^{-1}x) \rangle, \ 0 \leq k \leq 2.
\] \hspace{1cm} (6)
If we expand Φ, Ψ and B according to (4), we get from (5) and (6)

\begin{align*}
 a_1 I_{n,1}(q) + a_0 J_{n,0}(q) + b_2 M_{n,2}(q) + b_1 M_{n,1}(q) + b_0 M_{n,0}(q) \\
 - c_2 K_{n,2}(q) - c_1 K_{n,1}(q) - c_0 K_{n,0}(q) = 0 ,
\end{align*}

(7)

\begin{align*}
 a_1 J_{n,1}(q) + a_0 J_{n,0}(q) + b_2 N_{n,2}(q) + b_1 N_{n,1}(q) + b_0 N_{n,0}(q) \\
 - c_2 L_{n,2}(q) - c_1 L_{n,1}(q) - c_0 L_{n,0}(q) = 0 .
\end{align*}

(8)

Lemma 1. [13] We have

\begin{equation}
 I_{n,0}(q) = q^{-n} \langle u, S_n^2 \rangle , n \geq 0 ,
\end{equation}

(9)

\begin{equation}
 I_{n,1}(q) = q^{-n} \left\{ \beta_n + (1 - q) \sum_{\nu=0}^{n-1} \beta_{\nu} \right\} \langle u, S_n^2 \rangle , n \geq 0 ,
\end{equation}

(10)

\begin{equation}
 J_{n,0}(q) = q^{-n-1} (1 - q) \left(\sum_{\nu=0}^{n} \beta_{\nu} \right) \langle u, S_n^2 \rangle , n \geq 0 ,
\end{equation}

(11)

\begin{align*}
 J_{n,1}(q) = q^{-n-1} \left\{ \gamma_{n+1} + (1 - q) \left[(1 + q) \sum_{\nu=0}^{n-1} \gamma_{\nu+1} + \sum_{\nu=0}^{n} \beta_{\nu}^2 \right. \\
 + (1 - q) \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_{k} \right] \right\} \langle u, S_n^2 \rangle , n \geq 0 ,
\end{align*}

(12)

\begin{equation}
 K_{n,0}(q) = 0 , n \geq 0 ,
\end{equation}

(13)

\begin{equation}
 K_{n,1}(q) = q^{-n} [2n]_q \langle u, S_n^2 \rangle , n \geq 0 ,
\end{equation}

(14)

\begin{equation}
 K_{n,2}(q) = q^{-n} \left\{ [2n]_q \beta_n + (1 + q^{2n-1}) \sum_{k=0}^{n-1} \beta_{k} \right\} \langle u, S_n^2 \rangle , n \geq 0 ,
\end{equation}

(15)

\begin{equation}
 L_{n,0}(q) = q^{-n-1} [n + 1]_q \langle u, S_n^2 \rangle , n \geq 0 ,
\end{equation}

(16)

\begin{equation}
 L_{n,1}(q) = q^{-n-1} \left(\sum_{\nu=0}^{n} \beta_{\nu} \right) \langle u, S_n^2 \rangle , n \geq 0 ,
\end{equation}

(17)

\begin{equation}
 L_{0,2}(q) = q^{-1} (\beta_0^2 + \gamma_1) ,
\end{equation}

(18)

\begin{align*}
 L_{n,2}(q) = q^{-n-1} \left\{ [2n + 1]_q \gamma_{n+1} + (1 + q) \sum_{\nu=0}^{n-1} \gamma_{\nu+1} + \sum_{\nu=0}^{n} \beta_{\nu}^2 \right. \\
 + (1 - q) \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_{k} \right\} \langle u, S_n^2 \rangle , n \geq 1 , \sum_{\nu=0}^{n} \beta_{\nu} = 0 .
\end{align*}

(19)
In order to determine \(\{M_{n,k}(q)\}_{n \geq 0} \) and \(\{N_{n,k}(q)\}_{n \geq 0}, 0 \leq k \leq 2 \), we need the following results:

Lemma 2. [13] For \(n \geq 0 \) we have
\[
\langle u, x^{n+1} S_n \rangle = \left(\sum_{\nu=0}^{n} \beta_{\nu} \right) \langle u, S_n^2 \rangle, \tag{20}
\]
\[
\langle u, x^{n+2} S_n \rangle = \left(\sum_{\nu=0}^{n} \gamma_{\nu+1} + \sum_{\nu=0}^{n} \beta_{\nu} \sum_{k=0}^{\nu} \beta_{k} \right) \langle u, S_n^2 \rangle. \tag{21}
\]

Lemma 3. [3] We have
\[
S_{n+2}(x) = x^{n+2} + d_{n+1} x^{n+1} + e_n x^n + \ldots, \quad n \geq 0,
\]
\[
S_1(x) = x + d_0,
\]
with
\[
d_n = -\sum_{\nu=0}^{n} \beta_{\nu}, \tag{23}
\]
\[
e_n = -\sum_{\nu=0}^{n} \gamma_{\nu+1} - \sum_{\nu=0}^{n} \beta_{\nu} \sum_{k=0}^{\nu} \beta_{k} + \sum_{\nu=0}^{n+1} \beta_{\nu} \sum_{\nu=0}^{n} \beta_{\nu}, \tag{24}
\]
for \(n \geq 0 \).

Lemma 4. [12] For \(u, v \in \mathcal{P}' \) and \(f, g \in \mathcal{P} \), we have
\[
f(uv) = (fu)v + x(u \theta_0 f)v, \tag{25}
\]
\[
\langle uv, \theta_0(fg) \rangle = \langle u, f(v \theta_0 g) \rangle + \langle v, g(u \theta_0 f) \rangle. \tag{26}
\]

Lemma 5. We have
\[
M_{n,0}(q) = 0, \quad n \geq 0, \tag{27}
\]
\[
M_{0,1}(q) = 1, \tag{28}
\]
\[
M_{n,1}(q) = q^{-n}(1 + q^{2n})\langle u, S_n^2 \rangle, \quad n \geq 1, \tag{29}
\]
\[
M_{0,2}(q) = (q + 1)\beta_0, \tag{30}
\]
\[
M_{n,2}(q) = q^{-n}\{ (q^{2n} + q)(\beta_0 + \beta_n) + (q-1)(q^{2n} - 1) \sum_{\nu=0}^{n} \beta_{\nu} \} \langle u, S_n^2 \rangle, \quad n \geq 1, \tag{31}
\]
\[
N_{n,0}(q) = q^{-n-1}\langle u, S_n^2 \rangle, \quad n \geq 0, \tag{32}
\]
\[N_{n,1}(q) = q^{-n-1}\{q\beta_0 + (1-q)\sum_{\nu=0}^{n}\beta_\nu\}\langle u, S_n^2 \rangle, \; n \geq 0, \] (33)

\[N_{0,2}(q) = q^{-1}[\beta_0^2 + (q^2 + 1)\gamma_1], \] (34)

\[N_{n,2}(q) = q^{-n-1}\{(1+q^{2n+2})\gamma_{n+1} + q(q-1)\sum_{\nu=0}^{n}\beta_\nu \sum_{\nu=1}^{n}\beta_\nu \]
\[+ (1-q^2)(\sum_{\nu=0}^{n-1}\gamma_{\nu+1} + \sum_{\nu=0}^{n-1}\beta_{\nu+1} + \sum_{k=0}^{\nu}\beta_k + \sum_{\nu=0}^{n}\beta_\nu^2) \]
\[+ q^2(\beta_0^2 + \gamma_1)\}\langle u, S_n^2 \rangle, \; n \geq 1. \] (35)

Proof. From (26), we have

\[M_{n,0}(q) = \langle u, S_n(x)(h_q u \theta_0(h_q^{-1} S_n)(x)) + \langle u, S_n(x)(u \theta_0 S_n)(qx) \rangle, \; n \geq 0. \]

By the orthogonality of \(\{S_n\}_{n \geq 0}\), we obtain (27).

Taking \(f(x) = S_n(x)\) and \(g(x) = x(h_q^{-1} S_n)(x)\) in (26), we can deduce that for \(n \geq 0\)

\[M_{n,1}(q) = \langle u, S_n(x)(h_q u \theta_0(h_q^{-1} S_n)(x)) + \langle u, qx S_n(x)(u \theta_0 S_n)(qx) \rangle. \] (36)

Making \(n = 0\) in (36), we get \(M_{0,1}(q) = \langle u \rangle_0 = 1.\)

When \(n \geq 1\), by (1) and the orthogonality of \(\{S_n\}_{n \geq 0}\), we obtain (29).

By virtue of (26), when \(f(x) = x S_n(x)\) and \(g(x) = x(h_q^{-1} S_n)(x)\), we can deduce that for \(n \geq 0\)

\[M_{n,2}(q) = \langle u, x S_n(x)(h_q u \theta_0(h_q^{-1} S_n)(x)) + \langle u, qx S_n(x)(u \theta_0 S_n)(qx) \rangle. \] (37)

Making \(n = 0\) in (37) and taking into account that \(\langle u \rangle_1 = \beta_0\), we obtain (30).

When \(n \geq 1\), by (1), (22) and according to the orthogonality of \(\{S_n\}_{n \geq 0}\), we get

\[M_{n,2}(q) = (q^{-n} + q^{n+1})\langle u, x^{n+1} S_n(x) \rangle + (q^{1-n} + q^n)(\beta_0 + d_{n-1})\langle u, S_n^2 \rangle. \]

Thus, from (20) and (23), we can deduce (31).

From (26), we have

\[N_{n,0}(q) = \langle u, S_{n+1}(x)(u \theta_0 S_n)(qx) \rangle + \langle u, S_n(x)(h_q u \theta_0 h_q^{-1} S_{n+1})(x) \rangle, \; n \geq 0. \]

Hence, by the orthogonality of \(\{S_n\}_{n \geq 0}\), we obtain (32).

Taking \(f(x) = S_{n+1}(q^{-1} x)\) and \(g(x) = x S_n(x)\) in (26), we get for \(n \geq 0\)

\[N_{n,1}(q) = \langle u, S_{n+1}(x)(u S_n)(qx) \rangle + \langle u, x S_n(x)(h_q u \theta_0 h_q^{-1} S_{n+1})(x) \rangle. \]
By (1), (22) and the orthogonality of \(\{S_n\}_{n \geq 0} \), we obtain
\[
N_{n,1}(q) = q^{-u-1} \langle u, x^{n+1}S_n(x) \rangle + q^{-n} (\beta_0 + d_n) \langle u, S_n^2 \rangle.
\]

Then, from (20) and (23), we can deduce (33).

For \(n \geq 0 \), by (26), we have
\[
N_{n,2}(q) = \langle u, qxS_{n+1}(x)(uS_n)(qx) \rangle + \langle u, xS_n(x)(h_quh_{q^{-1}}S_{n+1})(x) \rangle.
\] (38)

When \(n = 0 \), from (38) and taking into account that \((u)_2 = \beta_0^2 + \gamma_1 \), we obtain (34).

Now, for \(n \geq 1 \), by (1), (22), (38) and taking into account the regularity of the form \(u \), we get
\[
N_{n,2}(q) = q^{-n-1} \langle u, x^{n+2}S_n(x) \rangle + q^{-n} (\beta_0 + d_n) \langle u, x^{n+1}S_n(x) \rangle
+ \{q^{n+1} \gamma_{n+1} + q^{1-n}(\beta_0^2 + \gamma_1) + q^{1-n}(\epsilon_{n-1} + \beta_0 d_n) \} \langle u, S_n^2 \rangle.
\]

Hence, from Lemma 2, (23) and (24), we can deduce (35). \(\square \)

The following is the main result of this section.

Proposition 3. We have the following system:
\[
\Psi(\beta_0) + (H_qB)(\beta_0) = 0,
\] (39)
\[
(1 + q^{2n-1}) \sum_{\nu=0}^{n-1} (\theta_{\beta_0} \Phi)(\beta_\nu) - \Psi(\beta_\nu) - (q + q^{2n})(\theta_{\beta_0} B)(\beta_0)
+ ((1 + q^{2n-1}) n - [2n]_q)(c_2 \beta_n + c_1) + (q - 1) \{(q^{2n} - 1) \beta_n b_2
+ [(q^{2n} - 1) b_2 - a_1] \sum_{\nu=0}^{n-1} \beta_\nu - b_1 \} = 0, n \geq 1,
\] (40)
\[
[a_1 + (1 + q^2)b_2 - c_2] \gamma_1 = \Phi(\beta_0) - B(\beta_0) - (1 - q) \beta_0 \Psi(\beta_0),
\} (41)
\[
[a_1 + (q^{2n+2} + 1)b_2 - [2n + 1]_q c_2] \gamma_{n+1} + (1 + q)(1 - q)(a_1 + b_2)
- c_2 \sum_{\nu=0}^{n-1} \beta_\nu + \sum_{\nu=0}^{n-1} \Phi(\beta_\nu) + ([n + 1]_q - n - 1)c_0 - B(q \beta_0)
- q^2 b_2 \gamma_1 + (1 - q) \{(c_2 + (q - 1)b_2) \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{\nu} \beta_k
- (a_0 + b_1) \sum_{\nu=0}^{n-1} \beta_\nu - [a_1 + (q + 1)b_2] \sum_{\nu=0}^{n-1} \beta_\nu
+ q b_2 \sum_{\nu=0}^{n-1} \beta_\nu \sum_{\nu=0}^{n-1} \beta_\nu \} = 0, n \geq 1.
\] (42)
Proof.

Making \(n = 0 \) in (7) and taking the relations (9) – (10), (13) – (15), (27) – (28) and (30) into account, we can deduce (39). \(\) Let \(n \geq 1 \). Then, by virtue of the relations (9) – (10), (13) – (15), (27), (29) and (31), the equation (7) becomes

\[
\begin{align*}
&\{2n\}q\beta_n + (1 + q^{2n-1}) \sum_{\nu=0}^{n-1} \beta_\nu \}c_2 + [2n]q c_1 - \{\beta_n + (1 - q) \sum_{\nu=0}^{n-1} \beta_\nu \}a_1 \\
&- a_0 - \{(q^{2n} + q)(\beta_0 + \beta_n) + (q - 1)(q^{2n} - 1) \sum_{\nu=0}^{n-1} \beta_\nu \}b_2 - (1 + q^{2n})b_1 = 0.
\end{align*}
\]

But, \((\theta_\beta \Phi)(\beta_\nu) = c_2(\beta_n + \beta_\nu) + c_1 \) and \((\theta_\beta B)(\beta_0) = b_2(\beta_n + \beta_0) + b_1 \). Then, we can deduce (40).

Let \(n = 0 \) in (8). Then, by virtue of (11) – (12), (16) – (18) and (32) – (34) we get (41).

When \(n \geq 1 \), in view of (11) – (12), (16) – (17), (19), (32) – (33) and (35), (8) becomes

\[
\begin{align*}
&\{2n + 1\}q\gamma_{n+1} + (1 + q) \sum_{\nu=0}^{n-1} \gamma_{\nu+1} + \sum_{\nu=0}^{n} \beta_\nu^2 + (1 - q) \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{n} \beta_k \}c_2 \\
&c_1 \sum_{\nu=0}^{n} \beta_\nu + [n + 1]q c_0 - \{\gamma_{n+1} + (1 - q)\left[(1 + q) \sum_{\nu=0}^{n-1} \gamma_{\nu+1} + \sum_{\nu=0}^{n} \beta_\nu^2 \right. \\
&\left. + (1 - q) \sum_{\nu=0}^{n-1} \beta_{\nu+1} \sum_{k=0}^{n} \beta_k \right]\}a_1 - (1 - q)a_0 \sum_{\nu=0}^{n} \beta_\nu - \{(q^{2n+2} + 1)\gamma_{n+1} \\
&+ q(q - 1) \sum_{\nu=0}^{n} \beta_\nu \}b_2 - \{q\beta_0 + (1 - q) \sum_{\nu=0}^{n} \beta_\nu \}b_1 - b_0 = 0.
\end{align*}
\]

Hence, we can deduce (42). △

3. The symmetric case when \(s = 0 \)

In the sequel, we assume that \(\{S_n\}_{n \geq 0} \) is a symmetric \(H_q \)-Laguerre-Hahn orthogonal sequence of class zero.

Then, we have

\[
\begin{align*}
&S_{n+2}(x) = xS_{n+1}(x) - \gamma_{n+1} S_n(x), \quad n \geq 0, \\
&S_1(x) = x, \quad S_0(x) = 1.
\end{align*}
\]
By virtue of the Proposition 2, it follows that
\[H_q(\Phi u) + \Psi u + B(x^{-1}u^2) = 0 , \]
(44)
with
\[\Phi(x) = c_2x^2 + c_0 , \Psi(x) = a_1x , B(x) = b_2x^2 + b_0 . \]
(45)
In this case the system (39) - (42) becomes
\[(r_2 - c_2)\gamma_1 = c_0 - b_0 , \]
(46)
\[\{r_{2n+2} - [2n + 1]q c_2\}\gamma_{n+1} + (1 + q)\{(1 - q)(a_1 + b_2) - c_2\} \sum_{\nu=0}^{n-1} \gamma_{\nu+1} \]
(47)
\[= [n + 1]q c_0 - b_0 - q^2 b_2 \gamma_1 , \quad n \geq 1 , \]
with
\[r_n = a_1 + (1 + q^n)b_2 , \quad n \geq 0 . \]
(48)
Let
\[T_n = \sum_{\nu=0}^{n} \gamma_{\nu+1} , \quad n \geq 0 . \]
(49)
Then,
\[T_n - T_{n-1} = \gamma_{n+1} , \quad n \geq 0 , \quad T_{-1} = 0 . \]
(50)
Taking the relations (49) and (50) into account, the system (46) - (47) becomes
\[(r_2 - c_2)T_0 = c_0 - b_0 , \]
(51)
\[\{r_{2n+2} - [2n + 1]q c_2\}T_n - (1 + q)\{(1 - q)(a_1 + b_2) - c_2\} \sum_{\nu=0}^{n-1} \gamma_{\nu+1} \]
(52)
\[= [n + 1]q c_0 - b_0 - q^2 b_2 T_0 , \quad n \geq 1 . \]

Proposition 4. We have for \(n \geq 1 \)
\[T_n = \frac{q[n]q[n+1]q c_0 + [(a_1 - c_2)[2n + 2]q + [2n + 4]q b_2]\gamma_1}{(q + 1)\{r_{2n+2} - [2n + 1]q c_2\}} . \]
(53)

Proof. The equation (52) can be written as
\[\{r_{2n+2} - [2n + 1]q c_2\}T_n - q^2 \{r_{2n} - [2n - 1]q c_2\}T_{n-1} \]
\[= [n + 1]q c_0 - b_0 - q^2 b_2 T_0 , \quad n \geq 1 . \]
So, we obtain
\[\{r_{2n+2} - [2n + 1]q c_2\}T_n - q^{2n} \{r_2 - c_2\}T_0 \]
\[= q^{2n} \sum_{k=1}^{n} \left\{ q^{-2k} \left([k + 1]q c_0 - b_0 - q^2 b_2 T_0 \right) \right\} , \quad n \geq 1 . \]
Taking the relation (51) into account, we obtain (53). ▶
Corollary 1. The sequence \(\{\gamma_{n+2}\}_{n \geq 0} \) is defined by

\[
\gamma_{n+2} = \frac{q^{n+1}}{(r_{n+4} - [2n + 3]q^2)(r_{n+2} - [2n + 1]q^2)} \left\{ [n + 1]q(r_{n+2} - [n + 1]q^2)c_0 \\
+ [(a_1 + b_2)q^{n+1}r_2 - (q(a_1 + b_2) + c_2 - r_2)q^n c_2] \gamma_1 \right\}.
\] (54)

Proof. From (50) and Proposition 4, we get for \(n \geq 1 \)

\[
(q + 1)\{r_{2n+4} - [2n + 3]q^2\}\{r_{2n+2} - [2n + 1]q^2\} \gamma_{n+2}
= \{r_{2n+2} - [2n + 1]q^2\}\{q[n + 1]q[n + 2]c_0 + [(a_1 - c_2)[2n + 4]q + [2n + 6]q^2]c_2\} \\
- \{r_{2n+4} - [2n + 3]q^2\}\{q[n]q[n + 1]q^2c_0 + [(a_1 - c_2)[2n + 2]q + [2n + 4]q^2]c_2\} \gamma_1.
\]

Then, we can deduce (54) after some straightforward calculations. \(\blacksquare \)

4. The canonical cases

Before considering different canonical situations, let us proceed to the general transformation

\[
\tilde{S}_n(x) = a^{-n}S_n(ax), \quad n \geq 0,
\]

\[
\tilde{\gamma}_{n+1} = \frac{\gamma_{n+1}}{a^2}, \quad n \geq 0.
\]

The form \(\tilde{u} = h_{a-1}u \) fulfills

\[
H_q(a^{-t}\Phi(ax)\tilde{u}) + a^{1-t}\Psi(ax)\tilde{u} + a^{-t}B(ax)(x^{-1}(\tilde{u}(h_q\tilde{u}))) = 0.
\]

Any so-called canonical case will be denoted by \(\tilde{\gamma}_{n+1}, \tilde{u} \).

By (54) and Corollary 1, we get the general situation

\[
\left\{
\begin{aligned}
\gamma_{n+2} &= \frac{q^{n+1}}{(r_{2n+4} - [2n + 3]q^2)(r_{2n+2} - [2n + 1]q^2)} \left\{ [n + 1]q(r_{n+2} - [n + 1]q^2)c_0 \\
&+ [(a_1 + b_2)q^{n+1}r_2 - (q(a_1 + b_2) + c_2 - r_2)q^n c_2] \gamma_1 \right\}, \quad n \geq 0, \\
H_q((c_2x^2 + c_0)u) + a_1 xu + (b_2x^2 + b_0)(x^{-1}u^2) &= 0.
\end{aligned}
\right.
\] (55)

Theorem 1. The following canonical cases arise:

1. When \(\Phi(x) = 1 \), we have the following subcases:

 (i) \(a_1 + b_2 \neq 0 \)
The Symmetric H_q-Laguerre-Hahn Orthogonal Polynomials of Class Zero

2. The case where $\Phi(x) = x^2$, we obtain the canonical case below:

$$
\begin{align*}
\gamma_1 &= \rho q^{\tau+1} \frac{1}{2}, \\
\gamma_{n+2} &= \frac{2}{\rho} \big((\tau + \frac{1}{2}) q^{n+1} + (\tau + \frac{1}{2}) q^n \big) \frac{1}{n+1} \{ [n+\tau+2]_q \\
&+ \big(\frac{1}{\rho} - 1 \big) (n+3)_q - q^{n+1} [n+1]_q - (q+1) q^{n+\tau+2} \big), \\
H_q(\tilde{u}) &= \frac{2}{\rho} (2 - \rho) q^{-\tau} x \tilde{u} + \frac{2}{\rho} (\rho - 1) q^{-\tau} x^2 \\
&+ 1 - (1 + q^2 (\rho - 1)) [\tau + 1]_q (x^{-1} \tilde{u}^2) = 0.
\end{align*}
$$

(ii) $a_1 = -b_2$

$$
\begin{align*}
\gamma_1 &= \frac{\rho q}{\rho}, \\
\gamma_{n+2} &= \frac{[n+1]_q}{2 q^{n+1}}, \\
H_q(\tilde{u}) &= 2 x \tilde{u} + (2 x^2 + 1 - q \rho) (x^{-1} \tilde{u}^2) = 0.
\end{align*}
$$

3. When $\Phi(x) = x^2 + c_0$, $c_0 \neq 0$, we have the following subcases:

(i) $q(a_1 + b_2) + 1 = 0$

$$
\begin{align*}
\gamma_1 &= q \rho, \\
\gamma_{n+2} &= q^{n+2} \frac{(q^{n+1} - 1)(q^{n+1} - 1)}{(q^{n+1} - 1)(q^{n+1} - 1)} [n+\tau+1]_q, \\
H_q((x^2 - 1) \tilde{u}) &= (q - 1)^{-1} (q^{n+1} - 1) x \tilde{u} + \{ -q^{-1} (q-1)^{-1} (q^{n+1} - 1) x^2 \\
&+ \rho (q - 1 + q(q-1)^{-1} (q^{n+1} - 1)) - 1 \} (x^{-1} \tilde{u}^2) = 0.
\end{align*}
$$
\(\text{(ii)} \ q(a_1 + b_2) + 1 \neq 0\)

\[
\begin{align*}
\gamma_1 &= \rho q^{r+2} + 2(1 - (q^{r+1}) - (q^{2r+2} - 1)) \\
\gamma_{n+2} &= q^{n+r+2} + 3(q^{n+r+2} - 1) + \Lambda_2 \Delta_2 n, \quad n \geq 0, \\
H_q(x^2 - q^{-2})\dot{u} &= q^{-2r} - a_2(q-1)^{-1}(q^{2r+2} - 1) \times \\
&\quad + (1 + q^2)(\frac{1}{\rho} - 1)(q^{2r+2} - 1)x\dot{u} \\
&\quad + \{q^{-2r} - a_1(q-1)^{-1}(q^{2r+2} - 1)x^2 \\
&\quad + \rho q^{-2r} x + 1\} = 0 \\
\text{with (for } n \geq 0\text{)} \\
\Delta_n &= q^{n+2r+2} + 3 - (q^n - 1)(q^{2r+2} - 1)(\frac{1}{\rho} - 1), \\
\Lambda_n &= (q^n - 1)(q^{2r+2} - 1)(1 - \frac{1}{\rho}).
\end{align*}
\]

\textbf{Proof.}

1. In this case, (55) becomes

\[
\begin{align*}
\gamma_{n+2} &= \frac{q^{n+2}}{r_2 n_4 + 4 r_2 n_2} \{[n+1]q^{n+2} + q^{n+2}(a_1 + b_2)r_2\gamma_1\}, \quad n \geq 0, \\
H_q(u) + a_1 xu + (b_2x^2 + b_0)(x^{-1}u^2) &= 0.
\end{align*}
\]

We need to discuss the following situations:

(i) \(a_1 + b_2 \neq 0\). Choosing \(a^2(a_1 + b_2) = \frac{2}{\rho} q^{-2}\) and putting \(a^2 \gamma_1 = \rho^2 [r+1] x\), \(a^2 b_2 = \frac{2}{\rho} (q - 1) q^{-2}\), we get (56) from (51).

(ii) If \(a_1 + b_2 = 0\), then (61) becomes

\[
\begin{align*}
\gamma_{n+2} &= \frac{(n+1)q}{q^{n+2} + b_2}, \quad n \geq 0, \\
H_q(u) + a_1 xu + (b_2x^2 + b_0)(x^{-1}u^2) &= 0.
\end{align*}
\]

With the choice \(a^2 b_2 = 2\) and putting \(\gamma_1 = \frac{q}{q^{2r}}\), we get (57) from (51).

2. In this case, (55) can be written as

\[
\begin{align*}
\gamma_{n+2} &= \frac{q^{2n+2}[r+1]q^2(a_1 + b_2) + 1]}{r_2 n_4 + 2 q^{n+2} + 1}, \quad n \geq 0, \\
H_q(x^2 u) + a_1 xu + (b_2x^2 + b_0)(x^{-1}u^2) &= 0.
\end{align*}
\]

We choose \(a\) such that \(a^2[r+1]q^2(a_1 + b_2) + 1\) \(\gamma_1 = q^{-2r-2}\), and putting \(q^{-2r-2} \{2r + 3\} = 1 - r_2\), \(\gamma_1 = -\rho \frac{q^{2r+1}}{2r+3\rho}, \) we obtain (58) from (51).
3. In this case, (55) becomes

\[
\begin{align*}
\gamma_{n+2} &= \frac{q^{n+1}}{r_{2n+4}-[2n+3]q_{2}}\{[n+1]_{q}(r_{n+2} - [n+1]_{q})c_{0} \\
&\quad + q^{n}(1 + q(a_{1} + b_{2}))(r_{2} - 1)\gamma_{1}\}, \quad n \geq 0, \\
H_{q}(x^{2} + c_{0})u + a_{1}xu + (b_{2}x^{2} + b_{0})(x^{-1}u^{2}) &= 0. \\
\end{align*}
\]

We can consider two subcases:

(i) If \(1 + q(a_{1} + b_{2}) = 0\), then (62) becomes

\[
\begin{align*}
\gamma_{n+2} &= \frac{q^{n+1}}{r_{2n+4}-[2n+3]q_{2}}\{[n+1]_{q}(r_{n+2} - [n+1]_{q})c_{0} \\
&\quad + q^{n}(1 + q(a_{1} + b_{2}))(r_{2} - 1)\gamma_{1}\}, \quad n \geq 0, \\
H_{q}(x^{2} + c_{0})u + a_{1}xu + (b_{2}x^{2} + b_{0})(x^{-1}u^{2}) &= 0. \\
\end{align*}
\]

With the choice \(a^{-2}c_{0} = -1\) and putting \(\gamma_{1} = \rho, a_{1} = (q - 1)^{-1}(q^{a-1} - 1)\), we obtain the desired result (59) from (51).

(ii) When \(1 + q(a_{1} + b_{2}) \neq 0\), we choose \(a\) such that \(a^{-2}c_{0} = -q^{-\tau}\) and putting

\[
\begin{align*}
a^{-2}(1 + q(a_{1} + b_{2}))(r_{2} - 1)\gamma_{1} &= q^{-3\tau-2a-1}(q - 1)^{-1}(q^{r+2a+1} - 1)[\tau + 1]_{q}, \\
1 + q(a_{1} + b_{2}) &= -\frac{q^{-2\tau-2a-1}}{\rho}(q - 1)^{-1}(q^{2\tau+2a+1} - 1), \\
1 - r_{2} &= q^{-2\tau-2a-2}(q - 1)^{-1}(q^{2\tau+2a+3} - 1),
\end{align*}
\]

we get (60) from (51).

\[\square\]

Remark 2. 1. If \(q \to 1\) in (56), we obtain

\[
\begin{align*}
\tilde{\gamma}_{1} &= \rho \frac{\tau+1}{2}, \quad \tilde{\gamma}_{n+2} = \frac{n+\tau+2}{2}, \quad n \geq 0, \\
(\tilde{u}^{\prime})^{2} + \frac{2}{\rho}(2 - \rho)x\tilde{u} + \left(\frac{2}{\rho}(\rho - 1)x^{2} + 1 - \rho(\tau + 1)\right)(x^{-1}\tilde{u}^{2}) &= 0.
\end{align*}
\]

In this case \(\tilde{u}\) is the co-dilated of the associated form of order \(\tau\) of Hermite [2].

2. When \(q \neq 1\), from (56) we obtain

\[
\begin{align*}
\tilde{\gamma}_{1} &= \rho\left[1 - q^{-\tau+1}\right], \\
\tilde{\gamma}_{n+2} &= \frac{q^{n+\tau+1}}{\left\{1 + q^{n+\tau+1}\right\}\{1 - q^{n+\tau+2}\}}\left\{(1 - q^{n+\tau+2}) \\
&\quad + (\frac{1}{\rho} - 1)(1 - q^{n+3}) - q^{n+2}(1 - q^{n+1}) + (q^{2} - 1)q^{n+\tau+2}\right\}, \quad n \geq 0, \\
H_{q}(\tilde{u}) + \frac{1}{\rho}(2 - \rho)(1 - q)^{-1}q^{-\tau}x\tilde{u} + \left\{\frac{1}{\rho}(\rho - 1)(1 - q)^{-1}q^{-\tau}x^{2} \\
&\quad + 1 - (1 + q^{2}(\rho - 1))\right\}\{\tau + 1\}_{q}\right\}(x^{-1}\tilde{u}^{2}) &= 0,
\end{align*}
\]

(63)
with \(\hat{u} = h \frac{1}{\sqrt{2(1-q)}} \tilde{u} \). When \(\rho = 1 \) and \(\tau = 0 \), \(\hat{u} \) is a particular case of \(q \)-polynomials of Al-Salam Carlitz [9].

3. If \(q \to 1 \) in (57), we get

\[
\left\{ \begin{array}{l}
\tilde{\gamma}_1 = \frac{\rho}{2}, \\
\tilde{\gamma}_{n+2} = \frac{n+1}{2}, n \geq 0, \\
(\hat{u})' - 2 \hat{u} + (2 \hat{u}^2 + 1 - \rho)(x^{-1} \hat{u}^2) = 0.
\end{array} \right.
\]

In this case \(\hat{u} \) is the Laguerre-Hahn form of class zero, analogous to the classical Hermite’s one [2].

4. When \(q \to 1 \) in (58), we obtain

\[
\left\{ \begin{array}{l}
\tilde{\gamma}_1 = -\frac{\rho}{(2\tau+1)(2\tau+3)}, \\
\tilde{\gamma}_{n+2} = -\frac{1}{(2n+2\tau+5)(2n+2\tau+3)}, n \geq 0, \\
(x^2 \hat{u})' + 2[(1 - \frac{1}{\rho})(2\tau + 1) - \tau - 1]x \hat{u} \\
+ [(\frac{1}{\rho} - 1)(2\tau + 1)x^2 - \frac{1}{2\tau+1}](x^{-1} \hat{u}^2) = 0.
\end{array} \right.
\]

In this case \(\hat{u} \) is the co-dilates of the associated form of order \(\tau \) of Bessel of parameter 1 [2].

5. If \(q \to 1 \) in (59), we get

\[
\left\{ \begin{array}{l}
\tilde{\gamma}_1 = \rho, \\
\tilde{\gamma}_{n+2} = \frac{(n+1)(n+\alpha+1)}{(2n+\alpha+3)(2n+\alpha+1)}, n \geq 0, \\
((x^2 - 1) \hat{u})' + (\alpha - 2)x \hat{u} + ((\alpha - 1)x^2 + \rho(\alpha - 1) - 1)(x^{-1} \hat{u}^2) = 0.
\end{array} \right.
\]

In this case \(\hat{u} \) is the Laguerre-Hahn form of class zero, analogous to the classical Jacobi’s one [2].

6. When \(q \to 1 \) in (60), we have

\[
\left\{ \begin{array}{l}
\tilde{\gamma}_1 = \rho \frac{(\tau+1)(\tau+2\alpha+1)}{(2\tau+2\alpha+3)(2\tau+2\alpha+1)}, \\
\tilde{\gamma}_{n+2} = \frac{(n+\tau+2)(n+\tau+2\alpha+2)}{(2n+2\tau+2\alpha+5)(2n+2\tau+2\alpha+3)}, n \geq 0, \\
((x^2 - 1) \hat{u})' - 2[\tau + \alpha + 1 + (\frac{1}{\rho} - 1)(2\tau + 2\alpha + 1)]x \hat{u} \\
+ [(\frac{1}{\rho} - 1)(2\tau + 2\alpha + 1)x^2 + \rho \frac{(\tau+1)(\tau+2\alpha+1)}{(2\tau+2\alpha+3)(2\tau+2\alpha+1)} - 1](x^{-1} \hat{u}^2) = 0.
\end{array} \right.
\]

In this case \(\hat{u} \) is the co-dilates of the associated form of order \(\tau \) of Gegenbauer [2].
7. If we put \(b = q^\alpha \), (60) reduces to

\[
\begin{align*}
\tilde{\gamma}_1 &= \rho b^2 q^{r+1} \frac{(q^{r+1}+1)(b^2q^{r+1}+1)}{(b^2q^{r+1}+1)(b^2q^{r+1}+1)} , \\
\tilde{\gamma}_{n+2} &= b^2 q^{n+r+2} \frac{(q^{n+r+2}+1)(b^2q^{n+r+2}+1)+\Lambda_n}{\Delta_{2n} \Delta_{2n+2}} , \quad n \geq 0 , \\
H_q((x^2 - q^{-\tau}) \tilde{u}) &= q^{-2r-4}(b^2(q - 1))^{-1}(b^2q^{2r+1} - 1)x \tilde{u} \\
&+ (1 + q^2)(\frac{1}{\rho} - 1)(b^2q^{2r+1} - 1) \tilde{u} \\
&+ \{q^{-2r-4}(b^2(q - 1))^{-1}(\frac{1}{\rho} - 1)(b^2q^{2r+1} - 1)\} x^2 \\
&+ \rho q^{-r}(\tau + 1) b^2q^{r+1} - 1 - q^{-r} \xi^2 = 0 ,
\end{align*}
\]

with (for \(n \geq 0 \))

\[
\begin{align*}
\Delta_n &= b^2 q^{n+2r+3} - 1 - (q^n - 1)(b^2q^{2r+1} - 1)(\frac{1}{\rho} - 1) , \\
\Lambda_n &= (q^{n+1} - 1)(q^n - 1)(q^{2r+1}b^2 - 1)(1 - \frac{1}{\rho}) .
\end{align*}
\]

When \(\rho = 1 \) and \(\tau = 0 \), \(\tilde{u} \) is a particular case of Big \(q \)-Jacobi polynomials [9].

References

Mabrouk Sghaier
Institut Superieur d’Informatique de Medenine. Medenine4319, Tunisia
E-mail: sghaier.mabrookbelhedi580@gmail.com or mabrouk.sghaier@isim.rnu.tn

Mohamed Zaatra
Institut Superieur des Sciences et Techniques des Eaux de Gabes. Gabes 6072, Tunisia
E-mail: medzaatra@yahoo.fr

Mehdi Mechri
Faculte des Sciences de Gabes, 6029 route de Medenine Gabes, Tunisia
E-mail: mehdi_mechri@yahoo.fr

Received 14 June 2021
Accepted 25 February 2022